In summary

« C1={skin}
« (C2={~skin}
« Given x=[R,G,B], is it skin or ~skin?
« Approach 1: nearest neighbors

« How about high dimensional point x, e.g., a face image?
« Approach 2: compute p(C1|x) and p(C2|x)

« P(C1|x) = P(x|C1)P(C1)/p(x)

« P(C2|x) = P(x|C2)P(C2)/p(x)

— How to compute P(x|C1) and P(x|C2)?

» Histogram
» How about high dimensional point x, e.g., a face image?



Modeling P(x|C) for high dimensional x

* Assuming P(x|C) is Gaussian

e« 1-dimensional: 1 1 >
’ 1C) = - -
p(x1C) %GeXp( Py (x—u)")

 how to estimate mean and variance?
D-dimensional;

D 1

p(x1C)=2m) 2 1512 exp(—%(x )TE (- )

 how to estimate mean and co-variance?

What's wrong with testing p(x|C) given the estimated
mean and covariance?

 Degeneracy

» Efficiency



Linear subspaces

Z is the mean
of the orange
points

» Classification can be expensive

v

convert x into v,, v, coordinates
X = ((x=7) vy, (x=7T) - v3)

What does the v, coordinate measure?
- distance to line
- use it for classification—near 0O for orange pts

What does the v, coordinate measure?
- position along line
- use it to specify which orange point it is

« Must either search (e.g., nearest neighbors) or estimate high-dim PDF’ s
Suppose the data points are arranged as above

|[dea—fit a line, classifier measures distance to line



Dimensionality reduction
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Dimensionality reduction

* We can represent the orange points with only their v, coordinates
— since v, coordinates are all essentially O

* This makes it much cheaper to store and compare points
» Abigger deal for higher dimensional problems



Principal component analysis

* Suppose each data point is N-dimensional
« Same procedure applies:

var(v) = > |l(x - ) v
= vIAv where A=Y x-®)(x-%)T

* The eigenvectors of A define a new coordinate system

— eigenvector with largest eigenvalue captures the most variation among
training vectors x

— eigenvector with smallest eigenvalue has least variation
« We can compress the data by only using the top few eigenvectors

— corresponds to choosing a “linear subspace”
» represent points on a line, plane, or “hyper-plane”

— these eigenvectors are known as the principal components



The space of faces

 Animage is a point in a high dimensional space
« An N x M image is a point in RN\M
* We can define vectors in this space as we did in the 2D case



Dimensionality reduction

>

« The set of faces is a “subspace” of the set of images
« Suppose it is K dimensional
« We can find the best subspace using PCA

« This is like fitting a “hyper-plane” to the set of faces
— spanned by vectors vy, V, ..., Vg

—anyface x & X+ a1vy +aovy + ... + apvy



Eigenfaces

« PCA extracts the eigenvectors of A
» Gives a set of vectors v,, v,, vj, ...
» Each one of these vectors is a direction in face space

—what do these look like?




Projecting onto the eigenfaces

« The eigenfaces v, ..., vk span the space of faces
» A face is converted to eigenface coordinates by

X-?((X—f)°V1, (X_i)'VZw"a (X_i)°VK)

J A\ J

ay az aK

XXX+ ai1vy +ao>ve + ... +agvk \




Recognition with eigenfaces

« Algorithm

1. Process the image database (set of images with labels)
 Run PCA—compute eigenfaces
« Calculate the K coefficients for each image

2. Given a new image (to be recognized) x, calculate K coefficients
X — (CL]_,CIQ,...,CLK)
3. Detectif x is a face

|x — (X+ a1vy +aove + ...+ agvk)||l < threshold

4. Ifitis aface, who is it?

* Find closest labeled face in database
nearest-neighbor in K-dimensional space



Choosing the dimension K

eigenvalues \;

-

i= K NM

« How many eigenfaces to use?

« Look at the decay of the eigenvalues

« the eigenvalue tells you the amount of variance “in the
direction” of that eigenface

* ignore eigenfaces with low variance



Issues: dimensionality reduction

« What if your space isn’ t flat?
« PCA may not help

Nonlinear methods
LLE, MDS, etc.



Issues: data modeling

« (Generative methods
« model the “shape” of each class

— histograms, PCA,
— mixtures of Gaussians

 Discriminative methods
* model boundaries between classes

— perceptrons, neural networks
— support vector machines (SVM’ s)



Generative vs. Discriminative
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Issues: speed

« Case study: Viola Jones face detector

* Exploits three key strategies:
» simple, super-efficient features
e Image pyramids
e pruning (cascaded classifiers)



Viola/Jones: features

“Rectanagle filters”
9 p— i

Differences between

sums of pixels in — 1
adjacent rectangles !W g 5@ g

(x) = +1 ifh(x) > 6, 60,000x100 = 6,000,000
Y -1 otherwise Unique Features
Y (x)=) oy (x) Select 200 by Adaboost

face, 1f Y(x)>0

Detection = .
non-face, otherwise

Robust Realtime Face Dection, IJCV 2004, Viola and Jonce






Feature selection (AdaBoost)

Given training data {x ,t =+1/-1}, find {o,} for {y(x)} by
Minimizing total error function:

EY = Eatyt(x)) = Eerror(tnY (x,))

n=1

Ideal function error(z) = z>07?0:1, hard to optimize.
Instead use error(z)=exp(-z) to make the optimization convex.

Define f,(x)= %gam(ﬂ

Basic 1dea:
first find f;(x) by minimizing E(f,)
Then given f__,(x), find f_(X) by searching for best o, and y,_(X)



