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Abstract

A simple algorithm is described that computes the ra-
diometric response function of an imaging system, from
images of an arbitrary scene taken using different ex-
posures. The exposure is varied by changing either the
aperture setting or the shutter speed. The algorithm
does not require precise estimates of the exposures used.
Rough estimates of the ratios of the exposures (e.g. F-
number settings on an inexpensive lens) are sufficient
for accurate recovery of the response function as well
as the actual exposure ratios. The computed response
function is used to fuse the multiple images into a sin-
gle high dynamic range radiance image. Robustness is
tested using a variety of scenes and cameras as well as
noisy synthetic images generated using 100 randomly
selected response curves. Automatic rejection of im-
age areas that have large vignetting effects or temporal
scene variations make the algorithm applicable to not
just photographic but also video cameras. Code for the
algorithm and several results are publicly available at
http://www.cs.columbia.edu/CAVE/.

1. Radiometric Response Function
Brightness images are inputs to virtually all computer
vision systems. Most vision algorithms either explic-
itly or indirectly assume that brightness measured by the
imaging system is linearly related to scene radiance. In
practice, this is seldom the case. Almost always, there
exists a non-linear mapping between scene radiance and
measured brightness. We will refer to this mapping as
the radiometric response functionof the imaging sys-
tem. The goal of this paper is to present a convenient
technique for estimating the response function.

Let us begin by exploring the factors that influence the
response function. In a typical image formation system,
image irradianceE is related to scene radianceL as [8]:

E = L
π

4
(
d
h

)2 cos4 φ , (1)

where,h is the focal length of the imaging lens,d is
the diameter of its aperture andφ is the angle subtended
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by the principal ray from the optical axis. If our imag-
ing system were ideal, the brightness it records would
be I = E t , where,t is the time the image detector is
exposed to the scene. This ideal system would have a
linear radiometric response:

I = L k e , (2)

where,k = cos4 φ/ h2 ande = (π d2 / 4) t. We will
refer toe as theexposureof the image, which could be
altered by varying either theaperture sized or thedura-
tion of exposuret .

An image detector such as a CCD is designed to produce
electrical signals that are linearly related toI [14]. Un-
fortunately, there are many other stages to image acqui-
sition that introduce non-linearities. Video cameras of-
ten include some form of “gamma” mapping (see [13]).
Further, the image digitizer, inclusive of A/D conversion
and possible remappings, could introduce its own non-
linearities. In the case of film photography, the film it-
self is designed to have a non-linear response [9]. Such
film-like responses are often built into off-the-shelf digi-
tal cameras. Finally, the development of film into a slide
or a print and its scanning into a digital format typically
introduces further non-linearities (see [5]).

The individual sources of radiometric non-linearities are
not of particular relevance here. What we do know is
that the final brightness measurementM produced by
an imaging system is related to the (scaled) scene ra-
dianceI via a response functiong, i.e. M = g ( I ).
To map all measurementsM to scaled radiance values
I , we need to find the inverse functionf = g−1, where
I = f ( M ). Recovery off is therefore the radiometric
calibration problem. It is common practice to estimatef
by showing the imaging system a uniformly lit calibra-
tion chart, such as the Macbeth chart [4], which includes
patches of known relative reflectances. The known rel-
ative radiancesI i of the patches and the corresponding
measurementsM i are samples that are interpolated to
obtain an approximation tof . It is our objective to avoid
such a calibration procedure which is only suited to con-
trolled environment.

2. Calibration Without Charts
Recent work by Mann and Picard [11] and Debevec
and Malik [5] has demonstrated how the radiometric re-
sponse function can be estimated using images of ar-



bitrary scenes taken under different known exposures.
While the measured brightness values change with ex-
posure, scene radiance valuesL remain constant. This
observation permits the estimation of the inverse func-
tion f without prior knowledge of scene radiance. Once
f has been determined, the images taken under different
exposures can be fused into a single high dynamic range
radiance image1.

Mann and Picard [11] use the functionM = α + β Iγ

to model the response curveg. The bias parameterα is
estimated by taking an image with the lens covered, and
the scale factorβ is set to an arbitrary value. Consider
two images taken under different exposures with known
ratioR = e1/e2. The measurementM (I ) in the first im-
age (I is unknown) produces the measurementM (RI )
in the second. A pixel with brightnessM (RI ) is sought
in the first image that would then produce the brightness
M(R2I ) in the second image. This search process is re-
peated to obtain the measurement seriesM (I ), M (RI ),
...., M (RnI ). Regression is applied to these samples to
estimate the parameterγ. Since the model used by Mann
and Picard is highly restrictive, the best one can hope for
in the case of a general imaging system is a qualitative
calibration result. Nonetheless, the work of Mann and
Picard is noteworthy in that it brings to light the main
challenges of this general approach to radiometric cali-
bration.

