
1

Image warping
Li Zhang

CS559

Slides stolen from Prof Yungyu Chuang
http://www.csie.ntu.edu.tw/~cyy/courses/vfx/07spring/overview/

What is an image

• We can think of an image as a function, f: R2 R:
– f(x, y) gives the intensity at position (x, y)
– defined over a rectangle, with a finite range:

• f: [a,b]x[c,d] [0,1]

• A color image (,)
(,) (,)

(,)

r x y
f x y g x y

b x y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x

y

f

A digital image

• We usually operate on digital (discrete) images:
– Sample the 2D space on a regular grid
– Quantize each sample (round to nearest integer)

• If our samples are D apart, we can write this as:
f[i ,j] = Quantize{ f(i D, j D) }

• The image can now be represented as a matrix
of integer values

62 79 23 119 120 105 4 0

10 10 9 62 12 78 34 0

10 58 197 46 46 0 0 48

176 135 5 188 191 68 0 49

2 1 1 29 26 37 0 77

0 89 144 147 187 102 62 208

255 252 0 166 123 62 0 31

166 63 127 17 1 0 99 30

Image warping

h
f

g

Change pixels locations to create a new image:
f(x) = g(h(x))

h([x,y])=[x,y/2]

Parametric (global) warping

translation rotation aspect

affine
perspective

cylindrical

Examples of parametric warps:

Nonparametric (local) warping

Original Warped

2

Parametric (global) warping

• Transformation T is a coordinate-changing
machine: p’ = T(p)

• What does it mean that T is global?
– can be described by just a few numbers (parameters)
– the parameters are the same for any point p

• Represent T as a matrix: p’ = M*p

T

p = (x,y) p’ = (x’,y’)

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

M
'
'

Scaling

• Scaling a coordinate means multiplying each of
its components by a scalar

• Uniform scaling means this scalar is the same
for all components:

× 2

f g

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

2
2

'
'

⎥
⎦

⎤
⎢
⎣

⎡
y
x

• Non-uniform scaling: different scalars per
component:

Scaling

x × 2,
y × 0.5

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y

x
y
x

5.0
2

'
'

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
'
'

y
x

g
y
x

f

Scaling

• Scaling operation:

• Or, in matrix form:

byy
axx

=
=
'
'

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

b
a

y
x

0
0

'
'

scaling matrix S
What’s inverse of S?

2-D Rotation

θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

2-D Rotation

• This is easy to capture in matrix form:

• Even though sin(θ) and cos(θ) are nonlinear to θ,
– x’ is a linear combination of x and y
– y’ is a linear combination of x and y

• What is the inverse transformation?
– Rotation by –θ
– For rotation matrices, det(R) = 1 so

() ()
() () ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

θθ
θθ

cossin
sincos

'
'

TRR =−1

R

3

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Identity?

yy
xx

=
=
'
'

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'

=

=
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

s
s

y
x

y

x

0
0

'
'

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'

θθ
θθ

+=
−=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

y
x

θθ
θθ

cossin
sincos

'
'

2D Shear?

yxshy
yshxx

y

x

+=
+=

*'
*'

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

sh
sh

y
x

y

x

1
1

'
'

2x2 Matrices

• What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx

=
−=

'
'

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡−=⎥⎦

⎤
⎢⎣
⎡

y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx

−=
−=

'
'

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡

−
−=⎥⎦

⎤
⎢⎣
⎡

y
x

y
x

10
01

'
'

All 2D Linear Transformations

• Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

• Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
y
x

dc
ba

y
x

'
'

2x2 Matrices

• What types of transformations can not be
represented with a 2x2 matrix?

2D Translation?

y

x

tyy
txx

+=
+=

'
'

Only linear 2D transformations
can be represented with a 2x2 matrix

NO!

