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Assorted pixel (Single Exposure HDR)
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Assorted pixel




Assorted pixel

Normal Camera Assorted Pixel Camera
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Pixel with Adaptive Exposure Control
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ADR Imaging with Spatial Light Modulator
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ADR Camera with LCD Attenuator

LCD Electronics LCD Attenuator

Video Camera Imaging Lens



ADAPTIVE DYNAMIC RANGE IMAGING

OPTICAL DYNAMIC ATTENUATION
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Kimber, D.C.; C.E. Gray, and C.E. Stackpale. (1966).
Anatomy and Phystology. MacMillan Co,, NY. pg 335.
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Some books on linear algebra

SEARCH INSIDE!™ SEARCH INSIDE!™

Ungergrackate Texts in Mathemat o8

Serge Lang
Linear

Algebra

Third Edition

&) Springer
Finite Dimensional Vector Spaces, Paul R. Halmos, 1947 Linear Algebra, Serge Lang, 2004

LOOK INSIDE!™ SEARCH INSIDE!™

LINEAR ALGEBna

AND ITS APPLICATIONS COMPUTATIONS
GILBERT STRANG rextcue
THIRD EDITION
Linear Algebra and its Applications, Matrix Computation, Gene H. Golub,

Gilbert Strang, 1988 Charles F. Van Loan, 1996



Next

Image Processing: from basic concepts to latest techniques
e Filtering

* Edge detection

* Re-sampling and aliasing

* Image Pyramids (Gaussian and Laplacian)



Image as a discreet function

Represented by a matrix:

.

62 79 23 19 120 105 4 0
10 10 9 62 12 78 34 0
10 58 197 46 46 0 0 48
176 135 5 188 191 68 0 49
2 1 1 29 2% a 0 77
0 89 144 147 187 102 62 208
265 262 0 166 123 62 0 31
166 63 127 17 1 0 9 30




What is image filtering?

* Modify the pixels in an image based on some
function of a local neighborhood of the pixels.
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Linear functions

» Simplest: linear filtering.

— Replace each pixel by a linear combination of
its neighbors.

* The prescription for the linear combination
is called the “convolution kernel”.
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Convolution

flm,n]=1®g = Zl[m—k,n—l]g[k,l]
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Linear filtering (warm-up slide)
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Linear filtering (warm-up slide)
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Linear filtering
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Linear filtering
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Blurring
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Blur Examples
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Blur Examples
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Linear filtering (warm-up slide)
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Linear Filtering (no change)
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Linear Filtering
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(remember blurring)
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Sharpening
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Sharpening example
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Sharpening

before after



Spatial resolution and color

original



Blurring the G component

original processed



Blurring the R component

original processed



Blurring the B component
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Lab Color Component

A rotation of the
color
coordinates into
directions that
are more
perceptually
meaningful:

L: luminance,

a: red-green,

b: blue-yellow



Bluring L
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Bluring a

original processed



Bluring b

original processed




Application to image compression

* (compression is about hiding differences from
the true image where you can’ t see them).



Edge Detection

« Convert a 2D image into a set of curves
— Extracts salient features of the scene
— More compact than pixels



How can you tell that a pixel is on an edge?




Image gradient

* The gradient of an image:
of 0
Vf= |55

* The gradient points in the direction of most rapid
change in intensity

I_—[ama] .:
vi=[04

* The gradient direction is given by:
# = tan—1 (af/ )

— how does the gradient relate to the direction of the edge?

* The edge strength is given by the gradient magnitude
VA1l = /(D7 + (3D’




Effects of noise

« Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000

How to compute a derivative?

T T
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 Where is the edge?



Solution: smooth first

Signal
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- Where is the edge? ¢ Look for peaks in %(h * f)



Derivative theorem of convolution

ge(hx f) = (55h) = f

« This saves us one operation:

Sigma = 50
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Laplacian of Gaussian

« Consider a—;(h*f)
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 Where is the edge? « Zero-crossings of bottom graph



Canny Edge Detector

Smooth image / with 2D Gaussian: G [

Il

Find local edge normal directions for each pixel @ = arctan]—y

X

Along this direction, compute image gradient ‘V(G o 1)

Locate edges by finding max gradient magnitude (Non-maximum
suppression)



Non-maximum Suppression

® ® O o
I

@ ® q
Gradient /

Check if pixel is local maximum along gradient direction
— requires checking interpolated pixels p and r




The Canny Edge Detector

original image (Lena)



The Canny Edge Detector

magnitude of the gradient



The Canny Edge Detector

After non-maximum suppression



Canny Edge Detector

o |y 7 ,—J

original Canny with 0 = 1 Canny with

 The choice of depends on desired behavior
— large detects large scale edges
— small  detects fine features



Image Scaling

This image is too big to
fit on the screen. How
can we reduce it?

