Copyright (© 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).

Tone Reproduction: A Perspective from Luminance-Driven Perceptual Grouping

Hwann-Tzong Chen  Tyng-Luh Liu  Tien-Lung Chang
Institute of Information Science, Academia Sinica
Nankang, Taipei 115, Taiwan
{pras, liutyng, ting @iis.sinica.edu.tw

Abstract that format. Debevec and Malik have shown that HDR ra-
diance ofreal scenes may be captured using regular SLR
We address the tone reproduction problem by integrating or digital cameras [5]. They propose a method to combine
local adaptation with global-contrast consistency. Many a series of pictures with different exposure settings into a
previous works have tried to compress high-dynamic-rangesingle HDR image, which is called rdiance map with
(HDR) luminances into a displayable range in imitation of contrast of abou250, 000 to 1. In this context, the aim of
the local adaptation mechanism of human eyes. Neverthe-our research can be stated as solving the tone reproduction
less, while the realization of local adaptation is not theo- problem of radiance maps, that is, generating a displayable
retically defined, exaggerating such effects often causes u standard RGB image that preserves perceptual properties of
natural global contrasts. We propose a luminance-driven the original HDR radiance map.
perceptual grouping process to derive a sparse representa-
tion of HDR luminances, and use the grouped regions to
approximate local properties of luminances. The advantagel'l' Related Work
of incorporating a sparse representation is twofold: We can Several works have been devoted to producing HDR images
simulate local adaptation based on region information, and of real scenes [2], [5], [11], [12], including those that are
subsequently apply piecewise tone mappings to monotonizelesigned to capture HDR luminances simultaneously under
the relative brightness over only a few perceptually signif multiple exposures [2], [11]. Inherently, panoramic inmagi
icant regions. Our experimental results show that the pro- can also be extended to carry HDR luminances by adding
posed framework gives a good balance in preserving local spatially varying optical filters to a camera [1], [16]. Dif-
details and maintaining global contrasts of HDR scenes.  ferent from static HDR imaging, Kang et al. [9] propose
to generate HDR videos by changing the exposure of each
1. Introduction frame and then by stitching consecutive frames.
On displaying HDR images, tone reproduction addresses
The attempt to reproduce the visual perception of the realvisibility and impressionthrough finding an appropriate
world is at the heart of painting and photography. Artists mapping to compress high contrasts into a visible (dis-
have long been endeavoring to develop skills in simulating playable) range, accounting for perceptual fidelity. With a
actual reflected light within the limitation of the medium, global mapping, pixels are mappadiformlyregardless of
since our world generally delivers a much wider range of their spatial or local properties, and hence details aenoft
luminances than pigments can reflect. Apart from artistic smeared. The main advantage of using a global mapping
concern, recreating real-scene impressions on limitedaned is its efficiency. Ward et al. [21] describe a more sophis-
is also inevitable in many vision and graphics applications ticated method to adjust contrast globally based on lumi-
For example, the highest contrast of today’s LCD monitors nance histograms. Nevertheless, the approach still smooth
is aroundL, 000 to 1; however, we may still need to display out the details in areas of flat histograms. To improve visual
a sunset scene whose contrast excééds00 to 1. fidelity, a number of tone reproduction methods have ex-
By a tone reproduction problem, we focus on establish- plorednonuniform(local) mappings, as human visual sys-
ing an efficient method to faithfully reconstruct the high- tem operates more likely this way [3], [6], [7], [8], [14],
dynamic-range (HDR) radiance on a low-dynamic-range [19]. In particular, visual cells are organized in a center-
(LDR) image. Thedlynamic rangef a digital image is sim- ~ surround manner so that we can see a wide range of lumi-
ply the contrast ratio in intensity between its brightesd an nances by discriminating locally. In simulating the center
darkest parts. In [20], Ward introduces a floating-point pic surround organization, Reinhard et al. [14] calculate, for
ture format to record HDR radiance in 32 bits per pixel, and each pixel, the average intensity gbepercircular region,
designs a graphics rendering system that outputs images imnd then use the information to adjust a mapping function.