Debevec and Malik [5] have developed an algorithm that
can be expected to yield more accurate results. They use
a sequence of high quality digital photographs (about
11) taken using precisely known exposures. This al-
gorithm is novel in that it does not assume a restric-
tive model for the response function, and only requires
that the function be smooth. Ifp and q denote pixel
and exposure indices, we haveMp,q = g(Ep.tq) or
ln f (Mp,q) = ln Ep + ln tq. With Mp,q andtq known,
the algorithm seeks to find discrete sample ofln f (Mp,q)
and scaled irradiancesEp. These results are used to
compute a high dynamic range radiance map. The al-
gorithm of Debevec and Malik is well-suited when the
images themselves are not noisy and precise exposure
times are available.

Though our goals are similar to those of the above inves-
tigators, our approach is rather different. We use a flex-
ible parametric model which can accurately represent a
wide class of response functions encountered in practice.
On the other hand, the finite parameters of the model al-
low us to recover the response functionwithoutprecise
exposure inputs. As we show, rough estimates (such as
F-number readings on a low-quality lens) are sufficient
to accurately calibrate the system as well as recover the
actual exposure ratios. To ensure that our algorithm can

1For imaging systems with known response functions, the problem
of fusing multiple images taken under different exposures has been
addressed by several others (see [3], [10], [7] for examples). In [2], a
CMOS imaging chip is described where each pixel measures the expo-
sure time required to attain a fixed charge accumulation level. These
exposure times can be mapped to a high dynamic range image.
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Figure 1:Response functions of a few popular films and video
cameras provided by their manufacturers. These examples il-
lustrate that a high-order polynomial may be used to model the
response function.

be applied to video systems, where it is easier to vary the
aperture setting than the exposure time, we have imple-
mented a pre-processing algorithm that rejects measure-
ments with large vignetting effects and temporal changes
during image acquisition. The recovered response func-
tion is used to fuse the multiple images into a high qual-
ity radiance map. We have conducted extensive testing
of our algorithm by using noisy synthetic data. In addi-
tion, we have compared our calibration results for real
images with those produced using calibration charts.

3. A Flexible Radiometric Model

It is worth noting that though the response curve can vary
appreciably from one imaging system to the next, it is
not expected to have exotic forms. The primary reason
is that the detector output (be it film or solid state) is
monotonic or at least semi-monotonic. Unless unusual
mappings are intentionally built into the remaining com-
ponents of the imaging system, measured brightness ei-
ther increases or stays constant with increase in scene ra-
diance (or exposure). This is illustrated by the response
functions of a few popular systems shown in Figure 1.
Hence, we claim that virtually any response function can
be modeled using a high-order polynomial:

I = f (M ) =
N∑

n=0

cn M n . (3)

The minimum order of the polynomial required clearly
depends on the response function itself. Hence, calibra-
tion could be viewed as determining the orderN in ad-
dition to the coefficientscn.

4. The Self-Calibration Algorithm
Consider two images of a scene taken using two differ-
ent exposures,eq andeq+1 , whereRq,q+1 = eq /eq+1 .
The ratio of the scaled radiance at any given pixelp can



written using expression (2) as:

Ip,q
Ip,q+1

=
Lp kp eq

Lp kp eq+1

= Rq,q+1 . (4)

Hence, the response function of the imaging system is
related to the exposure ratio as:

f (Mp,q)
f (Mp,q+1)

= Rq,q+1 . (5)

We order our images such thateq < eq+1 and hence
0 < Rq,q+1 < 1. Substituting our polynomial model for
the response function, we have:∑N

n=0 cn Mp,q
n∑N

n=0 cn Mp,q+1
n

= Rq,q+1 . (6)

The above relation may be viewed as the basis for
the joint recovery of the response function and the ex-
posure ratio. However, an interesting ambiguity sur-
faces at this point. Note that from (5) we also have
(f (Mp,q)/f (Mp,q+1))u = Rq,q+1

u. This implies that,
in general,f andR can only be recovered up to an un-
known exponentu. In other words, an infinite number
of f -R pairs would satisfy equation (5).