Translation

• Example of translation

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

11100
10
01

1
'
'

y

x

y

x

ty
tx

y
x

t
t

y
x

tx = 2
ty = 1

Homogeneous Coordinates

4

Affine Transformations

• Affine transformations are combinations of …
– Linear transformations, and
– Translations

• Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
– Models change of basis ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

11001
'
'

y
x

fed
cba

y
x

Projective Transformations
• Projective transformations …

– Affine transformations, and
– Projective warps

• Properties of projective transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines do not necessarily remain parallel
– Ratios are not preserved
– Closed under composition
– Models change of basis

⎥
⎦

⎤
⎢
⎣

⎡
'/'
'/'

wy
wx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1'
'
'

y
x

ihg
fed
cba

w
y
x

Very Useful In Texture Mapping!

Image warping

• Given a coordinate transform x’ = T(x) and a
source image I(x), how do we compute a
transformed image I’(x’) = I(T(x))?

I(x) I’(x’)x x’

T(x)

Forward warping

• Send each pixel I(x) to its corresponding
location x’ = T(x) in I’(x’)

I(x) I’(x’)x x’

T(x)

Forward warping
fwarp(I, I’, T)
{

for (y=0; y<I.height; y++)
for (x=0; x<I.width; x++) {

(x’,y’)=T(x,y);
I’(x’,y’)=I(x,y);

}
} I I’

x

x’

T

Forward warping

• Send each pixel I(x) to its corresponding
location x’ = T(x) in I’(x’)

f(x) g(x’)x x’

h(x)

• What if pixel lands “between” two pixels?
• Will be there holes?
• Answer: add “contribution” to several pixels,

normalize later (splatting)

5

Forward warping
fwarp(I, I’, T)
{

for (y=0; y<I.height; y++)
for (x=0; x<I.width; x++) {

(x’,y’)=T(x,y);
Splatting(I’,x’,y’,I(x,y),kernel);

}
} I I’

x

x’

T

Inverse warping

• Get each pixel I’(x’) from its corresponding
location x = T-1(x’) in I(x)

I(x) I’(x’)x x’

T-1(x’)

Inverse warping
iwarp(I, I’, T)
{

for (y=0; y<I’.height; y++)
for (x=0; x<I’.width; x++) {

(x,y)=T-1(x’,y’);
I’(x’,y’)=I(x,y);

}
} I I’

x
x’

T-1

Inverse warping

• Get each pixel I’(x’) from its corresponding
location x = T-1(x’) in I(x)

• What if pixel comes from “between” two pixels?
• Answer: resample color value from

interpolated (prefiltered) source image

f(x) g(x’)x x’

Inverse warping
iwarp(I, I’, T)
{

for (y=0; y<I’.height; y++)
for (x=0; x<I’.width; x++) {

(x,y)=T-1(x’,y’);
I’(x’,y’)=Reconstruct(I,x,y,kernel);

}
} I I’

x
x’

T-1

Sampling
band limited

6

Reconstruction

The reconstructed function is obtained by interpolating
among the samples in some manner

Reconstruction

• Reconstruction generates an approximation to
the original function. Error is called aliasing.

sample position

sample value
sampling reconstruction

Reconstruction

• Computed weighted sum of pixel neighborhood;
output is weighted average of input, where
weights are normalized values of filter kernel k

width

d

color=0;
weights=0;
for all q’s dist < width

d = dist(p, q);
w = kernel(d);
color += w*q.color;
weights += w;

p.Color = color/weights;

p

q

∑
∑=

i i

i ii

qk
qfqk

pf
)(

)()(
)(

Reconstruction (interpolation)

• Possible reconstruction filters (kernels):
– nearest neighbor
– bilinear
– bicubic
– sinc (optimal reconstruction)

Bilinear interpolation (triangle filter)

• A simple method for resampling images

Non-parametric image warping

7

Non-parametric image warping

• Specify a more detailed warp function
• Splines, meshes, optical flow (per-pixel motion)

Non-parametric image warping

• Mappings implied by correspondences
• Inverse warping

P’?

