Last Lecture

photomatix.com

HDR Video

High Dynamic Range Video

Submitted to SIGGRAPH 2003 Paper #125

Assorted pixel (Single Exposure HDR)

Assorted pixel

Assorted pixel

Pixel with Adaptive Exposure Control

ADR Imaging with Spatial Light Modulator

ADR Camera with LCD Attenuator

ADAPTIVE DYNAMIC RANGE IMAGING

OPTICAL DYNAMIC ATTENUATION

Today

Image Processing: from basic concepts to latest techniques

- Filtering
- Edge detection
- Re-sampling and aliasing
- Image Pyramids (Gaussian and Laplacian)
- Removing handshake blur from a single image

Image as a discreet function

Represented by a matrix

	$\frac{j}{}$	→						
i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
¥	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

What is image filtering?

 Modify the pixels in an image based on some function of a local neighborhood of the pixels.

10	5	3
4	5	1
1	1	7

Local image data

Modified image data

Linear functions

- Simplest: linear filtering.
 - Replace each pixel by a linear combination of its neighbors.
- The prescription for the linear combination is called the "convolution kernel".

10	5	3
4	5	1
1	1	7

0	0	0
0	0.5	0
0	1	0.5

Local image data

kernel

Modified image data

Convolution

$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

Linear filtering (warm-up slide)

original

?

Linear filtering (warm-up slide)

original

Filtered (no change)

Linear filtering

original

?

shift

original

TACI OTISCI

shifted

Linear filtering

original

Blurring

original

Blurred (filter applied in both dimensions).

Blur Examples

Blur Examples

Linear filtering (warm-up slide)

Linear Filtering (no change)

original

Filtered (no change)

Linear Filtering

(remember blurring)

original

Blurred (filter applied in both dimensions).

Sharpening

original

Sharpened original

Sharpening example

Sharpened
(differences are
accentuated; constant
areas are left untouched).

Sharpening

before after

Spatial resolution and color

original

R

G

В

Blurring the G component

original

processed

R

G

В

Blurring the R component

original

processed

R

G

B

Blurring the B component

original

processed

R

G

В

Lab Color Component

L

a

b

A rotation of the color coordinates into directions that

are more

perceptually

meaningful:

L: luminance,

a: red-green,

b: blue-yellow

Bluring L

original

processed

a

b

Bluring a

original

processed

Ţ

a

b

Bluring b

original

processed

a

b

Application to image compression

 (compression is about hiding differences from the true image where you can't see them).

Edge Detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

How can you tell that a pixel is on an edge?

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

 The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

- how does the gradient relate to the direction of the edge?
- The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

How to compute a derivative?

$$\frac{d}{dx}f(x)$$
 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Solution: smooth first

- Where is the edge?
- Look for peaks in $\frac{\partial}{\partial x}(h\star f)$

Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

This saves us one operation:

f

Sigma = 50

$$\frac{\partial}{\partial x}h$$

$$(\frac{\partial}{\partial x}h)\star f$$

Laplacian of Gaussian

Where is the edge?
 Zero-crossings of bottom graph

Canny Edge Detector

- Smooth image I with 2D Gaussian: G*I
- Find local edge normal directions for each pixel $\theta = \arctan \frac{I_y}{I_x}$
- Along this direction, compute image gradient $\nabla(G*I)$
- Locate edges by finding max gradient magnitude (Non-maximum suppression)

Non-maximum Suppression

- Check if pixel is local maximum along gradient direction
 - requires checking interpolated pixels p and r

The Canny Edge Detector

original image (Lena)

The Canny Edge Detector

magnitude of the gradient

The Canny Edge Detector

After non-maximum suppression

Canny Edge Detector

- The choice of σ depends on desired behavior
 - large σ detects large scale edges
 - small σ detects fine features

Image Scaling

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

Image sub-sampling

1/4

1/8

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling

Why does this look so crufty?

Even worse for synthetic images

Really bad in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Alias: n., an assumed name

Picket fence receding Into the distance will produce aliasing...

WHY?

Matlab output:

x = 0:.05:5; imagesc(sin((2.^x).*x))

Not enough samples

Aliasing

- occurs when your sampling rate is not high enough to capture the amount of detail in your image
- Can give you the wrong signal/image—an alias
- Where can it happen in images?
- During image synthesis:
 - sampling continous singal into discrete signal
 - e.g. ray tracing, line drawing, function plotting, etc.
- During image processing:
 - resampling discrete signal at a different rate
 - e.g. Image warping, zooming in, zooming out, etc.
- To do sampling right, need to understand the structure of your signal/image
- Enter Monsieur Fourier...

- What can be done?
- 1. Raise sampling rate by oversampling
 - Sample at k times the resolution
 - continuous signal: easy
 - discrete signal: need to interpolate

- What can be done?
- 1. Raise sampling rate by oversampling
 - Sample at k times the resolution
 - continuous signal: easy
 - discrete signal: need to interpolate

- What can be done?
- 1. Raise sampling rate by oversampling
 - Sample at k times the resolution
 - continuous signal: easy
 - discrete signal: need to interpolate
- 2. Lower the max frequency by *prefiltering*
 - Smooth the signal enough
 - Works on discrete signals

- What can be done?
- 1. Raise sampling rate by oversampling
 - Sample at k times the resolution
 - continuous signal: easy
 - discrete signal: need to interpolate
- 2. Lower the max frequency by *prefiltering*
 - Smooth the signal enough
 - Works on discrete signals
- 3. Improve sampling quality with better sampling (CS559)

The Gaussian Pyramid

Gaussian pre-filtering

G 1/4

Gaussian 1/2

• Solution: filter the image, then subsample

Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

• Solution: filter the image, then subsample

Compare with...

Pyramids at Same Resolution

The Laplacian Pyramid

Fig. 10. A summary of the steps in Laplacian pyramid coding and decoding. First, the original image g_0 (lower left) is used to generate Gaussian pyramid levels g_1, g_2, \ldots through repeated local averaging. Levels of the Laplacian pyramid L_0, L_1, \ldots are then computed as the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yield the Laplacian pyramid code C_0, C_1, C_2, \ldots Finally, a reconstructed image r_0 is generated by summing levels of the code pyramid.

Recap

Image Processing: from basic concepts to latest techniques

- Filtering
- Edge detection
- Re-sampling and aliasing
- Image Pyramids (Gaussian and Laplacian)
- Next ...