
Today 

Projective Geometry 
Single View Modeling 

Vermeer’s Music Lesson Reconstructions by Criminisi et al. 



Enough of images! 
 
We want more 

from the image 
 
We want real 3D 

scene 
walk-throughs: 

Camera rotation 
Camera 

translation 
 
 

on to 3D… 



So, what can we do here? 

•  Model the scene 
as a set of 
planes! 



Another example 

•  http://mit.edu/jxiao/museum/ 



(0,0,0) 

The projective plane 
•  Why do we need homogeneous coordinates? 

–  represent points at infinity, homographies, 
perspective projection, multi-view relationships 

•  What is the geometric intuition? 
–  a point in the image is a ray in projective space 

(sx,sy,s) 

•  Each point (x,y) on the plane is represented by a ray (sx,sy,s) 
–  all points on the ray are equivalent:  (x, y, 1) ≅ (sx, sy, s) 

image plane 

(x,y,1) 
y 

x z 



Projective lines 
•  What does a line in the image correspond to in 

projective space? 

•  A line is a plane of rays through origin 
–  all rays (x,y,z) satisfying:  ax + by + cz = 0 
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•  A line is also represented as a homogeneous 3-vector l 
l p 



l 

Point and line duality 
– A line l is a homogeneous 3-vector 
–  It is ⊥ to every point (ray) p on the line:  l p=0 

p1 
p2 

What is the intersection of two lines l1 and l2 ? 
•  p is ⊥ to l1 and l2   ⇒   p = l1 × l2 

Points and lines are dual in projective space 
•  can switch the meanings of points and lines to get another 

formula 

l1 

l2 

p 

What is the line l spanned by rays p1 and p2 ? 
•  l is ⊥ to p1 and p2   ⇒   l = p1 × p2  
•  l is the plane normal 



Ideal points and lines 

•  Ideal point (“point at infinity”) 
–  p ≅ (x, y, 0) – parallel to image plane 
–  It has infinite image coordinates 

(sx,sy,0) y 

x 
z image plane 

Ideal line 
•  l ≅ (a, b, 0) – parallel to image plane 

(a,b,0) 
y 

x 
z image plane 

•  Corresponds to a line in the image (finite coordinates) 



Homographies of points and lines 
•  Computed by 3x3 matrix multiplication 

– To transform a point:  p’ = Hp 
– To transform a line:  lp=0 → l’p’=0  

–  0 = lp = lH-1Hp = lH-1p’ ⇒  l’ = lH-1   
–  lines are transformed by postmultiplication of H-1 



3D projective geometry 
•  These concepts generalize naturally to 

3D 
– Homogeneous coordinates 

•  Projective 3D points have four coords:  P = 
(X,Y,Z,W) 

– Duality 
•  A plane N is also represented by a 4-vector 
•  Points and planes are dual in 4D: N P=0 

– Projective transformations 
•  Represented by 4x4 matrices T:  P’ = TP,    N’ 

= N T-1 



3D to 2D:  “perspective” projection 

•  Matrix Projection: ΠPp =
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What is not preserved under perspective projection? 

 

What IS preserved? 



Vanishing points 

•  Vanishing point 
– projection of a point at infinity 

image plane 

camera 
center 

ground plane 

vanishing point 



Vanishing points (2D) 

image plane 

camera 
center 

line on ground plane 

vanishing point 



Vanishing points 

•  Properties 
–  Any two parallel lines have the same vanishing point v 
–  The ray from C through v is parallel to the lines 
–  An image may have more than one vanishing point 

•  in fact every pixel is a potential vanishing point 

image plane 

camera 
center 

C 

line on ground plane 

vanishing point V 

line on ground plane 



Vanishing lines 

•  Multiple Vanishing Points 
–  Any set of parallel lines on the plane define a vanishing point 
–  The union of all of these vanishing points is the horizon line 

•  also called vanishing line 
–  Note that different planes define different vanishing lines 

v1 v2 



Vanishing lines 

•  Multiple Vanishing Points 
–  Any set of parallel lines on the plane define a vanishing point 
–  The union of all of these vanishing points is the horizon line 

•  also called vanishing line 
–  Note that different planes define different vanishing lines 



Computing vanishing points 

•  Properties 
–  P∞ is a point at infinity, v is its projection 
–  They depend only on line direction 
–  Parallel lines P0 + tD, P1 + tD intersect at P∞ 

V 

DPP t+= 0
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Computing vanishing lines 

•  Properties 
–  l is intersection of horizontal plane through C with image plane 
–  Compute l from two sets of parallel lines on ground plane 
–  All points at same height as C project to l 

•  points higher than C project above l 
–  Provides way of comparing height of objects in the scene 

ground plane 

l C 





Fun with vanishing points 



Perspective cues 



Perspective cues 



Perspective cues 



Comparing heights 

Vanishing 
Point 



Measuring height 

1 

2 

3 

4 

5 
5.4 

2.8 
3.3 

Camera height 



q1 

Computing vanishing points (from lines) 

•  Intersect p1q1 with p2q2  

v 

p1 

p2 

q2 

Least squares version 
•  Better to use more than two lines and compute the “closest” point of 

intersection 
•  See notes by Bob Collins for one good way of doing this: 

–  http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt 
 



C 

Measuring height without a ruler 

ground plane 

Compute Z from image measurements 
•  Need more than vanishing points to do this 

Z 



The cross ratio 
•  A Projective Invariant 

–  Something that does not change under projective transformations 
(including perspective projection) 

P1 
P2 

P3 
P4 
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The cross-ratio of 4 collinear points 
 

Can permute the point ordering 
•  4! = 24 different orders (but only 6 distinct values) 

This is the fundamental invariant of projective geometry 
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vZ 
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b 

tvbr
rvbt
−−

−−

Z

Z

image cross ratio 

Measuring height 

B  (bottom of object) 

T  (top of object) 

R  (reference point) 

ground plane 

H C 

TBR
RBT
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scene cross ratio 
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Measuring height 

R H 

vz 

r 

b 

t 

R
H

Z

Z =
−−

−−

tvbr
rvbt

image cross ratio 

H 

b0 

t0 
v vx vy 

vanishing line (horizon) 



Measuring height vz 

r 

b 

t0 
vx vy 

vanishing line (horizon) 

v 

t0 

m0 

What if the point on the ground plane b0 is not known? 
•  Here the guy is standing on the box, height of box is known 
•  Use one side of the box to help find b0 as shown above 

b0 

t1 

b1 



Computing (X,Y,Z) coordinates 

•  Okay, we know how to compute height (Z 
coords) 
– how can we compute X, Y? 



Camera calibration 
•  Goal:  estimate the camera parameters 

– Version 1:  solve for projection matrix 

ΠXx =
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•  Version 2:  solve for camera parameters separately 
–  intrinsics (focal length, principle point, pixel size) 
–  extrinsics (rotation angles, translation) 
–  radial distortion 



Vanishing points and projection matrix 
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Π [ ]4321 ππππ=

1π 2π 3π 4π

[ ]T00011 Ππ = = vx (X vanishing point) 

Z 3 Y 2    ,    similarly, v π v π = = 

[ ] origin  worldof projection10004 == TΠπ

[ ]ovvvΠ ZYX=
Not So Fast!  We only know v’s up to a scale factor 

[ ]ovvvΠ ZYX cba=
•  Can fully specify by providing 3 reference points 


