T

Visualization December, 2007

> CS559 Class Notes (not for projection)

Visualization

- Helping someone see something
 - Data Visualization (information)
 - Data Visualization (scientific)
 - Architectural, Engineering, Artistic, ...

TI,

- Visualization referring to a field
 - Scientific data
 - Information
 - Seperation somewhat historical (spatial abstraction)

Scientific Data Visualization

- A whole big field could be a course
- Hit some high points (parallel with book)
- Could be anything
 - Drawing graphs like in high school physics
 - Medical illustrations
- Generally field is more focussed
- How to display large / regular data sets
- Some basic/general concepts

"Easy" Version 2D

- R = f(x,y) (an image)
- How to display?
 - An intensity (why? Why not?)
 - Psuedo coloring R->(r,g,b)
 - Makes things stand out, emphasis
 - Can lie with colorings
 - Contour lines isocontours
 - Height field (add shading to emphasize)

- Still preferred in medicine

3D Scalar Fields

- Method 1: Make isosurfaces
 - Gives a "solid" surfaces, use normal surface methods to show it
- Isosurface extraction method:
 - Marching cubes
 - Explain as 2D marching squares
 - Data a points on grid
 - Need to decide where edges go
 - 2⁴ cases of how the region might be filled

Marching cubes

- 256 (2^8) cases
- Gives a slightly blocky surface - Can be smoothed
- Really only lets you pick one "isovalue"
 Can change isovalue, get new surface
- Isosurface rendering
 - Useful for looking at specific objects within a field (a bone inside a CT scan)

Beyond scalar fields

- Challenges of Sci-Vis
 Making sure you can see things
 Managing complexity
 - Computationally (big data sets)
 - Conceptually (limits of perception)

- Every point has a vector x,y,z = F(x,y,z)
 - Velocity fields

• Vector Fields

- Force fields
- Fluid visualizations
- Tensor fields
 - Matrix / coordinate system at every point
 - Get from various MRI technologies
 - Which way things can wiggle