
1

CS559 – Image Representation 
and Compression

December 2007
Notes for reference, not for 

projection

Image File Formats

• Need to store all of the samples
• At whatever the necessary bits per pixel

• Lots of data

• Uncompressed = big

• Compress to take less space
– Lossless (get same thing out)
– Lossy (lose some information)

Lossless Coding 1

• Run-Length Encoding (RLE)
• Send pairs of values/run lengths

– Only a win if (on average) your runs are long

• Look ahead: 
– Small change can mean big difference in coding
– What if the changes were small enough that no one 

notices?

Lossless Coding 2

• Intelligent coding – give short 
codes to more common strings
– Example: letters – rather than 

each getting 8 bits, let E=10, 
A=00, T=001, …

– If you know the frequency 
distribution, you can distribute 
things optimally – Huffman 
encoding

– Optimal Distribution may be 
uniform!

– Entropy: the amount of 
distribution in the data

• Some things can’t be made 
smaller by lossless encoding

Entropy Coding

• Fixed / Variable sized strings for codes
• Standard Codebook vs. per-corpus (file/image)

• Many algorithms for doing this
– Huffman coding is just one classic one

• Lempel-Ziv (or Ziv-Lempel)
– Variable length strings
– Fixed code sizes (all the same)

Lossless Image Compression

• Use entropy coding (like LZ) on the actual pixels

• File formats
– GIF – patented, only for small color paletes
– PNG

• Uncompressed (or optionally compressed)
– TGA (targa)
– TIFF
– BMP



2

Lossy Image Compression

• What if we limit our codebook?
– Some data cannot be represented exactly

• Vector Quantization
– Fixed length strings (and fixed codebook size)
– Pick a set of codes that are as good as possible
– Encode data by picking closest codes
– Other than picking codes, encoding/decoding is really 

easy!

Lossy Coding 2

• Suppose we can only send a fraction of the image
– Which part?

• Send half an image:
– Send the top half (not too good)
– Halve the image in size (send the low frequency half)

• Idea: re-order (transform) the image so the 
important stuff is first

Lossy Coding 2

• Suppose we can only send a fraction of the image
– Which part?

• Send half an image:
– Send the top half (not too good)
– Halve the image in size (send the low frequency half)

• Idea: re-order (transform) the image so the 
important stuff is first

Perceptual Image Coding

• Idea: lose stuff in images that is least important 
perceptually
– Stuff least likely to notice
– Stuff most likely to convey image

• Who knows about this stuff: The experts!
– Joint Picture Experts Group
– Idea of perceptual image coding 

JPEG

• Key Ideas
– Frequency Domain (small details are less important)
– Block Transforms (works on 8x8 blocks)

• Discrete Cosine Transform (DCT)

– Control Quantization of frequency components
• More quality = use more bits
• Generally, use less bits for HF

JPEG

• Multi-stage process 
intended to get 
very high 
compression with 
controllable quality 
degradation

• Start with YIQ color
– Why? Recall, it’s 

the color standard 
for TV



3

Discrete Cosine Transform

• A transformation to convert from the spatial to 
frequency domain – done on 8x8 blocks

• Why? Humans have varying sensitivity to different 
frequencies, so it is safe to throw some of them 
away

• Basis functions:

Quantization

• Reduce the number of bits used to store each 
coefficient by dividing by a given value
– If you have an 8 bit number (0-255) and divide it by 8, 

you get a number between 0-31 (5 bits = 8 bits – 3 bits)
– Different coefficients are divided by different amounts
– Perceptual issues come in here

• Achieves the greatest compression, but also 
quality loss

• “Quality” knob controls how much quantization is 
done

Entropy Coding

• Standard lossless compression on quantized 
coefficients
– Delta encode the DC components
– Run length encode the AC components

• Lots of zeros, so store number of zeros then next value

– Huffman code the encodings

Lossless JPEG With Prediction

• Predict what the value of the pixel will be based on 
neighbors

• Record error from prediction
– Mostly error will be near zero

• Huffman encode the error stream
• Variation works really well for fax messages

Video Compression

• Much bigger problem (many images per second)

• Could code each image seperately
– Motion JPEG
– DV (need to make each image a fixed size for tape)

• Need to take advantage that different images are 
similar
– Encode the Changes ?

MPEG

• Motion Picture Experts Group
– Standards organization

• MPEG-1 simple format for videos (fixed size)
• MPEG-2 general, scalable format for video
• MPEG-4 computer format (complicated, flexible)
• MPEG-7 future format

• What about MPEG-3? – it doesn’t exist (?)
– MPEG-1 Layer 3 = audio format



4

MPEG Concepts

• Keyframe
– Need something to start from
– “Reset” when differences get too far

• Difference encoding
– Differences are smaller/easier to encode than images

• Motion
– Some differences are groups of pixels moving around
– Block motion
– Object motion (models)

MPEG

Frame 1
(keyframe)

lossy
Jpeg-like
compression

Frame 1

Find motion vectors Frame 2

Encode
vectors

Frame 1 (comp)
+ motion

Encode
Difference
(lossy)

Frame 2


