The fundamental matrix F

e It can be used for
- Simplifies matching
- Allows to detect wrong matches



Estimation of F — 8-point algorithm

* The fundamental matrix F is defined by

x"'Fx =0

for any pair of matches x and X’ in two 1mages.

S S S5
o Letx=(u,v)'and x’=(u’ v, ), F=|fy fn [
S S fa

each match gives a linear equation

un' f o Avu' f, U foAw' f AW o AV o ufy Vi, + fi =0



8-point algorithm
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8-point algorithm
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* In reality, instead of solving At =0, we seek fto
minimize HAfH least eigenvector of A" A.



8-point algorithm

* To enforce that F is of rank 2, F is replaced by F’ that
minimizes |F — F'|subject to det F'=0 .




8-point algorithm

* To enforce that F is of rank 2, F is replaced by F’ that
minimizes |F — F'|subject to det F'=0 .

o It is achieved by SVD. Let F = UXV ) where
o, O O | o, 0 O
>=|0 o, Of,let =0 o, 0
0 0 o, 0 0 0

then F'= X'V !is the solution.



8-point algorithm

% Build the constraint matrix
A=1[x2(1,:).*x1(1,:)" x2(1,:).*x1(2,:)" x2(1,:)" ...
x2(2,:).*x1(1,:)" x2(2,:)".*x1(2,:)' x2(2,:)" ...
x1(1,:)’ x1(2,:)' ones(npts,1) |;

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)’;

% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V";



8-point algorithm

* Pros: itis linear, easy to implement and fast
« Cons: susceptible to noise



Results (ground truth)

® Ground truth with standard stereo calibration
e




Results (8-point algorithm)

m 8-point algorithm
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Problem with 8-point algorithm
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Normalized 8-point algorithm

normalized least squares yields good results
Transform image to ~[-1,1]x[-1,1]

(0,500) (700,500)  , (LD (1,1)

700
2y t
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A 1

(0,0)

(0,0) (700,0) -1,-1) (1,-1)



Normalized 8-point algorithm

1. Transform input by X. = TX,, X, = Tx,
2. Call 8-point on X, X, to obtain |
3. F=T'""FT

x"'Fx =0

/ \
LT AT '}/=0

K




Normalized 8-point algorithm

[x1, T1] = normalise2dpts(x1);
[X2, T2] = normalise2dpts(x2);

A=1[x2(1,:).*x1(1,:)" x2(1,:).*x1(2,:)' x2(1,:)" ...
x2(2,:).*x1(1,:)" x2(2,:)".*x1(2,:)' x2(2,:)" ...
x1(1,:)’ x1(2,:)' ones(npts,1) ];

[U,D,V] = svd(A);
F = reshape(V(;,9),3,3)";

[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V";

% Denormalise
F=T2"FT1;



Normalization

function [newpts, T] = normalise2dpts(pts)

c = mean(pts(1:2,:)")"; % Centroid
newp(1,:) = pts(1,:)-c(1); % Shift origin to centroid.
newp(2,:) = pts(2,:)-c(2);

meandist = mean(sqgrt(newp(1,:).*2 + newp(2,:).*2));
scale = sqgrt(2)/meandist;

T=[scale 0 -scale*c(1)
0 scale -scale*c(2)
0 0 1 I;
newpts = T*pts;



RANSAC

repeat
select minimal sample (8 matches)
compute solution(s) for F
determine inliers

until I'(#inliers,##samples)>95% or too many times

compute F based on all inliers



Results (ground truth)

® Ground truth with standard stereo calibration
e




Results (8-point algorithm)

m 8-point algorithm
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Results (normalized 8-point algorithm)

B Normalized 8-point algorithm




FromFtoR, T

T
x" Fx=0
x"K"EK 'x=0
E = K'TFK If we know camera parameters

E=R[T],

Hartley and Zisserman, Multiple View Geometry, 2" edition, pp 259



Application: View morphing




Application: View morphing




Problem with morphing

* Without rectification

e
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Figure 2: A Shape-Distorting Morph. Linearly interpolating two perspective views of a clock (far left and far right) causes a geometric bending

effect in the in-between images. The dashed line shows the linear path of one feature during the course of the transformation. This example
is indicative of the types of distortions that can arise with image morphing techniques.



gy

Figure 10: Image Morphing Versus View Morphing. Top: image morph between two views of a helicopter toy causes the in-between images

to contract and bend. Bottom: view morph between the same two views results in a physically consistent morph. In this example the image
morph also results in an extraneous hole between the blade and the stick. Holes can appear in view morphs as well.




