

A digita	l im	age							Digi <mark>VF</mark> X	
 We usually operate on digital (discrete) images: Sample the 2D space on a regular grid Quantize each sample (round to nearest integer) If our samples are D apart, we can write this as: f[i, j] = Quantize{ f(i D, j D) } The image can now be represented as a matrix of integer values 										
	62	79	23	119	120	105	4	0]	
i i	10	10	9	62	12	78	34	0]	
	10	58	197	46	46	0	0	48		
	176	135	5	188	191	68	0	49	-	
	2	1	1	29	26	37	0	77	4	
	0	89	144	147	187	102	62	208	4	
	255	252	0	166	123	62	0	31	4	
	166	63	127	17	1	0	99	30]	

Warp specification

•

- How can we specify the warp 2. Specify corresponding *points*
 - *interpolate* to a complete warping function

DigiVFX

Full Algorithm	Digi VFX
WarpImage(SourceImage, L'[], L[]) begin	
foreach destination pixel X do	
XSum = (0,0)	
WeightSum = 0	
foreach line L[i] in destination do	
X'[i]= X transformed by (L[i],L'[i])	
weight[i] = weight assigned to X'[i]	
XSum = Xsum + X'[i] * weight[i]	
WeightSum += weight[i]	
end	
X' = XSum/WeightSum	
DestinationImage(X) = SourceImage(X')	
end	
return Destination	
end	

