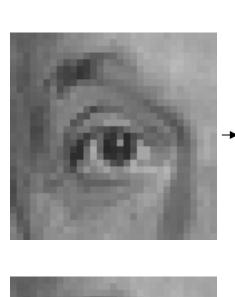
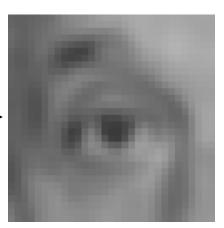
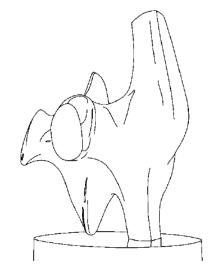
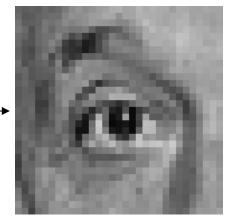
Last Lecture



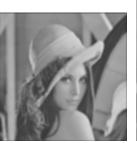




(0)



Edge Detection



Filtering

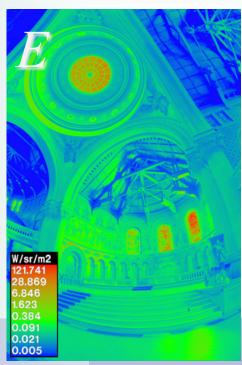
High Dynamic Range Image Reconstruction from Hand-held Cameras

Pei-Ying Lu Tz-Huan Huang Meng-Sung Wu Yi-Ting Cheng Yung-Yu Chuang

National Taiwan University

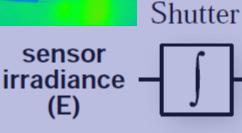
The world is of high dynamic range

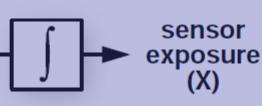
Camera pipeline

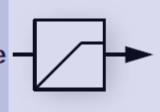


$$X = \int_{t=0}^{\Delta t} E dt = E \Delta t$$

$$Z = f(X) = f(E\Delta t)$$

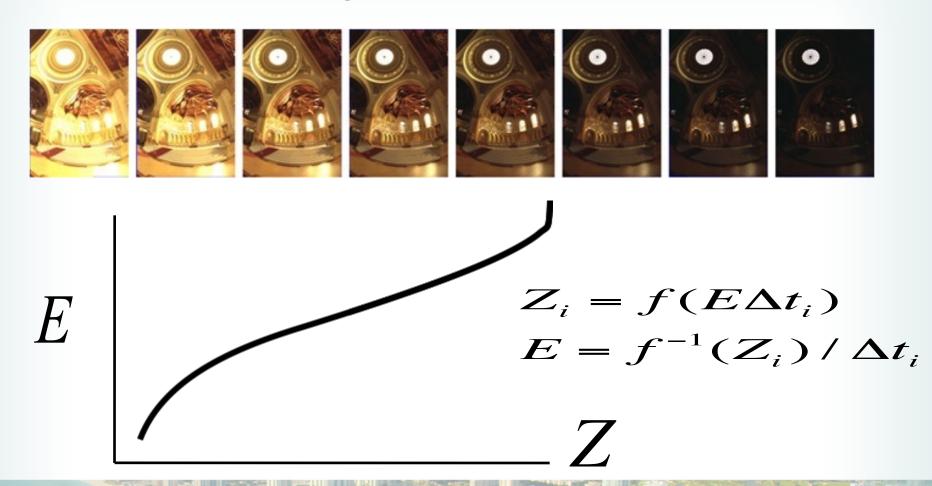






CCD

HDR image reconstruction

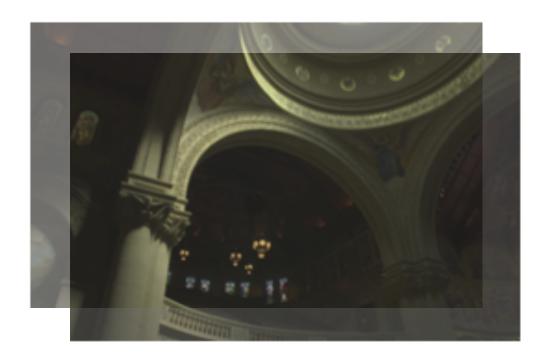


HDR image reconstruction

- Recovering High Dynamic Range Radiance Maps from Photographs, SIGGRAPH 1997.
- Radiometric Self Calibration, CVPR 2001.
- Estimation-theoretic approach to dynamic range enhancement using multiple exposures, JEI 2003.
- All assume static cameras and thus require tripods.

