CS559 – Lecture 23 Approximating Curves

These are course notes (not used as slides) Written by Mike Gleicher, Oct. 2005 Updates Oct 2007

Note: in lecture, I went in a bit of a different order

© 2005 Michael L. Gleicher

Approximating Curves

- Interpolation isn't the only way to describe a curve
- Give points that "influence" a curve
- Why?
 - Better control of what happens in between points
- 2 important cases for computer graphics
 - Bezier
 - B-Spline

Bezier Segments

- Curve is made of many segments – Nomenclature issue
- Each segment is a polynomial – Of any degree
 - 3 is most common in computer graphics

Bezier Segments A segment of degree d has (d+1) control points A segment interpolates its first and last controls With u= 0, 1 respectively The first derivative at the beginning (end) is proportional to the vector between the first 2 (last points – scaled by the degree of the curve

Bezier Segments (2)

- The nth derivative depends on the first (or last) n
 points
- Cubics are similar to Hermites
 - All points in space (not derivative amounts)
 - Scaling factors
- Pieces connected by placing points correctly
 - C(0) by matching endpoints
 - C(1) by aligning end vectors
 - G(1) by end-vectors being co-linear

Properties of Bezier Curves Simple mathematical form for basis functions Good algorithms for computation Subdivision procedure De Casteljau algorithm Divide and conquer because... Convex Hull Properties

- Variation Diminishing
- Symmetric
- Affine invariant
 - NOT perspective invariant

- Need to index on n as well (number of basis functions)
- Bernstein Basis Polynomials