How to generate a half-
sized version?




Image sub-sampling

Throw away every other row and

column to create a 1/2 size image
- called image sub-sampling



Image sub-sampling
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1/2 1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so crufty?



Even worse for synthetic images




Really bad in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[t camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDDRPB

frame 0O frame 1 frame 2 frame 3 frame 4
Il I I I -
shutter open time

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)



Alias: n., an assumed name

Input signal:

avl

Picket fence receding
Into the distance will
produce aliasing...

WHY" x = 0:.05:5; imagesc(sin((2.7x).*x))

/ Aj-aj-a;:

Alias!

TRVAVRVRIRIRIRIATEY
VYV YV VYV VYV VYTV

Not enough samples




Aliasing

* occurs when your sampling rate is not high enough to
capture the amount of detail in your image

« Can give you the wrong signal/image—an alias

* Where can it happen in images?
* During image synthesis:
— sampling continous singal into discrete signal
— e.g. ray tracing, line drawing, function plotting, etc.

* During image processing:
— resampling discrete signal at a different rate
— e.g. Image warping, zooming in, zooming out, etc.

« To do sampling right, need to understand the structure
of your signal/image

« Enter Monsieur Fourier...



Antialiasing

 What can be done?
1. Raise sampling rate by oversampling
— Sample at k times the resolution




Antialiasing

 What can be done?
1. Raise sampling rate by oversampling
— Sample at k times the resolution
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Antialiasing

 What can be done?

1. Raise sampling rate by oversampling
— Sample at k times the resolution

2. Lower the max frequency by prefiltering
— Smooth the signal enough
— Works on discrete signals

DOIOD

frame 0 frame 1 frame 2 frame 3 frame 4

[ -

shutter open time




Antialiasing

 What can be done?

1. Raise sampling rate by oversampling
— Sample at k times the resolution

2. Lower the max frequency by prefiltering
— Smooth the signal enough
— Works on discrete signals

3. Improve sampling quality with
better sampling (CS559)




The Gaussian Pyramid

Low resolution w G, =(G; * gaussian) | 2

WG =(G *Wsub-samgle.

___blur %%.
=(G, *gaussiany {2~

blur _
G, =(G, * gaussian) | 2

High resolution



Gaussian pre-filtering

Gaussian 1/2

» Solution: filter the image, then subsample



Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8
» Solution: filter the image, then subsample



Compare with...
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1/2 1/4 (2x zoom) 1/8 (4x zoom)



Pyramids at Same Resolution

=iV MBS
. Level 0
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. Level 1




The Laplacian Pyramid
L. =G, —expand(G,,,)

Gaussian Pyramid Gl. = LI, + expand(Gm) Laplacian Pyramid




Fig. 10. A summary of the steps in Laplacian pyramid coding and decoding.
Gaussian pyramid levels g,, g,. ... through repeated local averaging. Levels of the Laplacian pyramid L, L,, ...

Gaussian
planes

Laplacian
planes

Quantization

Reconstructed Reconstructed
Laplacians Gaussians

A R [ —

- - e e

{original Lfmage)

(reconstructed Lmage)

First, the original image g, (lower left) is used to generate

are then computed as

the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yield the Laplacian pyramid code C,

C,Cy ...

Finally, a reconstructed image r, is generated by summing levels of the code pyramid.



Recap

Image Processing: from basic concepts to latest techniques
e Filtering

* Edge detection

* Re-sampling and aliasing

* Image Pyramids (Gaussian and Laplacian)

e Next ...



High Dynamic Range Image
Reconstruction from
Hand-held Cameras

Pei-Ying Lu Tz-Huan Huang Meng-Sung Wu
Yi-Ting Cheng Yung-Yu Chuang

National Taiwan University

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



The world is of high dynamic range
short exposure long exposure

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



Camera pipeline

sensor sensor
irradiance I exposure . analog _ - d
(E) (X) voltages v

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



HDR image reconstruction

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



HDR image reconstruction

* Recovering High Dynamic Range Radiance
Maps from Photographs, SIGGRAPH 1997.

« Radiometric Self Calibration, CVPR 2001.

« Estimation-theoretic approach to dynamic
range enhancement using multiple
exposures, JEI 2003.

» All assume static cameras and thus require
tripods.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



Images from hand-held camera

* Challenge #1: image mis-alignment

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



Images from hand-held camera

* Challenge #1: image mis-alignment

* Challenge #2: image blur

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



A naive approach

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



Image blurring process

convolution

blur image sharp image kernel

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fontainebleau Resort, Miami Beach, Florida June 20-25, 2009