Images from hand-held camera

Challenge #1: image mis-alignment



Images from hand-held camera

- Challenge #1: image mis-alignment
- Challenge #2: image blur

A naïve approach

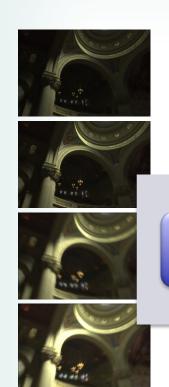
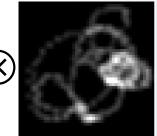


Image blurring process

convolution

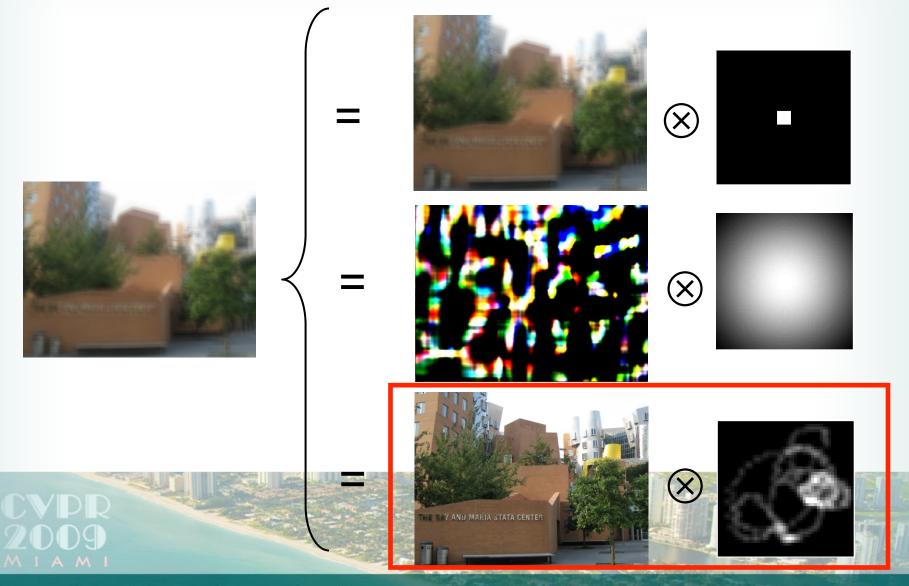
blur image

sharp image



blur kernel

An under-determined problem



Adding priors

1. Reconstruction constraint:

_

Fergus et. al. SIGGRAPH 2006

2. Image prior:

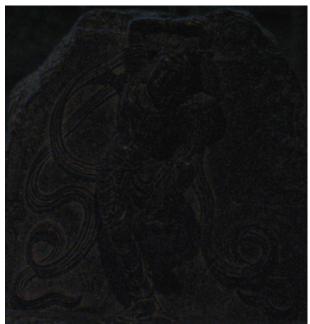


distribution of gradients

3. Blur prior:

positive & sparse

Adding observation (a noisy image)



blurred image

noisy image

deblurred image

Yuan et. al. SIGGRAPH 2007

A naïve approach

Image formation model

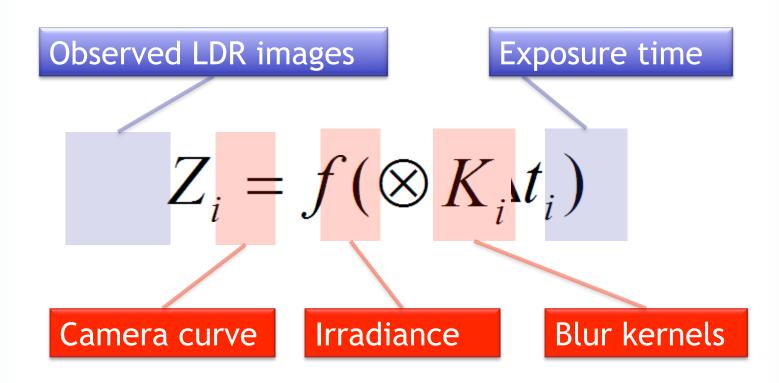
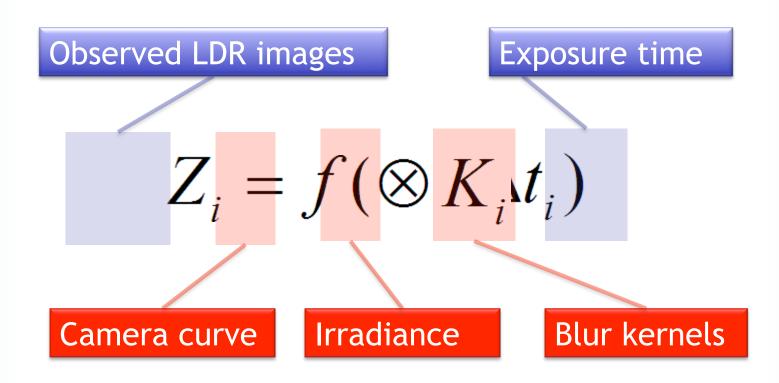