Decomposing a radiance map into layers is another pop-2. A Sparse Representation for HDR
ular choice for preserving image details. Methods of this | mages
kind often separate an image intoilamination layerand
areflectance layer The illumination layer carries the lu-  The luminance values of an HDR image can be com-
minance information of the original image and thus has puted from its R, G, and B channels byL(z,y) =
a wider dynamic range, while the reflectance layer keepso_2126R(I, y) + 0.7152G (z, y) + 0.0722B(x, ). To re-
the textures and is of low dynamic range. Consequently,duceL(I, y) into a low dynamic one, we proposesparse
the dynamic range of an HDR image can be reduced byrepresentatiorthat decomposes an HDR image into regions
compressing its illumination layer. For images of natural through a perceptual grouping process. The dynamic-range
scenes, Land’s retinex theory [10] can be used to estimatecompression is then carried oegion-wise where the ad-
illumination and reflectance. Indeed center-surrounddhase vantages of using the perceptua”y Signiﬁcant region infor
and layer-decomposition based methods are closely relatedmation will be explained in the next section. Suffice it to say
Both aim to preserve details and eXpIOit local adaptation to now that Working on an adequate number of regions’ we can
match human perception. However, overemphasizing localperform the HDR compression without incurring excessive
contrasts may produce halos, which are defects of reversabyerheads in patching together the results across differen
contrasts. A number of new methods have been intrOduceq'egions_ On deriving such a decomposition, it takes two
to resolve halos by incorporating more appropriate local av  steps:adaptive block partitiomndperceptual groupingde-
eraging schemes, e.dijlateral filtering [18] used in [6], tailed in what follows.
[7], multi-scale Gaussians [3], and dodging-and-burning
[14], or, by directly working on the gradient domain accord- : s
ing to derived PDE formulations, e.gnisotropic diffusion 2.1. Adaptive Block Partition
[19] and the Poisson equation [8]. Previous experience on exploring perception has suggested
From a segmentation viewpoint, Schlick [17] has pro- that the human visual system senses the contrast of light
posed to divide an image into zones of similar values, and Pased omntensity ratiorather tharintensity differencée.g.,
then compute the average intensity of each zone. The av-S€€ the Weber's law discussed in [13], p.672). Following
erage intensity map can be used to constitute the spatiallytnis observation, we consider the decomposition of an HDR
nonuniform tone mapping function. Yee and Pattanaik [22] IMage by examining its luminance property in the logarith-
develop a multi-layer partitioning and grouping algorithm Mic domain. More precisely, the luminandeis trans-
to compute the local adaptation luminance. In each layer,formed into log-luminance by.(z,y) = log L(z, y).
pixels are partitioned based on a given intensity resaiutio ~ Understandably, the outcome of grouping depends on the
(bin-width), and pixels that are partitioned into the sarine b ~ choice of thebasic elemenof an image partition. While -
form a group. Each pixel’s local adaptation luminance value Working on pixel level is both time-consuming and sensi-

(in different layers) to which the pixel belongs. form size often leads to unsatisfactory segmentationtssul

Though the situation could be improved by using small-size
blocks, such a tactic again has the drawback of inefficiency.
1.2. Our Approach We thus design an adaptive scheme to partition the image
) ) with blocks of two different sizes. The smaller blocks are
We describe an HDR tone reproduction method based onp|aced in the areas of strong log-luminance gradients; the
perceptual grouping in luminance. Since most tone repro-|arger ones are in the areas of less log-luminance variation
duction techniques are intended to construct appropnatea T, partition the log-luminancd, adaptively, we use
erage luminances for local adaptation, we believe that it is Canny edge detector [4] to obtain the edge information, and
worth investigating the perceptual grouping for approXima - hen divider into blocks of larger sizé, x by. For those
ing the local characteristics of luminance. In our approach 5cks containing Canny edges, they are further split into
the grouping process gives rise to a sparse representationf pqcks of smaller sizé, x b,. An example to illustrate
an HDR image so that it is possible to estimiateal adap- these steps is given in Figure 1, where block sizes- 8

tation luminance$3] based on perception-based region in- andb, = 2 are used in all our experiments too.
formation. As a result, we are able to consider the tone

reproduction problem by taking account of local details and .
global perceptual impression. In the following sections, w 2.2. Perceptual Grouping

describe first how to construct the local adaptation lumi- Among the many possible ways to group the blocks, we
nances by perceptual grouping, and then explain how to useare interested in finding a sparseness one, driven by the
the region information to modulate the mapping functions log-luminance factor. For that, we look at two important
for tone reproduction. matters: 1) how to define an appropriate distance function
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Figure 1:Garage.From left to right, the corresponding log-luminankgthe adaptive block partition of, where blocks
of the smaller size are located in those shaded areas on thp Gfanny edges; a sparse representati@regions forL;
and the displayablgarageimage derived by our method.

