Today

Projective Geometry Single View Modeling

Vermeer's Music Lesson

Reconstructions by Criminisi et al.

on to 3D...

Enough of images!

We want more from the image

We want real 3D scene walk-throughs: Camera rotation Camera translation

So, what can we do here?

 Model the scene as a set of planes!

Another example

http://mit.edu/jxiao/museum/

The projective plane

- Why do we need homogeneous coordinates?
 - represent points at infinity, homographies, perspective projection, multi-view relationships
- What is the geometric intuition?

- a point in the image is a *ray* in projective space

- Each point (x,y) on the plane is represented by a ray (sx,sy,s)
 - all points on the ray are equivalent: $(x, y, 1) \approx (sx, sy, s)$

Projective lines

What does a line in the image correspond to in projective space?

- A line is a *plane* of rays through origin
 - all rays (x,y,z) satisfying: ax + by + cz = 0

in vector notation :
$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

• A line is also represented as a homogeneous 3-vector I

Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) **p** on the line: **I p**=0

What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I is the plane normal

What is the intersection of two lines I_1 and I_2 ?

• **p** is \perp to $\mathbf{I_1}$ and $\mathbf{I_2} \implies \mathbf{p} = \mathbf{I_1} \times \mathbf{I_2}$

Points and lines are *dual* in projective space

can switch the meanings of points and lines to get another formula

Ideal points and lines

- Ideal point ("point at infinity")
 - $-p \cong (x, y, 0) parallel to image plane$
 - It has infinite image coordinates

Ideal line

- $I \cong (a, b, 0)$ parallel to image plane
- Corresponds to a line in the image (finite coordinates)

Homographies of points and lines

- Computed by 3x3 matrix multiplication
 To transform a point: p' = Hp
 - To transform a line: $lp=0 \rightarrow l'p'=0$
 - $0 = Ip = IH^{-1}Hp = IH^{-1}p' \Rightarrow I' = IH^{-1}$

lines are transformed by postmultiplication of H⁻¹

3D projective geometry

- These concepts generalize naturally to 3D
 - Homogeneous coordinates
 - Projective 3D points have four coords: P = (X,Y,Z,W)
 - Duality
 - A plane **N** is also represented by a 4-vector
 - Points and planes are dual in 4D: N P=0
 - Projective transformations
 - Represented by 4x4 matrices T: P' = TP, N' = N T⁻¹

3D to 2D: "perspective" projection

What is *not* preserved under perspective projection?

What IS preserved?

Vanishing points

- Vanishing point
 - projection of a point at infinity

Vanishing points (2D)

Vanishing points

- Properties
 - Any two parallel lines have the same vanishing point \boldsymbol{v}
 - The ray from C through v is parallel to the lines
 - An image may have more than one vanishing point
 - in fact every pixel is a potential vanishing point

Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the *horizon line*
 - also called vanishing line
 - Note that different planes define different vanishing lines

Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the horizon line
 - also called vanishing line
 - Note that different planes define different vanishing lines

Computing vanishing points

- Properties $v = \Pi P_{\infty}$
 - \mathbf{P}_{∞} is a point at *infinity*, **v** is its projection
 - They depend only on line *direction*
 - Parallel lines \mathbf{P}_0 + t \mathbf{D} , \mathbf{P}_1 + t \mathbf{D} intersect at \mathbf{P}_{∞}

Computing vanishing lines

- Properties
 - I is intersection of horizontal plane through C with image plane
 - Compute I from two sets of parallel lines on ground plane
 - All points at same height as C project to I
 - points higher than C project above I
 - Provides way of comparing height of objects in the scene

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Computing vanishing points (from lines)

- Intersect p_1q_1 with p_2q_2 $v = (p_1 \times q_1) \times (p_2 \times q_2)$
- Least squares version
 - Better to use more than two lines and compute the "closest" point of intersection
 - See notes by <u>Bob Collins</u> for one good way of doing this:
 - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Compute Z from image measurements

• Need more than vanishing points to do this

The cross ratio

- A Projective Invariant
 - Something that does not change under projective transformations (including perspective projection)
- The cross-ratio of 4 collinear points

Can permute the point ordering

 $\frac{\|\mathbf{P}_1 - \mathbf{P}_3\| \|\mathbf{P}_4 - \mathbf{P}_2\|}{\|\mathbf{P}_1 - \mathbf{P}_2\| \|\mathbf{P}_4 - \mathbf{P}_3\|}$

4! = 24 different orders (but only 6 distinct values)
 This is the fundamental invariant of projective geometry

What if the point on the ground plane \mathbf{b}_0 is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find \mathbf{b}_0 as shown above

Computing (X,Y,Z) coordinates

- Okay, we know how to compute height (Z coords)
 - how can we compute X, Y?

Camera calibration

- Goal: estimate the camera parameters
 - Version 1: solve for projection matrix

- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principle point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Vanishing points and projection matrix

•
$$\boldsymbol{\pi}_1 = \boldsymbol{\Pi} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T = \mathbf{v}_x (X \text{ vanishing point})$$

• similarly,
$$\boldsymbol{\pi}_2 = \boldsymbol{v}_Y, \ \boldsymbol{\pi}_3 = \boldsymbol{v}_Z$$

•
$$\boldsymbol{\pi}_4 = \boldsymbol{\Pi} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$
 = projection of world origin

$$\mathbf{\Pi} = \begin{bmatrix} \mathbf{v}_X & \mathbf{v}_Y & \mathbf{v}_Z & \mathbf{0} \end{bmatrix}$$

Not So Fast! We only know v's up to a scale factor

$$\mathbf{\Pi} = \begin{bmatrix} a \mathbf{v}_X & b \mathbf{v}_Y & c \mathbf{v}_Z & \mathbf{0} \end{bmatrix}$$

• Can fully specify by providing 3 reference points