Light Field

Modeling a desktop

Image Based Rendering

Fast Realistic Rendering without 3D models

Start from Ray Tracing

Rendering is about computing color along each ray

Sampling Rays

Sampling Rays by Taking Pictures

Rendering as Ray Resampling

Ray space

- How to parameterize the ray space
- How to sample and resample rays

Two Plane Parameterization

Stanford Camera Array

Light Field Rendering

Very Fast

Light Field Rendering

4D interpolation

- Move to desired new focal surface
- Create a new 4D space with new focal surface
- Recove ray with Reparameterization
- (u, v, s, t) => (u, v, f, g)_F

- Recover ray r
- Resample from ray (s', t', f, g) and (s", t", f, g)
- Interpolation, reconstruction with filter, ..., etc

- Change the shape of focal surface
- Gives focus on 3D object rather than planes

Variable Apertures

- Also can generate variable aperture
- Aperture
 - Control amount of light
 - Control depth of fields
- Aperture Filter:
 - Control how many cameras are used to resample a required ray
 - Larger apertures produce images with narrow range of focus

Aperture Filters

Variable Apertures

Variable Apertures

Stanford multi-camera array

- 640 × 480 pixels ×
 30 fps × 128 cameras
- synchronized timing
- continuous streaming
- flexible arrangement

Ways to use large camera arrays

- widely spaced
- tightly packed
- intermediate spacing -
- light field capture
- high-performance imaging
 - synthetic aperture photography

Intermediate camera spacing: synthetic aperture photography

Example using 45 cameras [Vaish CVPR 2004]

Tiled camera array

Can we match the image quality of a cinema camera?

- world's largest video camera
- no parallax for distant objects
- poor lenses limit image quality
- seamless mosaicing isn't hard

Tiled panoramic image (before geometric or color calibration)

Tiled panoramic image (after calibration and blending)

Tiled camera array

Can we match the image quality of a cinema camera?

- world's largest video camera
- no parallax for distant objects
- poor lenses limit image quality
- seamless mosaicing isn't hard
- per-camera exposure metering
- HDR within and between tiles

same exposure in all cameras

individually metered

checkerboard of exposures

High-performance photography as multi-dimensional sampling

- spatial resolution
- field of view
- frame rate
- dynamic range
- bits of precision
- depth of field
- focus setting
- color sensitivity

Light field photography using a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz and Pat Hanrahan Stanford University

What's wrong with conventional cameras?

Capture the light field inside a camera

© 2005 Marc Levoy

Conventional versus light field camera

Conventional versus light field camera

Prototype camera

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

125µ square-sided microlenses

 $4000 \times 4000 \text{ pixels} \div 292 \times 292 \text{ lenses} = 14 \times 14 \text{ pixels per lens}$

Light Field in a Single Exposure

Light Field in a Single Exposure

Light field inside a camera body

Digitally stopping-down

• stopping down = summing only the central portion of each microlens

Digital refocusing

• refocusing = summing windows extracted from several microlenses

Example of digital refocusing

Refocusing portraits

Action photography

Focusing through a splash of water

Extending the depth of field

conventional photograph, main lens at f/4

conventional photograph, main lens at f/22

Scene-dependent focal plane

Depth from focus problem

Interactive solution [Agarwala 2004]

© 2005 Marc Levoy

Extending the depth of field

conventional photograph, main lens at f/4

conventional photograph, main lens at f/22

light field, main lens at f/4, after all-focus algorithm [Agarwala 2004]

Prior work

- integral photography
 - microlens array + film
 - application is autostereoscopic effect
- [Adelson 1992]
 - proposed this camera
 - built an optical bench prototype using relay lenses
 - application was stereo vision, not photography

Digitally moving the observer

• moving the observer = moving the window we extract from the microlenses

Example of moving the observer

© 2005 Marc Levoy

Moving backward and forward

© 2005 Marc Levoy

Implications

- cuts the unwanted link between exposure (due to the aperture) and depth of field
- trades off (excess) spatial resolution for ability to refocus and adjust the perspective
- sensor pixels should be made even smaller, subject to the diffraction limit

 $36mm \times 24mm \div 2.5\mu \text{ pixels} = 266 \text{ megapixels}$ $20K \times 13K \text{ pixels}$ $4000 \times 2666 \text{ pixels} \times 20 \times 20 \text{ rays per pixel}$

• Application in microscope

Vision Sensing

Multi-View Stereo for Community Photo Collections Michael Goesele, et al, ICCV 2007

Venus de Milo

The Digital Michelangelo Project, Stanford

How to sense 3D very accurately?

Range image

How to sense 3D very accurately?

Triangulation

- Depth from ray-plane triangulation:
 - Intersect camera ray with light plane

Example: Laser scanner

Cyberware[®] face and head scanner

- + very accurate < 0.01 mm
- more than 10sec per scan

Example: Laser scanner

Digital Michelangelo Project <u>http://graphics.stanford.edu/projects/mich/</u>

XYZRGB

Shadow scanning

http://www.vision.caltech.edu/bouguetj/ICCV98/

Basic idea

- Calibration issues:
 - where's the camera wrt. ground plane?
 - where's the shadow plane?

-depends on light source position, shadow edge

Two Plane Version

- Advantages
 - don't need to pre-calibrate the light source
 - shadow plane determined from two shadow edges

Estimating shadow lines

Shadow scanning in action

Results

accuracy: 0.1mm over 10cm - 0.1% error
Textured objects

Scanning with the sun

accuracy: 1mm over 50cm - 0.5% error

Scanning with the sun

Faster Acquisition?

- Project multiple stripes simultaneously
- Correspondence problem: which stripe is which?
- Common types of patterns:
 - Binary coded light striping
 - Gray/color coded light striping

Binary Coding

$$2^n - 1$$
 stripes in n images

Example:

3 binary-encoded patterns which allows the measuring surface to be divided in 8 sub-regions

Binary Coding

• Assign each stripe a unique illumination code over time [Posdamer 82]

Space

Binary Coding

More complex patterns

Works despite complex appearances

Works in real-time and on dynamic scenes

- Need very few images (one or two).
- But needs a more complex correspondence algorithm

Continuum of Triangulation Methods

Slow, robust

Fast, fragile

Time-of-flight

- + No baseline, no parallax shadows
 + Mechanical alignment is not as critical
- Low depth accuracy
- Single viewpoint capture

Miyagawa, R., Kanade, T., "CCD-Based Range Finding Sensor", IEEE Transactions on Electron Devices, 1997 Working Volume: 1500mm - Accuracy: 7% Spatial Resolution: 1x32- Speed: ??

Comercial products

Not accurate enough for face modeling, but good enough for layer extraction.

Depth from Defocus

Depth from Defocus

Depth from Defocus

+ Hi resolution and accuracy, real-time
- Customized hardware
- Single view capture?

Nayar, S.K., Watanabe, M., Noguchi, M., "Real-Time Focus Range Sensor", ICCV 1995 Working Volume: 300mm - Accuracy: 0.2% Spatial Resolution: 512x480 - Speed: 30Hz