to measure the degree of similarity between two regions, log-luminance value in the unvisited areas. That is, the al-
and 2) how to proceed with a reasonable grouping procesgorithm follows abrightest-block-firstule to determine the

to derive a sparse representation. These two issues caseeds and to merge image blocks. Since each block’s sigha-
be properly addressed through integratirgeaceptual dis-  ture includes three clusters, i.e., the bright, the midytkey,

tancewith aluminance-driven grouping process and the dark parts, the brightest block can be simply identi-
fied as the one with the largest.
221 Perceptual Distance All image blocks are initially marked asvisited Later

on as the grouping process iterates, the number of unvisited

We use thesarth mover’s distancéEMD) to evaluate the  blocks decreases. At iteratidn we pick the unvisited and
perceptual similarity between two image regions [15]. Ap- brightest block, say, block;-, and start to grow the region
plied mostly in image retrieval, EMD has been proven to R, fromit. These steps of region grouping are summarized
be a useful measurement to perceptually correlate two im-in Algorithm 1. Upon termination, the process will yield
ages. In fact, finding the EMD between two distributions is a decomposition that each derived region consists of con-
equivalent to solving aninimum cost flovproblem. nected blocks of similar luminance distributions. Indeed,

The objects involved in the calculation of EMD are often our algorithm works by balancing the local and global simi-
represented in the form afignature A signature is a set larity in a region. Similar blocks are pulled into the same re
of clusters of which each cluster comprises a pair of featuregion if the EMD between two neighboring blocks is smaller
and weight. In our formulation, the signature of a region thané. On the other hand, a region will stop growing when
(could be just a block or a region of many blocks) is com- all blocks right beside the region boundary are not close
puted as follows. We equally divide the dynamic range of enough to the whole region withth (See Algorithm 1 for
the region into three bins. The meanand the number  further details.) The typical values of EMD threshéldre
h; of the pixels in each bin are then calculated. It also di- from 1.5 to 2.0, and those of are betwee.5 and1.0.
rectly implies the weight of each binis; = h;/ >, h;.
Thus, the signaturp of each region contains three clusters 3. Region-Based Tone M appi ng
{(s1,w1), (s2,w2), (s3,ws3)} thataccordingly represent the
bright, the middle-gray and thedark part of that region.  Our method to compress the high dynamic range relies on
Written explicitly, the perceptual distance between two re region-wise constructing suitable tone mapping functions

gionsR; andR is defined by based on the estimations ffcal adaptation luminances
It is also critical that the resultingiecewise tone map-
D(R1,Rz2) = EMD(p1, p2), (1) pingscould be smoothly pieced together to produce a good-
) ) _ quality and displayable image without violating the overal
wherep; is the signature of regioR;. impression of the original HDR radiance map. In this sec-
tion, we will show that all these issues can be satisfagtoril
2.2.2 Luminance-Driven Grouping addressed by considering the region information encoded in

) ) ) N a luminance-driven sparse representation.
How to optimally decompose an image is a cognitive prob-

lem. While analytic arguments are difficult to establish, we . .
prefer a compact/sparse representation to decompose an im3'1' L ocal Adaptation L uminances

age intofewregions (see Figure 1). Specifically, we adopt Human visual system attains the HDR perception by lo-
a greedy approach to grow a new reges large as pos-  cally adapting to different levels of luminance to ensure a
sible starting each time from the location of theghtest proper dynamic range can be recreated by the responses of



impression similar to that of the photographic [14].

