In summary

- C1={skin}
- C2={~skin}
- Given x=[R,G,B], is it skin or ~skin?
- Approach 1: nearest neighbors
 - How about high dimensional point x, e.g., a face image?
- Approach 2: compute p(C1|x) and p(C2|x)
 - P(C1|x) = P(x|C1)P(C1)/p(x)
 - P(C2|x) = P(x|C2)P(C2)/p(x)
 - How to compute P(x|C1) and P(x|C2)?
 - » Histogram
 - » How about high dimensional point x, e.g., a face image?

Modeling P(x|C) for high dimensional x

- Assuming P(x|C) is Gaussian
- 1-dimensional; $p(x|C) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$
 - how to estimate mean and variance?
- D-dimensional;

$$p(x \mid C) = (2\pi)^{-\frac{D}{2}} \mid \Sigma \mid^{-\frac{1}{2}} \exp(-\frac{1}{2}(x - \mu)^{\mathrm{T}} \Sigma^{-1}(x - \mu))$$

- how to estimate mean and co-variance?
- What's wrong with testing p(x|C) given the estimated mean and covariance?
 - Degeneracy
 - Efficiency

Linear subspaces

convert **x** into v_1 , v_2 coordinates

$$\mathbf{x} \rightarrow ((\mathbf{x} - \overline{x}) \cdot \mathbf{v}_1, (\mathbf{x} - \overline{x}) \cdot \mathbf{v}_2)$$

What does the v_2 coordinate measure?

- distance to line
- use it for classification—near 0 for orange pts

What does the v_1 coordinate measure?

- position along line
- use it to specify which orange point it is

- Classification can be expensive
 - Must either search (e.g., nearest neighbors) or estimate high-dim PDF's
- Suppose the data points are arranged as above
 - Idea—fit a line, classifier measures distance to line

Dimensionality reduction

Dimensionality reduction

- We can represent the orange points with only their v₁ coordinates
 since v₂ coordinates are all essentially 0
- This makes it much cheaper to store and compare points
- A bigger deal for higher dimensional problems

Principal component analysis

- Suppose each data point is N-dimensional
 - Same procedure applies:

$$var(\mathbf{v}) = \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|$$

= $\mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v}$ where $\mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}}$

- The eigenvectors of **A** define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors ${\boldsymbol x}$
 - eigenvector with smallest eigenvalue has least variation
- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - » represent points on a line, plane, or "hyper-plane"
 - these eigenvectors are known as the *principal components*

The space of faces

- An image is a point in a high dimensional space
 - An N x M image is a point in R^{NM}
 - We can define vectors in this space as we did in the 2D case

Dimensionality reduction

- The set of faces is a "subspace" of the set of images
 - Suppose it is K dimensional
 - We can find the best subspace using PCA
 - This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_K$
 - any face $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k$

Eigenfaces

- PCA extracts the eigenvectors of A
 - Gives a set of vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , ...
 - Each one of these vectors is a direction in face space
 - what do these look like?

Projecting onto the eigenfaces

- The eigenfaces $v_1, ..., v_K$ span the space of faces
 - A face is converted to eigenface coordinates by

$$\mathbf{x} \to (\underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_1}_{a_1}, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_2}_{a_2}, \dots, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_K}_{a_K})$$

 $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K$

Recognition with eigenfaces

- Algorithm
 - 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - Calculate the K coefficients for each image
 - 2. Given a new image (to be recognized) x, calculate K coefficients

$$\mathbf{x} \rightarrow (a_1, a_2, \dots, a_K)$$

3. Detect if x is a face

$$\|\mathbf{x} - (\mathbf{\overline{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \mathsf{threshold}$$

- 4. If it is a face, who is it?
 - Find closest labeled face in database
 - nearest-neighbor in K-dimensional space

Choosing the dimension K

- How many eigenfaces to use?
- Look at the decay of the eigenvalues
 - the eigenvalue tells you the amount of variance "in the direction" of that eigenface
 - ignore eigenfaces with low variance

Issues: dimensionality reduction

- What if your space isn' t *flat*?
 - PCA may not help

Nonlinear methods LLE, MDS, etc.

Issues: data modeling

- Generative methods
 - model the "shape" of each class
 - -histograms, PCA,
 - mixtures of Gaussians
- Discriminative methods
 - model boundaries between classes
 - perceptrons, neural networks
 - support vector machines (SVM's)

Generative vs. Discriminative

from Chris Bishop

Issues: speed

- Case study: Viola Jones face detector
- Exploits three key strategies:
 - simple, super-efficient features
 - image pyramids
 - pruning (cascaded classifiers)

Viola/Jones: features

"Rectangle filters"

Differences between sums of pixels in adjacent rectangles

$$y_t(x) = \begin{cases} +1 & \text{if } h_t(x) > \theta_t \\ -1 & \text{otherwise} \end{cases}$$

60,000×100 = 6,000,000 Unique Features

 $Y(x) = \sum \alpha_t y_t(x)$ Select 200 by Adaboost

Detection =
$$\begin{cases} face, & \text{if } Y(x) > 0\\ \text{non-face, otherwise} \end{cases}$$

Robust Realtime Face Dection, IJCV 2004, Viola and Jonce

Integral Image (aka. summed area table)

• Define the Integral Image

$$I'(x, y) = \sum_{\substack{x' \le x \\ y' \le y}} I(x', y')$$

• Any rectangular sum can be computed in constant time:

$$D = 1 + 4 - (2 + 3)$$

= A + (A + B + C + D) - (A + C + A + B)
= D

• Rectangle features can be computed as differences between rectangles

Feature selection (AdaBoost)

Given training data $\{x_n, t_n = +1/-1\}$, find $\{\alpha_t\}$ for $\{y_t(x)\}$ by Minimizing total error function: $E(Y = \sum_{i=1}^{M} \alpha_t y_t(x)) = \sum_{i=1}^{N} error(t_n Y(x_n))$

Ideal function $\operatorname{error}(z) = z > 0?0:1$, hard to optimize. Instead use $\operatorname{error}(z) = \exp(-z)$ to make the optimization convex.

Define
$$f_m(x) = \frac{1}{2} \sum_{l=1}^m \alpha_l y_l(x)$$

Basic idea: first find $f_1(x)$ by minimizing $E(f_1)$ Then given $f_{m-1}(x)$, find $f_m(x)$ by searching for best α_m and $y_m(x)$