
In summary 
•  C1={skin} 
•  C2={~skin} 
•  Given x=[R,G,B], is it skin or ~skin? 
•  Approach 1: nearest neighbors 

•  How about high dimensional point x, e.g., a face image? 

•  Approach 2: compute p(C1|x) and p(C2|x) 
•  P(C1|x) = P(x|C1)P(C1)/p(x) 
•  P(C2|x) = P(x|C2)P(C2)/p(x) 

– How to compute P(x|C1) and P(x|C2)?  
»  Histogram 
»  How about high dimensional point x, e.g., a face image? 



Modeling P(x|C) for high dimensional x 
•  Assuming P(x|C) is Gaussian 
•  1-dimensional;  

•  how to estimate mean and variance? 
•  D-dimensional;  

•  how to estimate mean and co-variance? 

•  What’s wrong with testing p(x|C) given the estimated 
mean and covariance? 
•  Degeneracy 
•  Efficiency 
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Linear subspaces 

•  Classification can be expensive 
•  Must either search (e.g., nearest neighbors) or estimate high-dim PDF’s 

Suppose the data points are arranged as above 
•  Idea—fit a line, classifier measures distance to line 

convert x into v1, v2 coordinates 

What does the v2 coordinate measure? 

What does the v1 coordinate measure? 

-  distance to line 
-  use it for classification—near 0 for orange pts 

-  position along line 
-  use it to specify which orange point it is 



Dimensionality reduction 

How to find v1 and v2 ? 
- PCA 

Dimensionality reduction 
•  We can represent the orange points with only their v1 coordinates 

–  since v2 coordinates are all essentially 0 
•  This makes it much cheaper to store and compare points 
•  A bigger deal for higher dimensional problems 



Principal component analysis 
•  Suppose each data point is N-dimensional 

•  Same procedure applies: 

•  The eigenvectors of A define a new coordinate system 
–  eigenvector with largest eigenvalue captures the most variation among 

training vectors x 
–  eigenvector with smallest eigenvalue has least variation 

•  We can compress the data by only using the top few eigenvectors 
–  corresponds to choosing a “linear subspace” 

»  represent points on a line, plane, or “hyper-plane” 

–  these eigenvectors are known as the principal components 



The space of faces 

•  An image is a point in a high dimensional space 
•  An N x M image is a point in RNM 

•  We can define vectors in this space as we did in the 2D case 

+ = 



Dimensionality reduction 

•  The set of faces is a “subspace” of the set of images 
•  Suppose it is K dimensional 
•  We can find the best subspace using PCA 
•  This is like fitting a “hyper-plane” to the set of faces 

–  spanned by vectors v1, v2, ..., vK 
–  any face  



Eigenfaces 
•  PCA extracts the eigenvectors of A 

•  Gives a set of vectors v1, v2, v3, ... 
•  Each one of these vectors is a direction in face space 

– what do these look like? 



Projecting onto the eigenfaces 
•  The eigenfaces v1, ..., vK span the space of faces 

•  A face is converted to eigenface coordinates by 



Recognition with eigenfaces 
•  Algorithm 

1.  Process the image database (set of images with labels) 
•  Run PCA—compute eigenfaces 
•  Calculate the K coefficients for each image 

2.  Given a new image (to be recognized) x, calculate K coefficients 
 
 

3.  Detect if x is a face 

4.  If it is a face, who is it? 
•  Find closest labeled face in database 

•  nearest-neighbor in K-dimensional space 



Choosing the dimension K 

K NM i =  

eigenvalues 

•  How many eigenfaces to use? 
•  Look at the decay of the eigenvalues 

•  the eigenvalue tells you the amount of variance “in the 
direction” of that eigenface 

•  ignore eigenfaces with low variance 



Issues:  dimensionality reduction 
•  What if your space isn’t flat? 

•  PCA may not help 

Nonlinear methods 
LLE, MDS, etc. 



Issues:  data modeling 
•  Generative methods 

•  model the “shape” of each class 

– histograms, PCA,  
– mixtures of Gaussians 
– ... 

•  Discriminative methods 
•  model boundaries between classes 

– perceptrons, neural networks 
– support vector machines (SVM’s) 



Generative vs. Discriminative  

Generative Approach 
model individual classes, priors 

from Chris Bishop 

Discriminative Approach 
model posterior directly 



Issues:  speed 
•  Case study:  Viola Jones face detector 
•  Exploits three key strategies: 

•  simple, super-efficient features 
•  image pyramids 
•  pruning (cascaded classifiers) 



Viola/Jones:  features 

“Rectangle filters” 
 
Differences between 
sums of pixels in 
adjacent rectangles 

{ yt(x)  = +1   if ht(x) > θt 
-1    otherwise 

000,000,6100000,60 =×
Unique Features 

{ Detection = face,        if Y(x) > 0 
non-face, otherwise 

Y(x)=∑αtyt(x) 

Robust Realtime Face Dection, IJCV 2004, Viola and Jonce 

Select 200 by Adaboost 



Integral Image  (aka. summed area table) 

•  Define the Integral Image 

•  Any rectangular sum can be computed 
in constant time: 

•  Rectangle features can be computed as 
differences between rectangles  
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Feature selection (AdaBoost) 

Given training data {xn,tn=+1/-1}, find {αt} for {yt(x)} by  
Minimizing total error function: 

E(Y = αt yt (x)
t=1

M

∑ ) = error(tnY (xn ))
n=1

N

∑

Ideal function error(z) = z>0?0:1, hard to optimize. 
Instead use error(z)=exp(-z) to make the optimization convex. 

Define  
 
Basic idea:  
first find f1(x) by minimizing E(f1) 
Then given fm-1(x), find fm(x) by searching for best αm and ym(x)  

fm (x) =
1
2

αl yl (x)
l=1

m
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