Interestingly, thisu-ambiguity is greatly alleviated by
the use of the polynomial model. Note that, iff is a
polynomial, f u can be a polynomial only ifu = v
or u = 1/v wherev is a natural number, i.e.u =
(., 1/3, 1/2, 1, 2, 3, .) . This by no means implies that,
for any given polynomial, all these multiple solutions
must exist. For instance, iff (M ) = M 3, u = 1/2 does
not yield a polynomial. On the other hand,u = 1/3 does
result inf (M ) = M which, in turn, can have its ownu-
ambiguities. In any case, the multiple solutions that arise
are well-spaced with respect to each other. Shortly, the
benefits of this restriction will become clear.

For now, let us assume that the exposure ratiosRq,q+1

are known to us. Then, the response function can be
recovered by formulating an error function that is the
sum of the squares of the errors in expression (6):

E =
Q−1∑
q=1

P∑
p=1

 N∑
n=0

cnMp,q
n −Rq,q+1

N∑
n=0

cnMp,q+1
n

2

,

(7)
where,Q is the total number of images used. If we nor-
malize all measurements such that0 ≤ M ≤ 1 and fix
the indeterminable scale usingf (1) = Imax, we get the
additional constraint:

cN = Imax −
N−1∑
n=0

cn . (8)

The response function coefficients are determined by
solving the system of linear equations that result from
setting:

∂E
∂cn

= 0 . (9)

In most inexpensive imaging systems, photographic or
video, it is difficult to obtain accurate estimates of the
exposure ratiosRq,q+1 . The user only has access to the
F-number of the imaging lens or the speed of the shutter.
In consumer products these readings can only be taken
as approximations to the actual values. In such cases,
the restrictedu-ambiguity provided by the polynomial
model proves valuable. Again, consider the case of two
images. If the initial estimate for the ratio provided by
the user is a reasonable guess, the actual ratio is easily
determined by searching in the vicinity of the initial esti-
mate; we search for theR that produces thecn that min-
imizeE . Since the solution forcn is linear, this search is
very efficient.

However, when more than two images are used the di-
mensionality of the search forRq,q+1 is Q − 1. When
Q is large, the search can be time consuming. For such
cases, we use an efficient iterative scheme where the cur-
rent ratio estimatesRq,q+1

(k−1) are used to compute the
next set of coefficientscn

(k). These coefficients are then
used to update the ratio estimates using (6):

Rq,q+1

(k) =
P∑

p=1

∑N
n=0 cn

(k)Mp,q
n∑N

n=0 cn
(k)Mp,q+1

n
, (10)

where, the initial ratio estimatesRq,q+1

(0) are provided
by the user. The algorithm is deemed to have converged
when:

| f (k)(M) − f (k−1)(M) | < ε , ∀M , (11)

whereε is a small number.

It is hard to embed the recovery of the orderN into the
above algorithm in an elegant manner. Our approach
is to place an upper bound onN and run the algorithm
repeatedly to find theN that gives the lowest errorE . In
our experiments, we have used an upper bound ofN =10.

5. Evaluation: Noisy Synthetic Data

Shortly, we will present experiments with real scenes
that demonstrate the performance of our calibration al-
gorithm. However, a detailed analysis of the behavior
of the algorithm requires the use of noisy synthetic data.
For this, 100 monotonic response functions were gen-
erated using random numbers for the coefficientscn of
a fifth-order polynomial. Using each response function,
four synthetic images were generated with random ra-
diance values and random exposure ratios in the range
0.45 ≤ R ≤ 0.55. This range of ratio values is of par-
ticular interest to us because in almost all commercial
lenses and cameras a single step in the F-number setting
or shutter speed setting results in an exposure ratio of ap-
proximately 0.5. The pixel values were normalized such
that0 ≤ M ≤ 1. Next, normally distributed noise with
σ = 0.005 was added to each pixel value. This translates
to σ = 1.275 gray levels when0 ≤ M ≤ 255, as in the
case of a typical imaging system. The images were then
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Figure 2:Self-calibration was tested using 100 randomly gen-
erated response functions. Here a few of the recovered (solid)
and actual (dots) response functions are shown. In each case,
four noisy test images were generated using random exposure
ratios between image pairs in the range0.45 ≤ R ≤ 0.55.
The initial ratio estimates were chosen to be 0.5.
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Figure 3:The percentage average error between actual and es-
timated response curves for the 100 synthetic trials. The max-
imum error was found to be 2.7%.

quantized to have 256 discrete gray levels. The algo-
rithm was applied to each set of four images using initial
exposure ratios ofRq,q+1

(0) = 0.5.

