Vision Sensing

Multi-View Stereo for Community Photo Collections Michael Goesele, et al, ICCV 2007

Venus de Milo

The Digital Michelangelo Project, Stanford

How to sense 3D very accurately?

How to sense 3D very accurately?

Triangulation

- Depth from ray-plane triangulation:
 - Intersect camera ray with light plane

Example: Laser scanner

Cyberware[®] face and head scanner

- + very accurate < 0.01 mm
- more than 10sec per scan

Example: Laser scanner

Digital Michelangelo Project

http://graphics.stanford.edu/projects/mich/

XYZRGB

Shadow scanning

http://www.vision.caltech.edu/bouguetj/ICCV98/

Basic idea

- Calibration issues:
 - where's the camera wrt. ground plane?
 - where's the shadow plane?

- depends on light source position, shadow edge

Two Plane Version

- Advantages
 - don't need to pre-calibrate the light source
 - shadow plane determined from two shadow edges

Estimating shadow lines

Shadow scanning in action

Results

accuracy: 0.1mm over 10cm — ~ 0.1% error

Textured objects

Scanning with the sun

accuracy: 1mm over 50cm - 0.5% error

Scanning with the sun

Faster Acquisition?

- Project multiple stripes simultaneously
- Correspondence problem: which stripe is which?
- Common types of patterns:
 - Binary coded light striping
 - Gray/color coded light striping

Binary Coding

Faster:

 $2^n - 1$ stripes in n images.

Example:

3 binary-encoded patterns which allows the measuring surface to be divided in 8 sub-regions

Binary Coding

• Assign each stripe a unique illumination code over time [Posdamer 82]

Space

Binary Coding

More complex patterns

Works despite complex appearances

Works in real-time and on dynamic scenes

- Need very few images (one or two).
- But needs a more complex correspondence algorithm

Zhang et a

Continuum of Triangulation Methods

Slow, robust

Fast, fragile

Time-of-flight

- + No baseline, no parallax shadows
- + Mechanical alignment is not as critical
- Low depth accuracy
- Single viewpoint capture

Miyagawa, R., Kanade, T., "CCD-Based Range Finding Sensor", IEEE Transactions on Electron Devices, 1997 Working Volume: 1500mm - Accuracy: 7% Spatial Resolution: 1x32- Speed: ??

Comercial products

Not accurate enough for face modeling, but good enough for layer extraction.

Depth from Defocus

Depth from Defocus

Depth from Defocus

- + Hi resolution and accuracy, real-time
- Customized hardware
- Single view capture?

Nayar, S.K., Watanabe, M., Noguchi, M., "Real-Time Focus Range Sensor", ICCV 1995 Working Volume: 300mm - Accuracy: 0.2% Spatial Resolution: 512x480 - Speed: 30Hz

Capturing and Modeling Appearance

Capture Face Appearance

Debevec, Siggraph 2002

Image-Based Rendering / Recognition

Schechner et. al. Multiplexed Illum

Light Stage Data

Lighting through image recombination: Haeberli '92, Nimeroff '94, Wong '97

Shape Recovery BRDF

Material Recognition Human Vision

Rendering Object / Face Recognition

Georghiades, Belhumeur & Kriegman Yale Face Database B