Figure 2:Stanford memorialFrom left to right, the respective results deriveddikateral filtering [7], photographic tone
reproduction[14], our method andgradient domairi8]. Our method not only reveals fine details but maintainsodaj

visual cells. For tone reproduction, the local adaptatien e

second evaluates the contributions from other regionse Not

fect is often simulated by computing the local adaptation that we have used the same spatial-domain filter, to
luminance. Thus it is important to have a reliable way for regulate the effects to pixél, y) from all regions. Such
pixel-wise estimating the local adaptation luminance of an a choice makes it possible to apply the fast bilateral filter-
HDR image. And that in turn can be done by investigat- ing implementation described in [7]. On the other hand, we

ing the average log-luminance ofsaitable neighborhood
about each pixel.

Let f/(:c,y) be the local adaptation log-luminance at
pixel (x,7). To computeV, we consider a generalized
version ofbilateral filtering [18] by constructing a region-
dependent scheme such that the computatiof’ f, )
takes account of bilateral effects from different regidPat-
ticularly, for each pixe(z, y) in regionR, we have

Viey) = = {Z(m.)em L(i: 1) Gy (i: ) Ko (05 7)

+ Z(i,j)éﬁk E(Zu]) Gfﬂ,y(zvj) Kalc,y(zvj)} ’
@

where

Gaylig) = exp{=((i—2)* +(j —)*)/20%}

Koy(ic) = exp{~(L(i.j) - Liw,y)* /202

K, (i) = exp{=(L(i.j) - Liw,y)* /207 |

Zcmy = Z(i,j)eRk GLy(iaj) Kcmy(iaj)

+ Z@j)m Gay(i,J) Ky (i,5) -

Eq. (2) includes two parts of bilateral filtering. The first

haveo, > o, to ensure a flatter and more expanded range-
domain filter K, , for pixels in the same region df:, y),

and to lessen the influences from pixels of different regions
with K’ ,. If 0, = 0,+, the proposed scheme in (2) is re-
duced to the one used in [7]. With the region-based filtering,
the effects of local adaptation inside perceptually relage
gions can be enhanced by using a largerA suitable value

for o, can be set td% of the image size, and,. = 0.4 and

o = 0.5 x g,.. So far, we have worked in log-luminance
domain. The local adaptation luminance, denoted asan

be recovered by = exp(V).

3.2. Piecewise Tone Mappings

A handy choice of simple functions for compressing the
high luminances into the displayable rarigel ] is the non-
linear mappingp(xz) = x/(1 + z). If ¢ is applied to the
whole luminance map, i.el,/ = ¢(L) = L/(1+ L), we
will actually obtain a displayable but smoother image. This
type of compression scheme is callglbbal mappingor
spatially uniform mappingAnother tone mapping method
is to extract fromL the detail layet 7 by H = L/V. Then,
only the local adaptation luminance is compressedby=
»(V'). Recombining the detail laydf with the compressed
V',we havel’ = H x V' = (L/V)x (V/(1+V)) =
L/(1+4 V), alocal mappingor preserving details.

Even though a global mapping likeoften has the draw-
back of losing the details in brighter areas, its monotone

part calculates the averaging in the same region, and theproperty @/dxz > 0) is desirable for preventing halos



Algorithm 1: Luminance-Driven Grouping with EMD.

Input : The adaptive block partitipB of L.
Output: A sparse representation bf

Initialization: Create an empty priority quegon D
as in (1); Compute the signatures of all blocks; Label
all blocksunvisited Let & < 1; Choosé, § > 0.
while 3 unvisited blocldo

Create a new regioR, + 0, and letQ « 0;
Select the brightest blodR;- and add it intoQ;
Let D(Byx, Ry) < 0;

while Q # () do

Retrieve3; from Q with the smallest

D(Bi, Rk);

if D(B;,Ri) < 6 then

1 04
0 03

Add B; into Ry, and labels; visited a0 o g gy = pvalue
UpdateQ by recomputing theDs;
Find B;'s unvisitedneighbors{3; }; Figure 3: Thep values after kernel smoothing. Examples
foreach B, satisfiesD(B;, B;) < 6 do of correspondences to the log-luminance and to the region
| Insert%‘j into Q; ! decomposition are illustrated.

Update the signature of regidy,.

else . . . .

L Goto 1. parameters to adjust the image quality resulting from
- the HDR compression. More precisely, when< 1,
1 k— k+1.

