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Rasterization and Graphics 
Hardware

CS559 Course Notes
Not for Projection

November 2007, Mike Gleicher

Where does a picture come from?

• Result: image (raster)
• Input 2D/3D model of the world

• Rendering
– term usually applied to whole scene
– Implication of caring about quality

• Rasterization
– term usually applied to individual primitives

Not just about fancy 3D!

• Rendering fonts
– Really want it to look good
– Have to do a lot of it
– Complex shapes
– Complex aliasing issues (since things are small)

Rendering/Rasterization

• Do the whole scene at once
– Collect everything

• Do each primitive at a time

• Different algorithms and tradeoffs

When do we care?

• Rasterization
• Usually done by low-level

– OS / Graphics Library / Hardware
– Hardware implementations counter-intuitive

• Modern hardware doesn’t work anything like what 
you’d expect

• High quality rendering
• Really high-quality 2D rendering
• Understanding of how to best use hardware

The simplest case: Points

• Not all that interesting – but good for 
bringing up aliasing issues
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Drawing Points

• What is a point?
– Position – without any extent
– Can’t see it – since it has no extent, need to give it some

• Position requires co-ordinate system
– Consider these in more depth later

• How does a point relate to a sampled world?
– Points at samples?
– Pick closest sample?
– Give points finite extent and use little square model?
– Use proper sampling

Sampling a point

• Point is a spike – need to LPF
– Gives a circle w/roll-off

• Point sample this

• Or…
– Samples look in circular (kernel shaped) regions around 

their position

• But, we can actually record a unique “splat” for any 
individual point

Anti-Aliasing

• Anti-Aliasing is about avoiding aliasing
– once you’ve aliased, you’ve lost

• Draw in a way that is more precise
– E.g. points spread out over regions

• Not always better
– Lose contrast, might not look even if gamma is wrong, 

might need to go to binary display, …

Line drawing

• Was really important, now, not so important
• Let us replace expensive vector displays with 

cheap raster ones

• Modern hardware does it differently 
– Actually, doesn’t draw lines, draws small, filled polygons

• Historically significant algorithms
• Good for considering issues

Line Drawing (2)

• Consider the integer version
– (x1,y1) -> (x2,y2) are integers
– Not anti-aliased (binary decision on pixels)

• Naïve strawman version:
– Y = mx + b

For x = x1 to x2
y = mx + b
set(x,y)

• Problems:
– Too much math (floating point)
– gaps

Brezenham’s algorithm
(and variants)

• Consider only 1 octant (get others by symmetry)
– 0 >= m > = 1

• Loop over x pixels
– Guaruntees 1 per column

• For each pixel, either move up 1 or not
– If you plotted x,y then choose either x+1,y or x+1,y+1
– Trick: how to decide which one easily
– Same method works for circles (just need different test)

• Decision variable
– Implicit equation for line (d=0 means on the line)
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Midpoint method

xk+1

yk

yk+1

xk, yk

d2

d1
d1 = y-yk

d2 = yk + 1 - y

If d1 < d2 pick yk

otherwise pick yk+1

If d1-d2 < 0 pick yk

^^^--- Δd

Derivation

Δ d = d1 – d2

Δ d = (y-yk) – (yk+1-y)

y = m(xk+1) + b

Δd = 2 (m (xk+1) + b) – 2 yk – 1

m = Δy /Δ x

Multiply both sides by Δx (since we know its positive)

ΔdΔx = 2Δy xk +2Δy + 2bΔx – 2Δx yk –Δx

Pk = ΔdΔx = 2Δ y xk + 2Δx yk + c

c = 2Δy + Δx(2b – 1)    

(all the stuff that doesn’t depend on k)

Incremental Algorithm

• Suppose we know pk – what is pk+1 ?
• pk+1 = pk + 2Δy – 2Δx (yk+1 – yk)

– Since xk+1 = xk+1
• And yk+1 – yk is either 1 or 0, depending on pk

Brezenham’s Algorithm

• P_k = 2 \Delta y + x
• Y = y1

• For X = x1 to x2
– Set X,Y
– If Pk < 0
– Y += 1
– Pk += 2 Δ y – 2 Δ x
– Else: Pk += 2Δ y

Why is this cool?

• No division!
• No floating point!
• No gaps!

• Extends to circles

• But…
– Jaggies
– Lines get thinner as they approach 45 degrees
– Can’t do thick primitives

Triangles (Polygons)

• The really important primitive

• Determine which pixels are covered
– Also do interpolation (UV, color, W, depth)

• Scan conversion
– Generically used as a term for rasterization
– An old algorithm that isn’t used by hardware

• Not to be confused with Scanline rendering
– Related, but deals with whole scenes
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Scan Conversion Algorithm

• Idea:
– Scan top to bottom
– “walk edges” (active edge list)
– Scan left to right

Active Edges (for this scanline)

Brezenham’sAlg (or equiv) to get
begin/end

Change active list at vertex

Scan-Conversion

• Cool
– Simple operations, very simple inner loops
– Works for arbitrary polygons (active list management 

tough)
– No floating point (except for interpolation of values)

• Downsides
– Very serial (pixel at a time) / can’t parallelize
– Inner loop bottle neck if lots of computation per pixel

Modern Rasterization (in hardware)

• Generate pixel candidates
• Compute barycentric coords for each pixel
• Decide whether or not its inside triangle

• Why? 
– Easier for hardware
– Parallel (each pixel somewhat independent)
– Need barycentric coords for interpolation
– Breaks work into even sized chunks

• (regular tiles / groups of pixels)

What is scanline algorithm?

