Example: warping triangles

- Given two triangles: ABC and A' B' C' in 2D (12 numbers)
- Need to find transform T to transfer all pixels from one to the other.
- What kind of transformation is T?
- How can we compute the transformation matrix:

$$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

warping triangles (Barycentric Coordinaes)

Don't forget to move the origin too!

•Very useful in Graphics...

Warp by triangulation

Image morphing

- The goal is to synthesize a fluid transformation from one image to another.
- Cross dissolving is a common transition between cuts, but it is not good for morphing because of the ghosting effects.

image #1

dissolving

image #2

Image morphing

- Why ghosting?
- Morphing = warping + cross-dissolving

shape color (geometric) (photometric)

Image morphing

Morphing sequence

Google Picasa Face Movie

http://www.youtube.com/watch?
 v=fLQtssJDMMc

Image warping

Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Forward warping

Send each pixel f(x,y) to its corresponding location

(x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Forward warping

- Send each pixel f(x,y) to its corresponding location
 (x',y') = T(x,y) in the second image
 - Q: what if pixel lands "between" two pixels?
 - A: distribute color among neighboring pixels (x',y') – Known as "splatting"

Inverse warping

- Get each pixel g(x',y') from its corresponding location
- $(x,y) = T^{-1}(x',y')$ in the first image Q: what if pixel comes from "between" two pixels?

Inverse warping

- Get each pixel g(x',y') from its corresponding location
- $(x,y) = T^{-1}(x',y')$ in the first image
- Q: what if pixel comes from "between" two pixels?
- A: Interpolate color value from neighbors
 - nearest neighbor, bilinear, Gaussian, bicubic

Last 4 lectures

Camera Structure

HDR

Image Filtering

Image Transform

Next

Camera Projection

Camera Calibration

Pinhole camera

illum in tabula per radios Solis, quâm in cœlo contingit: hoc eft,fi in cœlo fuperior pars deliquiũ patiatur,in radiis apparebit inferior deficere,vt ratio exigit optica.

Sic nos exacté Anno . 1544 . Louanii eclipium Solis observauimus, inuenimusq; deficere paulò plus g dex-

- The coordinate system
 - We will use the pin-hole model as an approximation
 - Put the optical center (Center Of Projection) at the origin
 - Put the image plane (Projection Plane) in front of the COP (Why?)

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \sim \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Intrinsic matrix

Is this form of K good enough?

$$\mathbf{K} = \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix}$$

• non-square pixels (digital video)

$$\mathbf{K} = \begin{bmatrix} f_x & 0 & x_c \\ 0 & f_y & y_c \\ 0 & 0 & 1 \end{bmatrix}$$

Intrinsic matrix

Is this form of K good enough?

$$\mathbf{K} = \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix}$$

- non-square pixels (digital video)
- skew

$$\mathbf{K} = \begin{bmatrix} f_{x} & s & x_{c} \\ 0 & f_{y} & y_{c} \\ 0 & 0 & 1 \end{bmatrix}$$

Is this form of K good enough?

$$\mathbf{K} = \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix}$$

- non-square pixels (digital video)
- skew
- radial distortion

$$\mathbf{K} = \begin{bmatrix} f_{x} & s & x_{c} \\ 0 & f_{y} & y_{c} \\ 0 & 0 & 1 \end{bmatrix}$$

Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Barrel Distortion

No distortion

Wide Angle Lens

Barrel

Pin Cushion Distortion

No distortion

Telephoto lens

Pin cushion

Modeling distortion

Distortion-Free:

 $x = \frac{fX}{Z}$ $y = \frac{fY}{Z}$

With Distortion:

1. Project (X, Y, Z) to "normalized" image coordinates

2. Apply radial distortion

3. Apply focal length translate image center

$$x_n = \frac{X}{Z}$$
$$y_n = \frac{Y}{Z}$$

$$r^{2} = x_{n}^{2} + y_{n}^{2}$$

$$x_{d} = x_{n} (1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$$

$$y_{d} = y_{n} (1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$$

 $x = fx_d + x_c$ $y = fy_d + y_c$

- To model lens distortion
 - Use above projection operation instead of standard projection matrix multiplication

Camera rotation and translation

- *internal* or *intrinsic* parameters: focal length, optical center, skew
- external or extrinsic (pose): rotation and translation:

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \sim \begin{bmatrix} f & 0 & x_c \\ 0 & f & y_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} | \mathbf{t} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Other projection models

Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

– Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$

Other types of projections

- Scaled orthographic
 - Also called "weak perspective"

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1/d \end{bmatrix} \Rightarrow (dx, dy)$$

- Affine projection
 - Also called "paraperspective"

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Fun with perspective

Perspective cues

Perspective cues

Fun with perspective

Forced perspective in LOTR

Elijah Wood: 5' 6" (1.68 m)

Ian McKellen 5' 11" (1.80 m)