

- Fixed / Variable sized strings for codes
- Standard Codebook vs. per-corpus (file/image)
- Many algorithms for doing this - Huffman coding is just one classic one
- Lempel-Ziv (or Ziv-Lempel)
 - Variable length strings
 - Fixed code sizes (all the same)

- TGA (targa)
- TIFF
- BMP

Lossy Image Compression

- What if we limit our codebook?
 Some data cannot be represented exactly
- Vector Quantization
 - Fixed length strings (and fixed codebook size)
 - Pick a set of codes that are as good as possible
 - Encode data by picking closest codes
 - Other than picking codes, encoding/decoding is really easy!

Lossy Coding 2

 Suppose we can only send a fraction of the image – Which part?

TT,

- Send half an image:
 - Send the top half (not too good)
 - Halve the image in size (send the low frequency half)
- Idea: re-order (transform) the image so the important stuff is first

Lossy Coding 2

TI,

- Suppose we can only send a fraction of the image – Which part?
- Send half an image:
 - Send the top half (not too good)
 - Halve the image in size (send the low frequency half)
- Idea: re-order (transform) the image so the important stuff is first

- Idea: lose stuff in images that is least important perceptually
 - Stuff least likely to notice
 - Stuff most likely to convey image
- Who knows about this stuff: The experts!
 Joint Picture Experts Group
 - Idea of perceptual image coding

JPEG

Key Ideas

- Frequency Domain (small details are less important)
 Block Transforms (works on 8x8 blocks)
 - Discrete Cosine Transform (DCT)
- Control Quantization of frequency components
 - More quality = use more bitsGenerally, use less bits for HF

JPEG Multi-stage process YIQ or YUV intended to get $\mathfrak{K}(\mathbf{j})$ ligio, v) very high L I compression with controllable quality degradation Coding Tables Start with YIQ color Heades Tables , - Why? Recall, it's Enboyy the color standard for TV Coding Data

Discrete Cosine Transform

- A transformation to convert from the *spatial* to *frequency* domain done on 8x8 blocks
- Why? Humans have varying sensitivity to different frequencies, so it is safe to throw some of them away
- · Basis functions:

Entropy Coding

- Standard lossless compression on quantized coefficients
 - Delta encode the DC components
 - Run length encode the AC components
 - Lots of zeros, so store number of zeros then next value
 - Huffman code the encodings

Lossless JPEG With Prediction

- Predict what the value of the pixel will be based on neighbors
- Record error from prediction
 Mostly error will be near zero
- Huffman encode the error stream
- · Variation works really well for fax messages

Video Compression

- Much bigger problem (many images per second)
- Could code each image seperately
 - Motion JPEG
 - DV (need to make each image a fixed size for tape)
- Need to take advantage that different images are similar
 - Encode the Changes ?

MPEG

- Motion Picture Experts Group

 Standards organization
- MPEG-1 simple format for videos (fixed size)
- MPEG-2 general, scalable format for video
- MPEG-4 computer format (complicated, flexible)
- MPEG-7 future format
- What about MPEG-3? it doesn't exist (?)
 MPEG-1 Layer 3 = audio format

MPEG Concepts

- Keyframe
 - Need something to start from
 - "Reset" when differences get too far
- Difference encoding
 - Differences are smaller/easier to encode than images
- Motion
 - Some differences are groups of pixels moving around
 - Block motion
 - Object motion (models)

