
Today

Projective Geometry
Single View Modeling

Vermeer’s Music Lesson Reconstructions by Criminisi et al.

Enough of images!

We want more

from the image

We want real 3D

scene
walk-throughs:

Camera rotation
Camera

translation

on to 3D…

So, what can we do here?

•  Model the scene
as a set of
planes!

Another example

•  http://mit.edu/jxiao/museum/

(0,0,0)

The projective plane
•  Why do we need homogeneous coordinates?

–  represent points at infinity, homographies,
perspective projection, multi-view relationships

•  What is the geometric intuition?
–  a point in the image is a ray in projective space

(sx,sy,s)

•  Each point (x,y) on the plane is represented by a ray (sx,sy,s)
–  all points on the ray are equivalent: (x, y, 1) ≅ (sx, sy, s)

image plane

(x,y,1)
y

x z

Projective lines
•  What does a line in the image correspond to in

projective space?

•  A line is a plane of rays through origin
–  all rays (x,y,z) satisfying: ax + by + cz = 0

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

z
y
x

cba0 :notationvectorin

•  A line is also represented as a homogeneous 3-vector l
l p

l

Point and line duality
– A line l is a homogeneous 3-vector
–  It is ⊥ to every point (ray) p on the line: l p=0

p1
p2

What is the intersection of two lines l1 and l2 ?
•  p is ⊥ to l1 and l2 ⇒ p = l1 × l2

Points and lines are dual in projective space
•  can switch the meanings of points and lines to get another

formula

l1

l2

p

What is the line l spanned by rays p1 and p2 ?
•  l is ⊥ to p1 and p2 ⇒ l = p1 × p2
•  l is the plane normal

Ideal points and lines

•  Ideal point (“point at infinity”)
–  p ≅ (x, y, 0) – parallel to image plane
–  It has infinite image coordinates

(sx,sy,0) y

x
z image plane

Ideal line
•  l ≅ (a, b, 0) – parallel to image plane

(a,b,0)
y

x
z image plane

•  Corresponds to a line in the image (finite coordinates)

Homographies of points and lines
•  Computed by 3x3 matrix multiplication

– To transform a point: p’ = Hp
– To transform a line: lp=0 → l’p’=0

–  0 = lp = lH-1Hp = lH-1p’ ⇒ l’ = lH-1
–  lines are transformed by postmultiplication of H-1

3D projective geometry
•  These concepts generalize naturally to

3D
– Homogeneous coordinates

•  Projective 3D points have four coords: P =
(X,Y,Z,W)

– Duality
•  A plane N is also represented by a 4-vector
•  Points and planes are dual in 4D: N P=0

– Projective transformations
•  Represented by 4x4 matrices T: P’ = TP, N’

= N T-1

3D to 2D: “perspective” projection

•  Matrix Projection: ΠPp =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

1****

Z
Y
X

w
wy
wx

What is not preserved under perspective projection?

What IS preserved?

Vanishing points

•  Vanishing point
– projection of a point at infinity

image plane

camera
center

ground plane

vanishing point

Vanishing points (2D)

image plane

camera
center

line on ground plane

vanishing point

Vanishing points

•  Properties
–  Any two parallel lines have the same vanishing point v
–  The ray from C through v is parallel to the lines
–  An image may have more than one vanishing point

•  in fact every pixel is a potential vanishing point

image plane

camera
center

C

line on ground plane

vanishing point V

line on ground plane

Vanishing lines

•  Multiple Vanishing Points
–  Any set of parallel lines on the plane define a vanishing point
–  The union of all of these vanishing points is the horizon line

•  also called vanishing line
–  Note that different planes define different vanishing lines

v1 v2

Vanishing lines

•  Multiple Vanishing Points
–  Any set of parallel lines on the plane define a vanishing point
–  The union of all of these vanishing points is the horizon line

•  also called vanishing line
–  Note that different planes define different vanishing lines

Computing vanishing points

•  Properties
–  P∞ is a point at infinity, v is its projection
–  They depend only on line direction
–  Parallel lines P0 + tD, P1 + tD intersect at P∞

V

DPP t+= 0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≅∞→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

≅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

= ∞

0/1
/
/
/

1
Z

Y

X

ZZ

YY

XX

ZZ

YY

XX

t D
D
D

t

t
DtP
DtP
DtP

tDP
tDP
tDP

PP

∞=ΠPv

P0

D

Computing vanishing lines

•  Properties
–  l is intersection of horizontal plane through C with image plane
–  Compute l from two sets of parallel lines on ground plane
–  All points at same height as C project to l

•  points higher than C project above l
–  Provides way of comparing height of objects in the scene

ground plane

l C

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Vanishing
Point

Measuring height

1

2

3

4

5
5.4

2.8
3.3

Camera height

q1

Computing vanishing points (from lines)

•  Intersect p1q1 with p2q2

v

p1

p2

q2

Least squares version
•  Better to use more than two lines and compute the “closest” point of

intersection
•  See notes by Bob Collins for one good way of doing this:

–  http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

C

Measuring height without a ruler

ground plane

Compute Z from image measurements
•  Need more than vanishing points to do this

Z

The cross ratio
•  A Projective Invariant

–  Something that does not change under projective transformations
(including perspective projection)

P1
P2

P3
P4

1423

2413

PPPP
PPPP

−−

−−

The cross-ratio of 4 collinear points

Can permute the point ordering
•  4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
i

i

i

i Z
Y
X

P

3421

2431

PPPP
PPPP

−−

−−

vZ

 r
t

b

tvbr
rvbt
−−

−−

Z

Z

image cross ratio

Measuring height

B (bottom of object)

T (top of object)

R (reference point)

ground plane

H C

TBR
RBT

−∞−

−∞−

scene cross ratio

∞

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
Z
Y
X

P
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

1
y
x

pscene points represented as image points as

R
H

=

R
H

=

R

Measuring height

R H

vz

r

b

t

R
H

Z

Z =
−−

−−

tvbr
rvbt

image cross ratio

H

b0

t0
v vx vy

vanishing line (horizon)

Measuring height vz

r

b

t0
vx vy

vanishing line (horizon)

v

t0

m0

What if the point on the ground plane b0 is not known?
•  Here the guy is standing on the box, height of box is known
•  Use one side of the box to help find b0 as shown above

b0

t1

b1

Computing (X,Y,Z) coordinates

•  Okay, we know how to compute height (Z
coords)
– how can we compute X, Y?

Camera calibration
•  Goal: estimate the camera parameters

– Version 1: solve for projection matrix

ΠXx =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

1****

Z
Y
X

w
wy
wx

•  Version 2: solve for camera parameters separately
–  intrinsics (focal length, principle point, pixel size)
–  extrinsics (rotation angles, translation)
–  radial distortion

Vanishing points and projection matrix

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

Π []4321 ππππ=

1π 2π 3π 4π

[]T00011 Ππ = = vx (X vanishing point)

Z 3 Y 2 , similarly, v π v π = =

[] origin worldof projection10004 == TΠπ

[]ovvvΠ ZYX=
Not So Fast! We only know v’s up to a scale factor

[]ovvvΠ ZYX cba=
•  Can fully specify by providing 3 reference points