All 100 response functions and exposure ratios were ac-
curately estimated. Figure 2 shows a few of the actual
(dots) and computed (solid) response functions. As can
be seen, the algorithm is able to recover a large variety
of response functions. In Figure 3 the percentage of the
average error (over allM values) between the actual and
estimated curves are shown for the 100 cases. Despite
the presence of noise, the worst-case error was found to
be less than 2.7%.

Figure 4 shows the errorE plotted as a function of ex-
posure ratioR. In this example, only two images are
used and the actual and initial exposure ratios are 0.7
and 0.625, respectively. The multiple local minima cor-
respond to solutions that arise from theu-ambiguity de-
scribed before. The figure illustrates how the ratio value
converges from the initial estimate to the final one. In all
our experiments, the algorithm converged to the correct
solution in less than 10 iterations.
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Figure 4: An example that shows convergence of the algo-
rithm to the actual exposure ratio (0.7) from a rough initial
ratio estimate (0.625), in the presence of theu-ambiguity.

6. Implementation
We now describe a few issues that need to be addressed
while implementing radiometric self-calibration.

6.1. Reducing Video Noise
Particularly in the context of video, it is important to en-
sure that the data that is provided to the self-calibration
algorithm has minimal noise. To this end, we have im-
plemented a pre-processing step that uses temporal and
spatial averaging to obtain robust pixel measurements.
Noise arises from three sources, namely, electrical read-
out from the camera, quantization by the digitizer hard-
ware [6], and motion of scene objects during data acqui-
sition. The random component of the former two noise
sources can be reduced by temporal averaging oft im-
ages (typicallyt = 100). The third source can be omit-
ted by selecting pixels of spatially flat area. To check
spatial flatness, we assume normally distributed noise
N(0, σ2). Under this assumption, if an area is spatially
flat, sS2/σ2 can be modeled by theχ2 distribution [12],
whereS is the spatial variance ofs pixel values (typi-
cally s = 5 × 5). We approximateS2 with the spatial
varianceσ2

s of the temporally averaged pixel values, and
σ2 with the temporal varianceσ2

t . Therefore, only those
pixels are selected that pass the following test:

s σs 2

σt 2
≤ χ2

s−1(ψ) , (12)

where,ψ is the rejection ratio which is set to 0.05. When
temporal averaging is not applied,t=1 andσt is set to
0.01.

6.2. Vignetting
In most compound lenses vignetting increases with the
aperture size [1]. This introduces errors in the measure-
ments which are assumed to be only effected by expo-
sure changes. Vignetting effects are minimal at the cen-
ter of the image and increase towards the periphery. We
have implemented an algorithm that robustly detects pix-
els that are corrupted by vignetting. Consider two con-
secutive imagesq andq + 1. Corresponding brightness
measurementsMp,q andMp,q+1 are plotted against each
other. In the absence of vignetting, all pixels with the
same measurement value in one image should produce
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Figure 5:Fusing multiple images taken under different expo-
sures into a single scaled radiance image.

equal measurement values in the second image, irrespec-
tive of their locations in the image. The vignetting-free
area for each image pair is determined by finding the
smallest image circle within which theMp,q-Mp,q+1 plot
is a compact curve with negligible scatter.

6.3. High Dynamic Range Radiance Images
Once the response function of the imaging system has
been computed, theQ images can be fused into a sin-
gle high dynamic range radiance image, as suggested in
[11] and [5]. This procedure is simple and is illustrated
in Figure 5. Three steps are involved. First, each mea-
surementMp,q is mapped to its scaled radiance value
Ip,q using the computed response functionf . Next, the
scaled radiance is normalized by the scaled exposureẽq
so that all radiance value end up with the same effec-
tive exposure. Since the absolute value of eachẽq is
not important for normalization, we simply compute the
scaled exposures so that their arithmetic mean is equal
to 1. The final radiance value at a pixel is then computed
as a weighted average of its individual normalized radi-
ance values. In previous work, a hat function [5] and
the gradient of the response function [11] were used for
the weighting function. Both these choices are some-
what ad-hoc, the latter less so than the former. Note that
a measurement can be trusted most when its signal-to-
noise ratio (SNR) as well as its sensitivity to radiance
changes are maximum. The SNR for the scaled radiance
valueI is:

SNR = I
dM

dI

1
σN (M)

=
f(M)

σN (M)f ′(M)
, (13)

where,σN (M) is the standard deviation of the measure-
ment noise. Using the assumption that the noiseσN in
(13) is independent of the measurement pixel valueM ,
we can define the weighting function as:

w(M) = f(M)
/
f ′(M) . (14)

6.4. Handling Color
In the case of color images, a separate response func-
tion is computed for each color channel (red, green and
blue). This is because, in principle, each color chan-
nel could have its own response to irradiance. Since
each of the response functions can only be determined
up to a scale factor, the relative scalings between the
three computed radiance images remain unknown. We
resolve this problem by assuming that the three response

functions preserve the chromaticity of scene points. Let
the measurements be denoted asM = [Mr,Mg,Mb]T

and the computed scaled radiances beI = [Ir, Ig, Ib]T .
Then, the color-corrected radiance values areIc =
[krIr, kgIg, kbIb]T where, kr/kb and kg/kb are deter-
mined by applying least-squares minimization to the
chromaticity constraintIc/ || Ic ||= M/ ||M ||.

