
The fundamental matrix F

•  It can be used for
–  Simplifies matching
–  Allows to detect wrong matches

Estimation of F — 8-point algorithm
•  The fundamental matrix F is defined by

 0=ΤFxx'
for any pair of matches x and x’ in two images.

•  Let x=(u,v,1)T and x’=(u’,v’,1)T,
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

333231

232221

131211

fff
fff
fff

F

each match gives a linear equation

0'''''' 333231232221131211 =++++++++ fvfuffvfvvfuvfufvufuu

8-point algorithm

0

1´´´´´´

1´´´´´´
1´´´´´´

33

32

31

23

22

21

13

12

11

222222222222

111111111111

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

f
f
f
f
f
f
f
f
f

vuvvvvuuuvuu

vuvvvvuuuvuu
vuvvvvuuuvuu

nnnnnnnnnnnn

0=Af

8-point algorithm

0

1´´´´´´

1´´´´´´
1´´´´´´

33

32

31

23

22

21

13

12

11

222222222222

111111111111

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

f
f
f
f
f
f
f
f
f

vuvvvvuuuvuu

vuvvvvuuuvuu
vuvvvvuuuvuu

nnnnnnnnnnnn

•  In reality, instead of solving , we seek f to
minimize , least eigenvector of .

0=Af
Af AAΤ

8-point algorithm

•  To enforce that F is of rank 2, F is replaced by F’ that
minimizes subject to . 'FF− 0'det =F

8-point algorithm

•  To enforce that F is of rank 2, F is replaced by F’ that
minimizes subject to . 'FF− 0'det =F

•  It is achieved by SVD. Let , where

 , let

 then is the solution.

Τ= VUF Σ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

3

2

1

00
00
00

Σ
σ

σ

σ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

000
00
00

Σ' 2

1

σ

σ

Τ= VUF Σ''

8-point algorithm
% Build the constraint matrix
 A = [x2(1,:)‘.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
 x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
 x1(1,:)' x1(2,:)' ones(npts,1)];

 [U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
 F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint
 [U,D,V] = svd(F);
 F = U*diag([D(1,1) D(2,2) 0])*V';

8-point algorithm
•  Pros: it is linear, easy to implement and fast
•  Cons: susceptible to noise

Results (ground truth)

Results (8-point algorithm)

0

1´´´´´´

1´´´´´´
1´´´´´´

33

32

31

23

22

21

13

12

11

222222222222

111111111111

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

f
f
f
f
f
f
f
f
f

vuvvvvuuuvuu

vuvvvvuuuvuu
vuvvvvuuuvuu

nnnnnnnnnnnn

Problem with 8-point algorithm

~10000 ~10000 ~10000 ~10000 ~100 ~100 1 ~100 ~100

!
Orders of magnitude difference
between column of data matrix
→ least-squares yields poor results

Normalized 8-point algorithm

(0,0)

(700,500)

(700,0)

(0,500)

(1,-1)

(0,0)

(1,1) (-1,1)

(-1,-1)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

1

1
500
2

10
700
2

normalized least squares yields good results
Transform image to ~[-1,1]x[-1,1]

Normalized 8-point algorithm
1.  Transform input by ,
2.  Call 8-point on to obtain
3. 

ii Txx =ˆ '
i

'
i Txx =ˆ

'
ii xx ˆ,ˆ

TFTF ˆΤ'=
F̂

0=ΤFxx'

0ˆ'ˆ 1 =−Τ−Τ xFTTx'

F̂

Normalized 8-point algorithm

 A = [x2(1,:)‘.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
 x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
 x1(1,:)' x1(2,:)' ones(npts,1)];

 [U,D,V] = svd(A);

 F = reshape(V(:,9),3,3)';

 [U,D,V] = svd(F);
 F = U*diag([D(1,1) D(2,2) 0])*V';

 % Denormalise
 F = T2'*F*T1;

[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);