Image formation model



Main Idea

$$Z_{ij} = f((E \otimes K_j)_i \Delta t_j)$$
$$f^{-1}(Z_{ij})/\Delta t_j = (E \otimes K_j)_i$$

$$\arg\min_{E,K_i,f} \sum_{i=1}^{N} \sum_{j=1}^{P} ||(E \otimes K_j)_i - f^{-1}(Z_{ij})/\Delta t_j||^2$$

Iterative solution

Fix E, f to solve K_i

Fix $K_{j,}f$, to solve E

Fix E, K_i to solve f

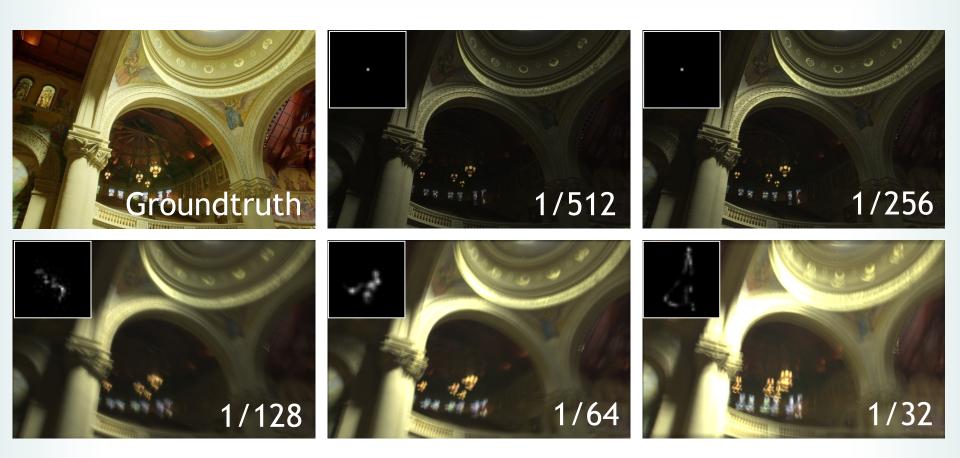
Optimization of f

$$g = f^{-1}$$

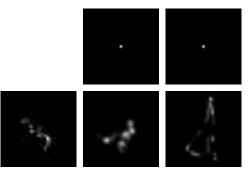
$$\arg\min_{g} \sum_{i=1}^{N} \sum_{j=1}^{P} \left\| (E \otimes K_{j})_{i} - g(Z_{ij}) / \Delta t_{j} \right\|^{2} + \lambda \sum_{z=Z_{\min}+1}^{Z_{\max}-1} g''(z)^{2}$$

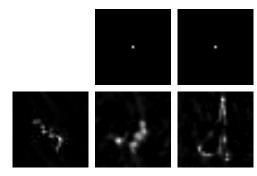
$$w(z) = \begin{cases} z - Z_{\min}, & \text{for } z \le \frac{1}{2} (Z_{\min} + Z_{\max}) \\ Z_{\max} - z, & \text{for } z > \frac{1}{2} (Z_{\min} + Z_{\max}) \end{cases}$$