O_utput allRys.

and other artifacts. It would be favorable if the monotonic-
ity can be incorporated into a local tone mapping method.
Nonetheless, one still needs to figure out a reasonable way
to monotonizea local mapping and determine an appropri-
ate “neighborhood” for each such a monotonization.

We argue here that the sparse representation does pro-
vide useful hints for solving the foregoing problems. Per-
ceptually, the derived region decomposition correlateahl wi
an overall visual impression about the scene. Maintaining
this impression after compressing the dynamic range should
be a good criterion. We thus considgriacewise tone map-
ping scheme that region-wise performs the monotonization,
and globally retains the relative brightness among differe
regions, i.e., thos®& s derived in Algorithm 1. The whole
idea of such tone mappings is realized by the following four
steps:

1. Design a local mapping. As pointed out in Sec. 3.1,
the local adaptation luminandé plays an important
role in compressing the luminanée We define a local
mappingy of the following form.

V )'y
1+Vv/77
3

where0 < p < 2and0 < v < 1 are spatial-dependent

(L, Vip) = () ¢"(V) = (5)°(

dark areas in an HDR radiance map will be compressed
into larger brightness levels, compared with the case
~v = 1. On the other hand, sinck/V is the detall
layer, thep values would have direct impacts on pre-
serving the image details after the dynamic-range re-
duction. (In all our experiments, = 0.3.)

2. Globally reshapey” by 37 = ap? 4 3. Let L4, and

L,nin be the maximum and the minimum luminance
values of a given radiance map, respectively. To make
surep” will take up the complete displayable range
[0, 1], we solve the following linear system to obtain
the proper scaling and shifting parameterand3:

©Y (Limaz) 1 a | |1
|: @ (Limin) 1 Bl L0]° “)
The values ofy and will be needed in monotonizing
the local mapping of each regigoy,.

. Estimatep by kernel smoothindg-or eachR, we con-

struct a gridDy, within Ry, such that it is the largest
grid of resolutione x e with all its grid points at least
e-pixel away from the region boundayR;. We
then assign some preliminapy, value to each pixel
n € Dy by

-1,
L

pn =12 (V+ Pmaz)/2, iflog(Ln/Vy)
Pmaz otherwise.

<
>
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Figure 4: The steps of our tone reproduction method.

The above rules simply reflect that If,, is already HDR images are downloaded from the Web and stored in
“very different” from its local adaptation luminance radiance map format. A typical radiance map with multiple
V.., using a largep,, may only cause an inconsistent exposure values is shown in Fig. 5. (In this example, the
overemphasis that further amplifies the difference. In dynamic range oStanford memoriaik 250, 000 : 1.)

addition, for all pixels or®Ry, theirp,, values are also
set toy, and those of the pixels betweéh, andoR
can be computed by interpolation. It will later become
clear that putting such constraints néa;, will be vi-

tal in constructing an overall smoothsurface across
regions. With all these,, values pre-defined, we can
now applykernel smoothingp adjust and to derive the
p values for all pixels irfR;. Notice that, throughout

this work, we havey,,,,, = 1.8 ande = 4. Figure 5: Radiance map. By setting a fixed displayable

range and cutting off out-of-range intensities, the rackan
map can only be viewed like these images.

4. Monotonize local tone mapping& monotonization,
say forRy, is to estimaten;, and 5; so that a local
mappingy in (3) can be elevated t9 = a1 + Gy,
and to account for both local and global factorsincom-  The bottlenecks of our method lie in the steps of EMD
pressing the luminances. We begin by samphngix- perceptual grouping and region-wise bilateral filteringr F
els fromdR;, according to the sorteflog(L.,,/V,,)| thememorialimage of size 512 by 768 in Fig. 5, the elapsed
values in ascending order. In our experiments, using time of perceptual grouping and of bilateral filtering on a
the first5% of boundary pixels will be sufficient to 2.4GHz PC is about 3.6s and 5.3s, respectively. Clearly, the
give good results. The values of, and 3, can now complexity of region-wise bilateral filtering depends or th
be obtained by calculating the least square solution of number of regions. By extending fast bilateral filtering [7]

