
In summary
•  C1={skin}
•  C2={~skin}
•  Given x=[R,G,B], is it skin or ~skin?
•  Approach 1: nearest neighbors

•  How about high dimensional point x, e.g., a face image?

•  Approach 2: compute p(C1|x) and p(C2|x)
•  P(C1|x) = P(x|C1)P(C1)/p(x)
•  P(C2|x) = P(x|C2)P(C2)/p(x)

– How to compute P(x|C1) and P(x|C2)?
»  Histogram
»  How about high dimensional point x, e.g., a face image?

Modeling P(x|C) for high dimensional x
•  Assuming P(x|C) is Gaussian
•  1-dimensional;

•  how to estimate mean and variance?
•  D-dimensional;

•  how to estimate mean and co-variance?

•  What’s wrong with testing p(x|C) given the estimated
mean and covariance?
•  Degeneracy
•  Efficiency

p(x |C) = 1
2πσ

exp(− 1
2σ 2 (x −µ)

2)

p(x |C) = (2π)
−
D
2 | Σ |

−
1
2 exp(− 1

2
(x −µ)TΣ−1(x −µ))

Linear subspaces

•  Classification can be expensive
•  Must either search (e.g., nearest neighbors) or estimate high-dim PDF’s

Suppose the data points are arranged as above
•  Idea—fit a line, classifier measures distance to line

convert x into v1, v2 coordinates

What does the v2 coordinate measure?

What does the v1 coordinate measure?

-  distance to line
-  use it for classification—near 0 for orange pts

-  position along line
-  use it to specify which orange point it is

Dimensionality reduction

How to find v1 and v2 ?
- PCA

Dimensionality reduction
•  We can represent the orange points with only their v1 coordinates

–  since v2 coordinates are all essentially 0
•  This makes it much cheaper to store and compare points
•  A bigger deal for higher dimensional problems

Principal component analysis
•  Suppose each data point is N-dimensional

•  Same procedure applies:

•  The eigenvectors of A define a new coordinate system
–  eigenvector with largest eigenvalue captures the most variation among

training vectors x
–  eigenvector with smallest eigenvalue has least variation

•  We can compress the data by only using the top few eigenvectors
–  corresponds to choosing a “linear subspace”

»  represent points on a line, plane, or “hyper-plane”

–  these eigenvectors are known as the principal components

The space of faces

•  An image is a point in a high dimensional space
•  An N x M image is a point in RNM

•  We can define vectors in this space as we did in the 2D case

+ =

Dimensionality reduction

•  The set of faces is a “subspace” of the set of images
•  Suppose it is K dimensional
•  We can find the best subspace using PCA
•  This is like fitting a “hyper-plane” to the set of faces

–  spanned by vectors v1, v2, ..., vK
–  any face

Eigenfaces
•  PCA extracts the eigenvectors of A

•  Gives a set of vectors v1, v2, v3, ...
•  Each one of these vectors is a direction in face space

– what do these look like?

Projecting onto the eigenfaces
•  The eigenfaces v1, ..., vK span the space of faces

•  A face is converted to eigenface coordinates by

Recognition with eigenfaces
•  Algorithm

1.  Process the image database (set of images with labels)
•  Run PCA—compute eigenfaces
•  Calculate the K coefficients for each image

2.  Given a new image (to be recognized) x, calculate K coefficients

3.  Detect if x is a face

4.  If it is a face, who is it?
•  Find closest labeled face in database

•  nearest-neighbor in K-dimensional space

Choosing the dimension K

K NM i =

eigenvalues

•  How many eigenfaces to use?
•  Look at the decay of the eigenvalues

•  the eigenvalue tells you the amount of variance “in the
direction” of that eigenface

•  ignore eigenfaces with low variance

Issues: dimensionality reduction
•  What if your space isn’t flat?

•  PCA may not help

Nonlinear methods
LLE, MDS, etc.

Issues: data modeling
•  Generative methods

•  model the “shape” of each class

– histograms, PCA,
– mixtures of Gaussians
– ...

•  Discriminative methods
•  model boundaries between classes

– perceptrons, neural networks
– support vector machines (SVM’s)

Generative vs. Discriminative

Generative Approach
model individual classes, priors

from Chris Bishop

Discriminative Approach
model posterior directly

Issues: speed
•  Case study: Viola Jones face detector
•  Exploits three key strategies:

•  simple, super-efficient features
•  image pyramids
•  pruning (cascaded classifiers)

Viola/Jones: features

“Rectangle filters”

Differences between
sums of pixels in
adjacent rectangles

{ yt(x) = +1 if ht(x) > θt
-1 otherwise

000,000,6100000,60 =×
Unique Features

{ Detection = face, if Y(x) > 0
non-face, otherwise

Y(x)=∑αtyt(x)

Robust Realtime Face Dection, IJCV 2004, Viola and Jonce

Select 200 by Adaboost

Integral Image (aka. summed area table)

•  Define the Integral Image

•  Any rectangular sum can be computed
in constant time:

•  Rectangle features can be computed as
differences between rectangles

∑
≤
≤

=

yy
xx

yxIyxI
'
'

)','(),('

D
BACADCBAA

D

=

+++−++++=

+−+=

)()(
)32(41

Feature selection (AdaBoost)

Given training data {xn,tn=+1/-1}, find {αt} for {yt(x)} by
Minimizing total error function:

E(Y = αt yt (x)
t=1

M

∑) = error(tnY (xn))
n=1

N

∑

Ideal function error(z) = z>0?0:1, hard to optimize.
Instead use error(z)=exp(-z) to make the optimization convex.

Define

Basic idea:
first find f1(x) by minimizing E(f1)
Then given fm-1(x), find fm(x) by searching for best αm and ym(x)

fm (x) =
1
2

αl yl (x)
l=1

m

∑