A synthetic example

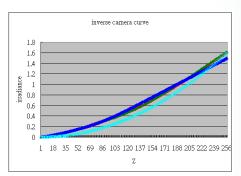


Our results





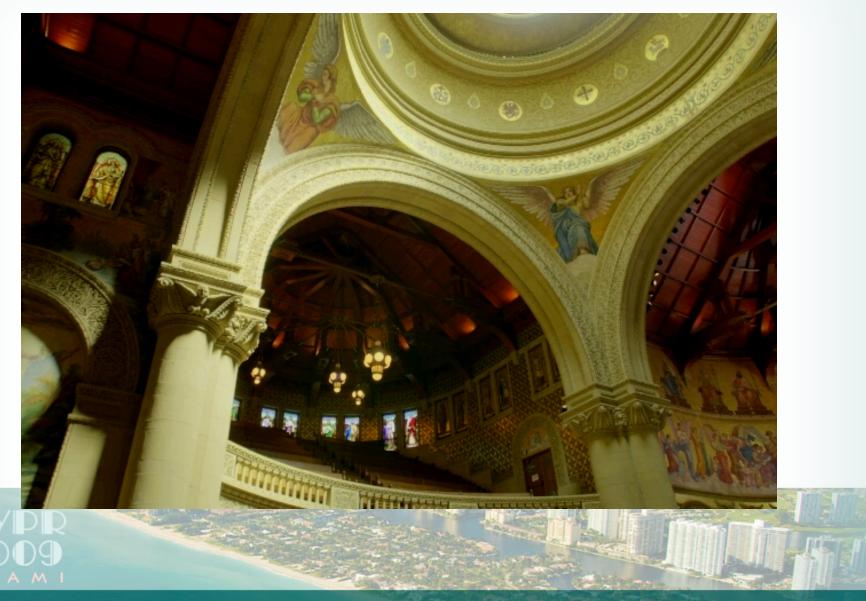
Our result



Camera curve

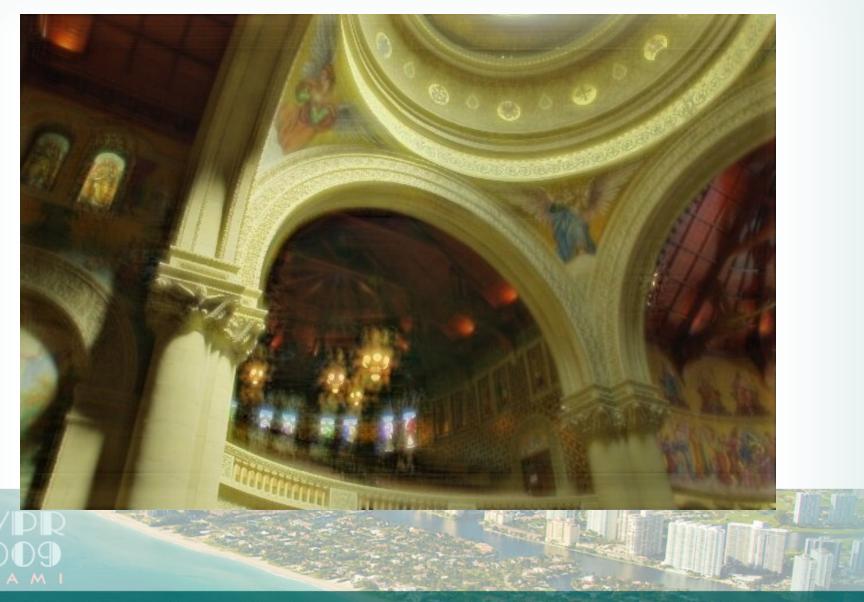
Comparisons

Groundtruth

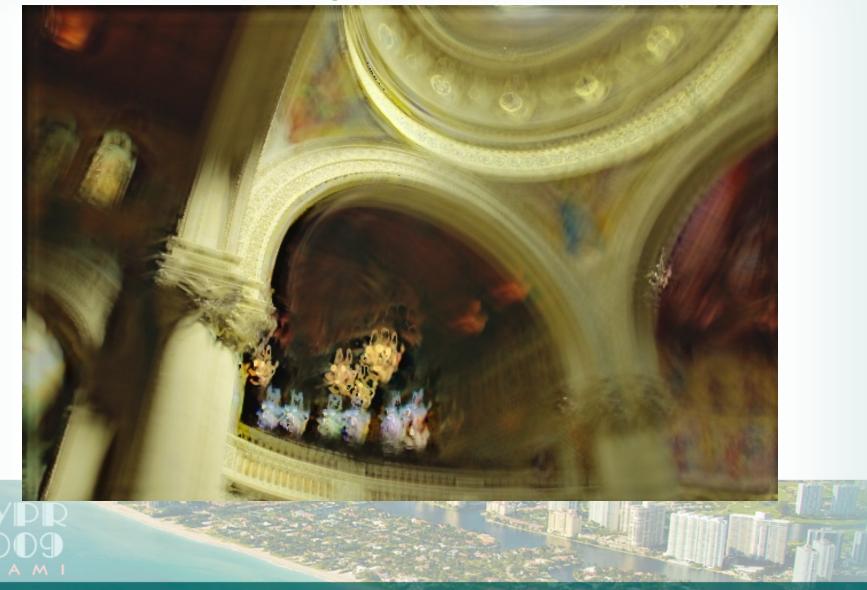


Our result

Yuan et al.