Normalization
function [newpts, T] = normalise2dpts(pts)

 c = mean(pts(1:2,:)')'; % Centroid
 newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.
 newp(2,:) = pts(2,:)-c(2);

 meandist = mean(sqrt(newp(1,:).^2 + newp(2,:).^2));
 scale = sqrt(2)/meandist;

 T = [scale 0 -scale*c(1)
 0 scale -scale*c(2)
 0 0 1];
 newpts = T*pts;

RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until Γ(#inliers,#samples)>95% or too many times

compute F based on all inliers

Results (ground truth)

Results (8-point algorithm)

Results (normalized 8-point algorithm)

From F to R, T

x 'ΤK'−ΤEK−1x = 0
0' =Τ Fxx

E =K'ΤFK If we know camera parameters

×=][TRE
Hartley and Zisserman, Multiple View Geometry, 2nd edition, pp 259

Application: View morphing

Application: View morphing

Problem with morphing

•  Without rectification

Main trick

•  Prewarp with a
homography to rectify
images

•  So that the two views are
parallel
•  Because linear

interpolation works when
views are parallel

prewarp prewarp

morph morph

homographies

input input output

Video demo

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

29

Triangulation

•  Problem: Given some points in correspondence
across two or more images (taken from calibrated
cameras), {(uj,vj)}, compute the 3D location X

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

30

Triangulation
•  Method I: intersect viewing rays in 3D, minimize:

•  X is the unknown 3D point
•  Cj is the optical center of camera j
•  Vj is the viewing ray for pixel (uj,vj)
•  sj is unknown distance along Vj

•  Advantage: geometrically intuitive

Cj

Vj

X

X, sj{ }
argmin C+ sjVj −X

j
∑

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

31

Triangulation
•  Method II: solve linear equations in X

•  advantage: very simple

•  Method III: non-linear minimization
•  advantage: most accurate (image plane error)

ui =
m00

i X +m01
i X +m02

i X +m03
i

m20
i X +m21

i X +m22
i X +1

vi =
m10

i X +m11
i X +m12

i X +m13
i

m20
i X +m21

i X +m22
i X +1

Structure from motion

Structure from motion

structure from motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self
calibration technique and called automatic camera tracking or
matchmoving.

Unknown
camera
viewpoints

Applications
•  For computer vision, multiple-view environment

reconstruction, novel view synthesis and autonomous
vehicle navigation.

•  For film production, seamless insertion of CGI into
live-action backgrounds

Structure from motion

2D feature
matching 3D estimation optimization

(bundle adjust)
geometry
fitting

SFM pipeline

Structure from motion

•  Step 1: Track Features
•  Detect good features, Shi & Tomasi, SIFT
•  Find correspondences between frames

– Lucas & Kanade-style motion estimation
– window-based correlation
– SIFT matching

Structure from Motion

•  Step 2: Estimate Motion and Structure
•  Simplified projection model, e.g., [Tomasi 92]
•  2 or 3 views at a time [Hartley 00]

Structure from Motion

•  Step 3: Refine estimates
•  “Bundle adjustment” in photogrammetry
•  Other iterative methods

Structure from Motion

•  Step 4: Recover surfaces (image-based triangulation,
silhouettes, stereo…)

Good mesh

Example : Photo Tourism

Factorization methods

Problem statement

Other projection models

SFM under orthographic projection

2D image
point

orthographic
projection
matrix

3D scene
point

image
offset

tΠpq +=
12× 32× 13× 12×

•  Trick
•  Choose scene origin to be centroid of 3D points
•  Choose image origins to be centroid of 2D points
•  Allows us to drop the camera translation:

Πpq =

factorization (Tomasi & Kanade)

[] []
n332n2 ××

=
×

Π n21n21 pppqqq

projection of n features in one image:

[]
n3

32mn2m

21
2

1

21

22221

11211

×

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

×
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

n

mmnmm

n

n

ppp

Π

Π
Π

qqq

qqq
qqq

projection of n features in m images

W measurement M motion S shape

Key Observation: rank(W) <= 3