Main trick

 Prewarp with a
homography to rectify
Images

« So that the two views are
parallel

* Because linear
interpolation works when
views are parallel

Figure 4: View Morphing in Three Steps. (1) Original images 7
and 7, are prewarped to form parallel views Zo and Z;. (2) Zs is

produced by morphing (interpolating) the prewarped images. (3) 7.
is postwarped to form Z.



Figure 6: View Morphing Procedure: A set of features (yellow lines) is selected in original images 7, and Z, . Using these features, the images
are automat1cally prewarped to produce 1'0 and 7;. The prewarped images are morphed to create a sequence of in-between images, the middle

of which, Zp.5. is shown at top-center. Zo.5 is interactiv ely postwarped by selecting a quadrilateral region (marked red) and specifying its
desired configuration, (o.5. in Zp. 5. The postwarps for other in-between images are determined by interpolating the quadrilaterals (bottom).



To To.05 To.s To.7s 7

Figure 7: Facial View Morphs. Top: morph between two views of the same person. Bottom: morph between views of two different people.
In each case, view morphing captures the change in facial pose between original images 7y and 7, conveying a natural 3D rotation.



Video demo




Triangulation

* Problem: Given some points in correspondence
across two or more images (taken from calibrated
cameras), {(u;,v;)}, compute the 3D location X

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

29



Triangulation

 Method I: intersect viewing rays in 3D, minimize:

argmin ), [C+s,Y;-X|
X{s;}
« Xis the unknown 3D pomt
* C,is the optical center of camera j
* V;is the viewing ray for pixel (u;,Vv))
* §;is unknown distance along V,
« Advantage: geometrically intuitive \

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

30



Triangulation

 Method Il solve linear equations in X
« advantage: very simple

l l [ i
. My, X +my, X +my, X +m,

l

i I i
My X +my, X +m,, X +1

] ] ] [
_ mlOX +m, X+m, X+ m,

i i i
My X +my X +my, X +1

« Method lll: non-linear minimization

« advantage: most accurate (image plane error)

Richard Szeliski CSE 576 (Spring 2005): Computer
Vision

31



Structure from motion



Structure from motion

- L
, \J
/
i N ) nknown

\ camera
\ viewpoints

gié'
structure from motion: automatic recovery of camera motion
and scene structure from two or more images. It is a self

calibration technique and called automatic camera tracking or
matchmoving.




Applications

« For computer vision, multiple-view environment
reconstruction, novel view synthesis and autonomous

vehicle navigation.

* For film production, seamless insertion of CGl into
live-action backgrounds



Structure from motion

2D feature ST »| optimization |, | geometry
. 3D estimation > :
matching (bundle adjust) fitting

SFM pipeline



Structure from motion

« Step 1: Track Features
» Detect good features, Shi & Tomasi, SIFT
* Find correspondences between frames

— Lucas & Kanade-style motion estimation
— window-based correlation
— SIFT matching




Structure from Motion

« Step 2: Estimate Motion and Structure
« Simplified projection model, e.g., [Tomasi 92]
« 2or 3views at atime [Hartley 00]



Structure from Motion

« Step 3: Refine estimates
« “Bundle adjustment” in photogrammetry

e Other iterative methods
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Structure from Motion

« Step 4: Recover surfaces (image-based triangulation,
silhouettes, stereo...)




Example : Photo Tourism

Photo Tourism

Exploring photo collections in 3D




Factorization methods



Problem statement

SEE=EESTN
| Eiﬁ\
,,1 Eim_
EME




Other projection models

perspective weak perspective

increasing focal length —

increasing distance from camera —




SFM under orthographic projection

orthographic
2D image projection 3D scene image

point matrix point offset

Nl
q=l1lp+t

_ 2x1  2x33x] 2xl
* Trick
» Choose scene origin to be centroid of 3D points
» Choose image origins to be centroid of 2D points

* Allows us to drop the camera translation:

q=Ilp



factorization (Tomasi & Kanade)

projection of n features in one image:

qu q, - an=H[p1 P, - pn]

2xn 2x3 3xn
projection of n features in m images

q, q, - qln- gl

R Hf b, p. - ]
; . ; Ixn

_qml qu ot qmn_ _Hm_
2mxn 2mx3

W measurement M motion S shape

Key Observation: rank(W) <=3