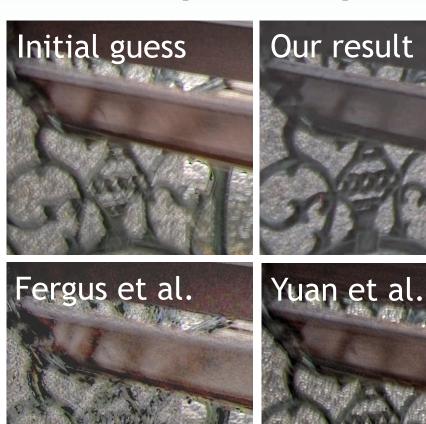
Fergus et al.



Real example I

Comparisons

Close-up comparisons



Initial guess

Our result

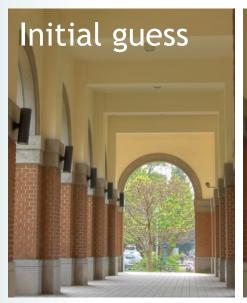
Yuan et al.

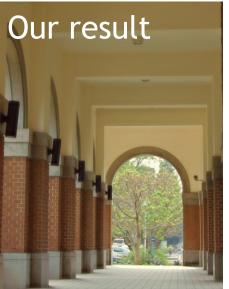
Fergus et al.

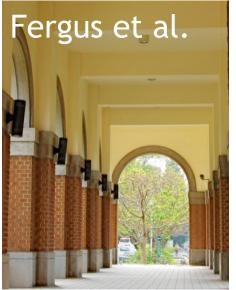
Real example II

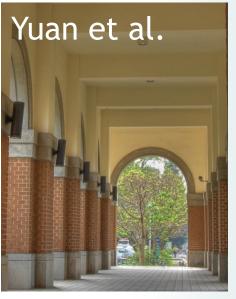
/16

Comparisons

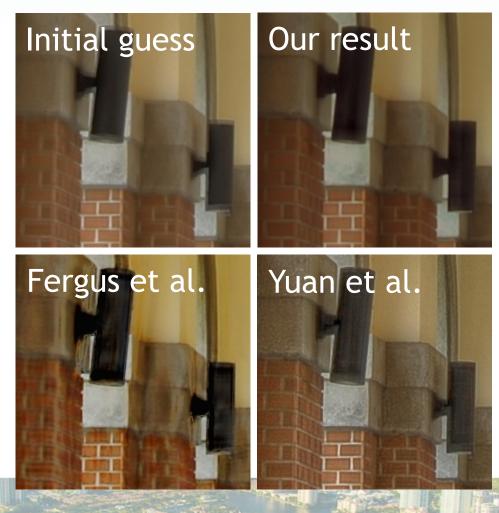








Close-up comparisons



Initial guess

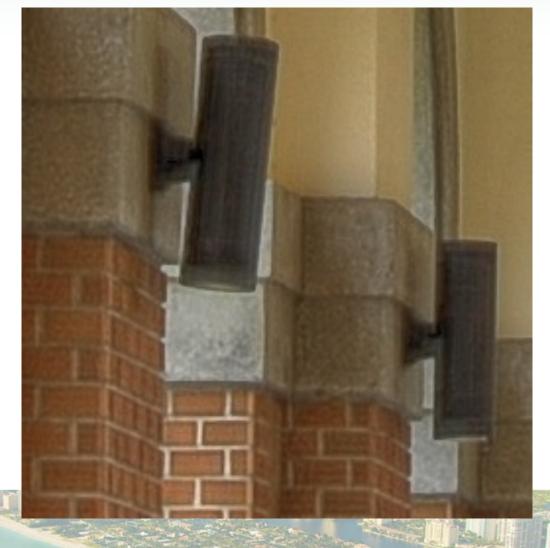
CYPR 2009

Our result



CYPR 2009

Yuan et al.



Fergus et al.

Conclusions

- A technique for reconstructing a nonblurred HDR image from a set of differently exposed and blurred images taken with a hand-held camera.
- A unified formulation for recovering the irradiance image, blur kernels and the camera response curve.

Future Work

- Adding priors for kernels, HDR images and camera curves.
- Handling the shift-variant cases.