. to incorporate region support, we can implement a region-
[ Y1 YN } { Qg ] _ [ o AL }T wise bilateral filter in a way that slowdowns are not propor-
L1 Bk 71 N ' tional to the number of regions. For instance, ten regions
i ~ are constructed for thememorial but region-wise bilateral
Finally, we applyy (L, V; p,7) = ar(L, Vi p,v) + filtering (=~ 5.3s) just doubles the time needed for a typical
Br to each pixel(z,y) € R, to compute its dis-

- , bilateral filtering & 2.4s).
playable luminance valug'(z, y). After luminance reduction, the LDR image can be dis-

The least square fitting to reshapg into ¥, can be  Played by multiplying the compression ratid/L to each
justified by the facts that the monotonization uses only Of the high dynamic rang&G B channels. In Fig. 6, we
pixels on region boundary and theirvalues after kernel ~ Show several LDR images derived by our method. Our
smoothing are still close tg. Furthermore, with this prop- ~ results have two aspects of visually pleasing effects: 1)
erty, we can efficiently derive a globally smogitsurface Oyerall impressions of luminance are maintained; 2) De-
(see Fig. 3). We conclude this section with a remark that tails and local high contrasts are preser\_/ed. Some recent
the main characteristic of our method is to perform the Methods [7], [8], [14] on displaying HDR images also can
dynamic-range compression by emphasizing the local de-€liminate halos and preserve Qetalls. The gradient-domain
tails of each region without breaking the global visual con- compression [8] performs well in preserving local consast

sistency. and details. However, a noticeable difference between thei
compression outcomes and ours is that in their results the
4 Exper iments and Discussions brighter areas may not be bright enough as they should be.

A good example is the circular window of tineemorialin
Having detailed our approach (summarized in Fig. 4), we Fig. 2. Note that, in the original radiance map, the area of
now describe some of our experimental results and comparthe circular window is at least 200 times brighter than the
isons with other related works. In all our experiments, the top-right corner.



Figure 6: HDR tone-reproduction results. From left to rightl top to bottom (with the number of derived regior&ghoe
(5), office(68), Belgium(32), clock (34),designCente(13), Tintern (14), chairs(14), andgroveC(17).

While our approach relates to photographic tone repro- 5. Conclusion
duction [14] and bilateral filtering [7] in computing the kic ) i )
adaptation luminance, our method generally producesrbetteWe have thoroughly investigated the tone reproduction

contrasts within the displayable range, and preserves mordroblem in two aspects: 1) deriving local adaptation lumi-
details due toy parameter and flexible values. Again, the ~ Nances for preserving details, and 2) region-wise compress

examples in Fig. 2 well demonstrate these common phe-"?g the dynar_nic range without breaking the overall impres-
nomena. In addition, we highlight another two distinctions SioNn- For a visual model, theorrectneswf the local adap-
in Fig. 7. The first one is that although the photographic tation mainly de_pends on_the definitionlotality. We thus _
method [14] basically maintains overall impressions, some ntroduce a luminance-driven perceptual grouping to @eriv

times the approximate local adaptation luminance decsease@ SParse representation for HDR luminances, based on the
the brightness of a large bright area, e.g., the sun in Fig. 7a EMP perceptual distance. With the sparse image decom-

Owing to piecewise tone-mapping, our results do not have pos!tion, we are able to improye both the local adaptation
this anomaly, e.g., Fig. 7b. The second distinction is thett Uminances and the tone mapping functions. Consequently,

bilateral filtering method [7] still generates some halosme 2 région-wise bilateral weighting scheme can be formulated
the boundaries between bright and dark regions. The differ-I0 €nhance the local adaptation effect inside a region. As
ences can be observed near the skyline and near the shado&" PiECewise tone mappings, we apply monotonizations to
in Fig. 7c and 7d. Via a smoothsurface adjustment, our incorporate the global property into local tone mappings so

method produces a bit lower contrasts along boundaries. that the brightness impression of a scene is maintained.
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reproduction method can also be used to enhance the image
quality of an LDR image. We experiment on this effect by
applying the same process listed in Fig. 4 to LDR images. REferences
We obtain fairly good results, compared with those by [8]
and histogram equalization functions in MATLAB toolbox.
One example of the results is provided in Fig. 7e, 7f.
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