7. Experimental Results
The source code for our self-calibration algorithm
and several experimental results are made available at
http://www.cs.columbia.edu/CAVE/. Here, due to lim-
ited space, we will present just a couple of examples.

Figure 6 shows results obtained using a Canon Optura
video camera. In this example, the gray scale output of
the camera was used. Figure 6(a) shows 4 of the 5 im-
ages of an outdoor scene obtained using five different
F-number settings. As can be seen, the low exposure
images are too dark in areas of low scene radiance and
the high exposure ones are saturated in bright scene re-
gions. To reduce noise, temporal averaging usingt=100
and spatial averaging usings=3x3 were applied. Next,
automatic vignetting detection was applied to the 5 aver-
aged images. Figure 6(b) shows the final selected pixels
(in black) for one of the image pairs.

The solid line in Figure 6(d) is the response function
computed from the 5 scene images. The initial expo-
sure ratio estimates were set to 0.5, 0.25, 0.5 and 0.5 and
the final computed ratios were 0.419, 0.292, 0.570 and
0.512. These results were verified using a Macbeth cali-
bration chart with patches of known relative reflectances
(see Figure 6(c)). The chart calibration results are shown
as dots which are in strong agreement with the computed
response function. Figure 6(e) shows the radiance im-
age computed using the 5 input images and the response
function. Since conventional printers and displays have
dynamic ranges of 8 or less bits, we have applied his-
togram equalization to the radiance image to bring out
the details within it. The small windows on the sides
of the radiance image show further details; histogram
equalization was applied locally within each window.

Figure 7 shows two results obtained using a Nikon 2020
film camera. In each case 5 images were captured of
which only 4 are shown in Figures 7(a) and 7(d). In the
first experiment, Kodachrome slide film with ISO 200
was used. These slides were taken using F-number = 8
and approximate (manually selected) exposure times of
1/30, 1/15, 1/8, 1/2 and 1 (seconds). In the second ex-
periment, the pictures were taken with the same camera
but using F-number = 11 and ISO 100 slide film. The ex-
posure settings were 1/500, 1/250, 1/125, 1/60 and 1/30.
The developed slides were scanned using a Nikon LS-
3510AF scanner that produces a 24 bit image (8 bits per
color channel).

The self-calibration algorithm was applied separately to
each color channel (R, G, B), using initial ratio estimates
of 0.5, 0.25, 0.5 and 0.5 in the first experiment and all



    ( a )

( b )

( c )

 ( e )

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
M

I

  ( d )

Figure 6: (a) Self-calibration results for gray scale video images taken using a Canon Optura camera. (b) Temporal averaging,
spatial averaging and vignetting detection are used to locate pixels (shown in black) that produce robust measurements. (c) The
self-calibration results are verified using a uniformly lit Macbeth color chart with patches of known reflectances. (d) The computed
response function (solid line) is in strong agreement with the chart calibration results (dots). (e) The computed radiance image
is histogram equalized to convey some of the details it includes. The image windows on the two sides of the radiance image are
locally histogram equalized to bring forth further details.

ratios set to 0.5 in the second. The three (R, G, B) com-
puted response functions are shown in Figures 7(b) and
7(e) . A radiance image was computed for each color
channel and then the three images were scaled to pre-
serve chromaticity, as described in section 6.4.. The final
radiance images shown in Figure 7(c) and 7(f) are his-
togram equalized. As before, the small windows within
the radiance images show further details brought out by
local histogram equalization. Noteworthy are the details
of the lamp and the chain on the wooden window in Fig-
ure 7(c) and the clouds in the sky and the logs of wood
inside the clay oven in Figure 7(f).

For the exploration of high dynamic range images, we
have developed a simple interactive visualization tool,
referred to as the “Detail Brush.” It is a window of ad-
justable size and magnification that can be slided around
the image while histogram equalization within the win-
dow is performed in real time. This tool is also available

athttp://www.cs.columbia.edu/CAVE/.
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