Next

Image Transformation

Image Warping

image filtering: change range of image

•
$$g(x) = T(f(x))$$

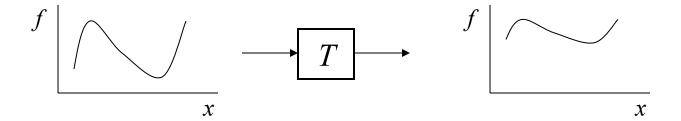


image warping: change domain of image

•
$$g(x) = f(T(x))$$

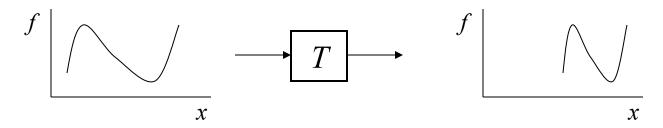
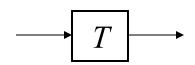


Image Warping

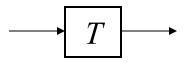
image filtering: change range of image

•
$$g(x) = T(f(x))$$



• image warping: change domain of image

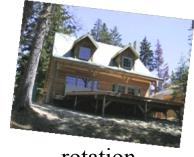
$$g(x) = f(T(x))$$



Parametric (global) warping

Examples of parametric warps:

translation



rotation

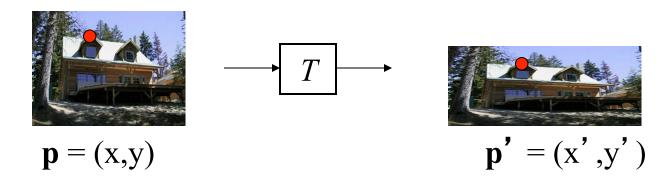
aspect

affine

perspective

cylindrical

Parametric (global) warping



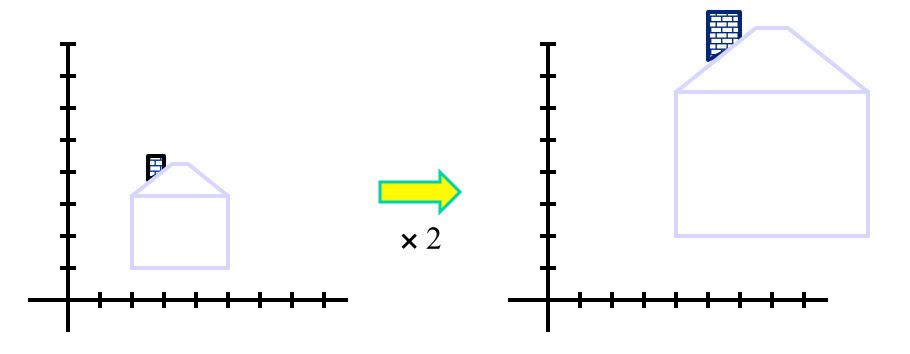
- Transformation T is a coordinate-changing machine:
- p' = T(p)
- What does it mean that T is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's represent T as a matrix:

•
$$p' = \mathbf{M}p$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

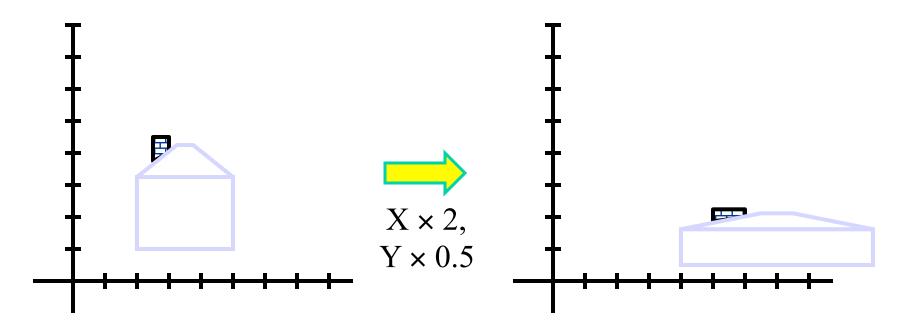
Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:



Scaling

• *Non-uniform scaling*: different scalars per component:



Scaling

• Scaling operation: x' = ax

$$x' = ax$$

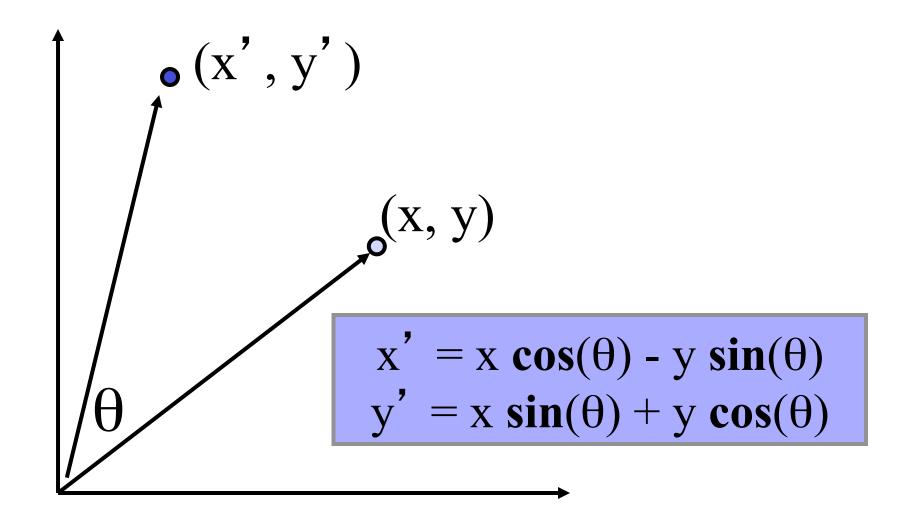
$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

What's inverse of S?

2-D Rotation



2-D Rotation

•This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
R

- •Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y
- •What is the inverse transformation?
 - Rotation by $-\theta$
 - For rotation matrices

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

 What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = s_x * x$$

$$y' = s_y * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$

$$y' = y + t_y$$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

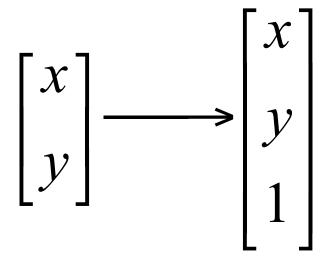
 Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$

$$y' = y + t_y$$

Homogeneous coordinates

represent coordinates in 2 dimensions with a 3-vector



 Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column:

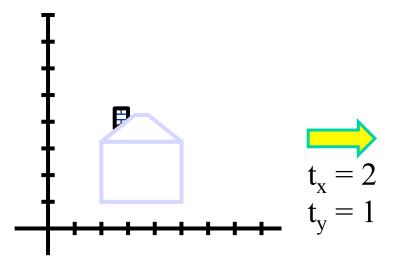
$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

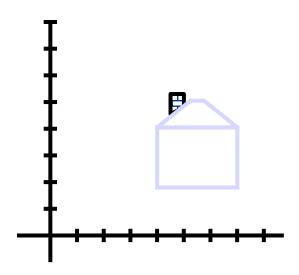
Translation

Example of translation

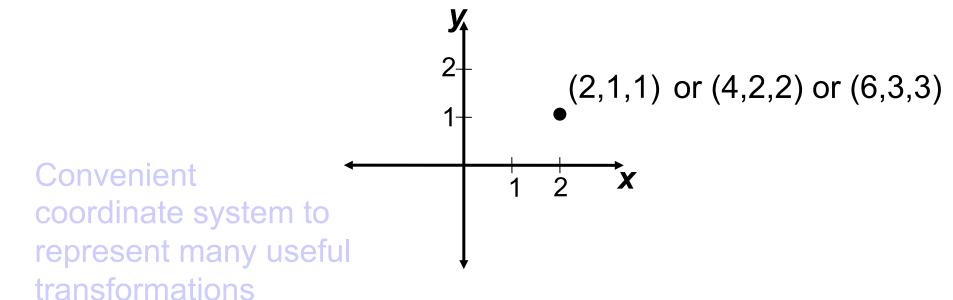
Homogeneous Coordinates

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$





- Add a 3rd coordinate to every 2D point
 - (x, y, w) represents a point at location (x/w, y/w)
 - (x, y, 0) represents a point at infinity
 - -(0, 0, 0) is not allowed



Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Affine Transformations

Affine transformations are combinations of

Linear transformations, and
$$\begin{vmatrix} x' \\ y' \\ w \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$$

- Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Projective Transformations

- Projective transformations ... $\begin{vmatrix} x' \\ y' \\ w' \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$

 - Projective warps
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

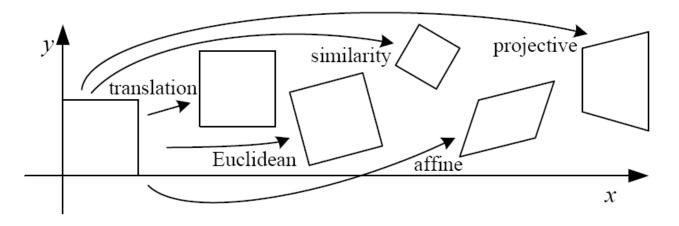
Matrix Composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{\mathsf{x}}, \mathbf{t}_{\mathsf{y}}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{\mathsf{x}}, \mathbf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

