
1

CS 559 Lecture 18
Visibility

Mike Gleicher
October 2007

Notes – not for display

Visibility: What objects do you see?

• What objects are offscreen?
– To avoid drawing them

• What objects are blocked?
– Need to make things look solid

• Assumes we have “filled” primitives
– Triangles, not lines

How to make objects solid

• Can fill regions (polygons)
– But how to get stuff in front to occlude stuff in back

• General categories
– Re-think drawing

• From eye (pixels) not objects
• “light-based rendering” (like ray tracing) later in course

– Analytically compute what can be seen
• Hidden line drawing (hard)

– Hidden Surface Removal

Painter’s Algorithm

• Simplest hidden surface algorithm
• Draw farthest objects first

– Nearer object cover further ones

• Problems
– Cycles / intersections (no order possible)

• Fix by splitting triangles
– Need all triangles ahead of time
– O(n log n) sort
– Must resort for every view direction

• Depth Complexity (amount of time each pixels is drawn)

Binary Space Partitions

• Fancy data structure to 
help painters algorithm

• Stores order from any 
viewpoint

• A plane (one of the 
triangles) divides other 
triangles

• Things on same side as 
eye get drawn last

t1
t2

t3

eye

T2 divides into groups
T3 is on same side of eye

Using a BSP tree

• Recursively divide up triangles

• Traverse entire tree
– Draw farther from eye subtree
– Draw root
– Draw closer to eye subtree

• Always O(n) to traverse 
– (since we explore all nodes)
– No need to worry about it being balanced



2

Building a BSP tree

• Each triangle must divide other triangles
– Cut triangles if need be (like painters alg)

• Goal in building tree: minimize cuts

Z-Buffer

• Throw memory at the problem
• A hardware visibility solution

– Useful in software, but a real win for hardware

• For every pixel, store depth that pixel came from
• No object? Store ∞

• When you draw a pixel, only write the pixel if you 
pass the “z-test”

Things to notice about Z-Buffer

• Pretty much order independent
– Same Z-values
– Transparent objects

• Z-fighting
– Objects have same Z-value, ordering is “random”
– Bucketing (finite resolution) causes more things to be 

same
– As things move, they may flip order

• Anti-Aliasing
– Things done per-pixel, so sampling issues

Resolution of Z-Buffer

• Old days: big deal
– Integer Z-buffers, limited resolution

• Future: floating point z-buffer
– Still have resolution issues, not as bad

• Need to bucket things from near to far
– Don’t set near too near or far to far

• Non-linear nature of post-divide Z
– Remember that perspective divide gives fn/z

Using the Z buffer

• Give polygons in any order (even back ones last)
• Use a Z-Buffer to store depth at each pixel

• Things that can go wrong:
– Near and far planes DO matter
– Backface culling and other tricks can be problematic
– You may need to turn the Z-buffer on
– Don’t forget to clear the Z-Buffer!