Non-parametric image warping

'''' CwBwAwP CBA ++=

Barycentric coordinate
CwBwAwP CBA ++=

Barycentric coordinates

1321

332211

=++
++=

ttt
AtAtAtP

Non-parametric image warping

P’

'''' CwBwAwP CBA ++=

Barycentric coordinate
CwBwAwP CBA ++=

P

Non-parametric image warping

radial basis function

2

)(rer βρ −=

)log()(2 rrr =ρ

Gaussian

thin plate
spline

∑ Δ=Δ
i

iX XPk
K

P
i

)'(1

8

Demo

• http://www.colonize.com/warp/warp04-2.php
• Warping is a useful operation for mosaics, video

matching, view interpolation and so on.

Image morphing

Image morphing

• The goal is to synthesize a fluid transformation
from one image to another.

image #1 image #2dissolving

• Cross dissolving is a common transition between
cuts, but it is not good for morphing because of
the ghosting effects.

Image morphing

• Why ghosting?
• Morphing = warping + cross-dissolving

shape
(geometric)

color
(photometric)

morphing

cross-dissolving

Image morphing

image #1 image #2

warp warp

Morphing sequence

9

Multi-source morphing Multi-source morphing

Face averaging by morphing

average faces

The average face

• http://www.uni-
regensburg.de/Fakultaeten/phil_Fak_II/Psychol
ogie/Psy_II/beautycheck/english/index.htm

Image morphing

create a morphing sequence: for each time t
1. Create an intermediate warping field (by

interpolation)
2. Warp both images towards it
3. Cross-dissolve the colors in the newly warped

images

t=0 t=1t=0.33

Warp specification (mesh warping)

• How can we specify the warp?
1. Specify corresponding spline control points

interpolate to a complete warping function

easy to implement, but may not be
expressive enough

10

Warp specification

• How can we specify the warp
2. Specify corresponding points

• interpolate to a complete warping function

Solution: convert to mesh warping

1. Define a triangular mesh over the points
– Same mesh in both images!
– Now we have triangle-to-triangle correspondences

2. Warp each triangle separately from source to destination
– How do we warp a triangle?
– 3 points = affine warp!
– Just like texture mapping

Warp specification (field warping)

• How can we specify the warp?
3. Specify corresponding vectors

• interpolate to a complete warping function
• The Beier & Neely Algorithm

Beier&Neely (SIGGRAPH 1992)

• Single line-pair PQ to P’Q’:

Algorithm (single line-pair)

• For each X in the destination image:
1. Find the corresponding u,v
2. Find X’ in the source image for that u,v
3. destinationImage(X) = sourceImage(X’)

• Examples:

Affine transformation

Multiple Lines

length = length of the line segment,
dist = distance to line segment
The influence of a, p, b. The same as the average of Xi’

iii XXD −= '

11

Full Algorithm Resulting warp

Comparison to mesh morphing

• Pros: more expressive
• Cons: speed and control

Warp interpolation

• How do we create an intermediate warp at
time t?
– linear interpolation for line end-points
– But, a line rotating 180 degrees will become 0

length in the middle
– One solution is to interpolate line mid-point and

orientation angle

t=0

t=1

Animation Animated sequences

• Specify keyframes and interpolate the lines for
the inbetween frames

• Require a lot of tweaking

12

Results

Michael Jackson’s MTV “Black or White”
http://www.michaeljackson.com/quicktime_blackorwhite.html

Problem with morphing

• So far, we have performed linear interpolation
of feature point positions

• But what happens if we try to morph between
two views of the same object?

View morphing

• Seitz & Dyer
http://www.cs.washington.edu/homes/seitz/vmorph/vmorph.htm

• Interpolation consistent with 3D view
interpolation

Main trick

• Prewarp with a
homography to "pre-
align" images

• So that the two views
are parallel
– Because linear

interpolation works
when views are
parallel

prewarp prewarp

morph morph

homographies

input inputoutput

13