2D image transformations

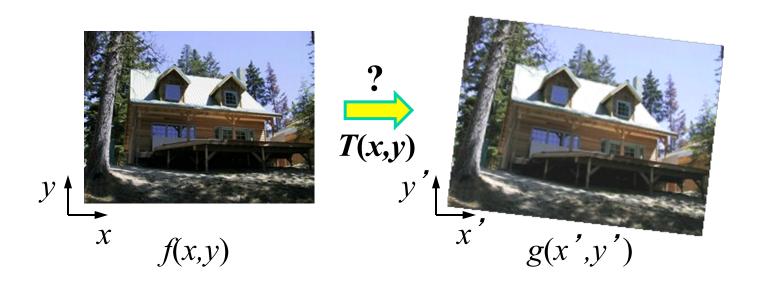


Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c} ig[egin{array}{c} ig[ig]_{2 imes 3} \end{array} \end{bmatrix}$		_	
rigid (Euclidean)	$igg[egin{array}{c c} oldsymbol{R} oldsymbol{t} oldsymbol{1}_{2 imes 3} \end{array}$		_	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2 \times 3}$		_	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$		_	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$			

These transformations are a nested set of groups

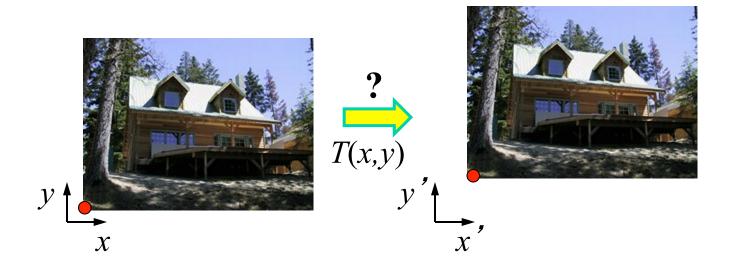
Closed under composition and inverse is a member

Recovering Transformations



- What if we know f and g and want to recover the transform T?
 - Using correspondences
 - How many do we need?

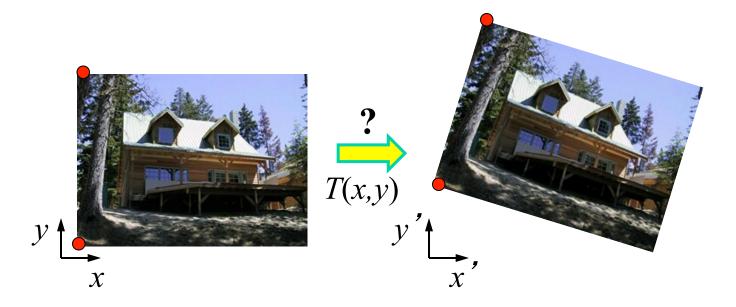
Translation: # correspondences?



- How many correspondences needed for translation?
- How many Degrees of Freedom?
- What is the transformation matrix?

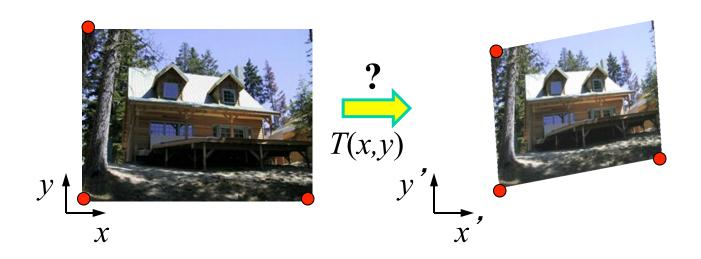
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & p'_x - p_x \\ 0 & 1 & p'_y - p_y \\ 0 & 0 & 1 \end{bmatrix}$$

Euclidian: # correspondences?



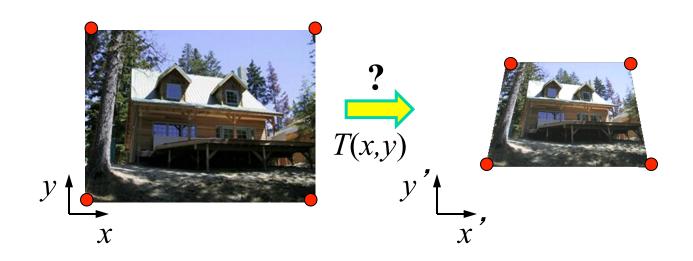
- How many correspondences needed for translation+rotation?
- How many DOF?

Affine: # correspondences?



- How many correspondences needed for affine?
- How many DOF?

Projective: # correspondences?



- How many correspondences needed for projective?
- How many DOF?