• Not scan conversion algorithm

• Keep all polygons – sort by Y value on screen, then by X
• Scan across each line of image – keep track of what 

polygons each pixel covers

• Why?
– Image-space algorithm
– One line Z-buffer (1 pixel Z-Buffer)
– Makes anti-aliasing easier (know all polys that affect pixel)
– Done by software renderers (that aren’t ray tracers)

The whole process: graphics pipeline

• Primitives (triangles) in – frame buffer writes out
– Actually, any memory that we store images modified

• Software does the same steps

• Why pipeline?
– Do step 1, then step 2, …
– Can have one object in each step
– Steps don’t depend on each other too much

• Paralellism mainly in hardware

Pipelining in conventional processors

• Start step 2 before step 1 
completes

• Unless step 2 depends on 
step 1

• Pipe Stall

C = A * B

F = D * E

J = G * H

C=
A*B F=

D*E H=
G*H

C = A * B

F = D * C

J = G * H

C=
A*B

F=
D*C H=

G*H



5

Graphics Hardware / Interactive 
Rendering

• Key Idea: Set of basic abstractions
– Z-buffer, texture, triangles, …

• Implement these really well
• Let programmers figure out how to use it to do 

other things

• Expand abstractions based on what people figure 
out to do

History of Hardware

• 1980s – first workstation 3D hardware (SGI)
• 1990s – extension of abstraction set

– Texture mapping, compositing, multi-buffering 
• 1990s – first PC graphics hardware

– Low end (Apple’s white magic project)
– High end (3D solutions – expensive)

• 2000s – consumer graphics hardware
– Driven by gaming market
– Extensive use of the abstractions

• 2002++ - programmable graphics hardware
– Better abstractions, generality, use as GP processor

Basic Graphics Pipeline

Triangles
In

Transform
Clip

Lighting

Assembly
Setup

Rasterization
(generate fragments)

Per-Pixel Coloring
Shading, …

Pixel
Tests

Memory
Writes

Triangles split into vertices

Per-vertex computations

Re-assemble triangles

Vertex caches

Basic Graphics Pipeline

Triangles
In

Transform
Clip

Lighting

Assembly
Setup

Rasterization
(generate fragments)

Per-Pixel Coloring
Shading, …

Pixel
Tests

Memory
Writes

Fragments with interpolated values

Fragment queue

Texture memory and caches

What’s a fragment

• It will be a pixel when it grows up

• Pixel = place on screen
• Fragment = makes up a pixel

– Maybe won’t make it to the screen
– Maybe combined to make a pixel (anti-aliasing)

• Position in the final image is known 
– (e.g. which pixel it contributes to)

Per-Pixel Coloring

• Interpolation (handled by rasterization)
• Texture lookup / blending
• Per-Pixel Lighting (if its allowed)

• Arbitrary programs (we’ll get to that later)
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Per-Fragment operations

• Stencil test
• Window clipping
• Other things

• Z-testing
– Note this is late (lots of work done and thrown away)
– Could do Z-test earlier (maybe)

Memory writes

• Need to do read/modify (for z-buffer / stencil)
• Useful for color as well:

– Alpha blending
– Multi-pass operations

Basics of graphics performance

• Where is the bottleneck?
– Getting triangles into the pipeline
– Transforming the verices
– Rasterization
– Doing the per-pixel operations
– Getting texture for per-pixel operations
– Reading/writing to memory

• Different systems have different bottlenecks
– And the bottlenecks are moving

The Fixed-Function Pipeline

• We know what each block does
– Vertex

• Projection matrix, divide by Z, Phong lighting (per vertex)
• Color, UV, Z, W, per vertex

– Fragment
• Interpolate colors
• Look up textures – blend (and apply over interpolated lighting)

• Want more (per-pixel lighting, normal maps),…
– But which one to put in hardware
– All of them! (make it flexible and programmable)

Vertex Processor

• What comes in?
– Vertex info (position, normal, assigned color&UV)
– State information (matrices, lighting, …)

• What goes out
– Vertex info – just now in screen space

• All the per-vertex operations do is change the 
values around!

Fragment Processor

• What comes in
– Info about fragment

• Interpolated from vertices
• Position XY (can’t be changed, since it’s the “identity” of the 

fragment)
• Other properties Z,W, UV, Color

– State information (lighting, bound textures, …)
• What goes out

– Info about fragment (mainly color, but also new Z/W)

• Can’t really change X/Y
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Programming the pipeline

• Write “little” functions for each
• Remember what each can “do” (inputs and 

outputs)

• Each gets applied a lot
– To every vertex
– To every fragment

• But applied in parallel (so it can be fast)


