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Abstract

Current face image retrieval methods achieve impressive

results, but lack efficient ways to refine the search, particu-

larly for geometric face attributes. Users cannot easily find

faces with slightly more furrowed brows or specific leftward

pose shifts, for example. To address this problem, we propose

a new face search technique based on shape manipulation that

is complementary to current search engines. Users drag one

or a small number of contour points, like the bottom of the

chin or the corner of an eyebrow, to search for faces similar

in shape to the current face, but with updated geometric at-

tributes specific to their edits. For example, the user can drag

a mouth corner to find faces with wider smiles, or the tip of

the nose to find faces with a specific pose. As part of our sys-

tem, we propose (1) a novel confidence score for face align-

ment results that automatically constructs a contour-aligned

face database with reasonable alignment accuracy, (2) a sim-

ple and straightforward extension of PCA with missing data

to tensor analysis, and (3) a new regularized tensor model to

compute shape feature vectors for each aligned face, all built

upon previous work. To the best of our knowledge, our system

demonstrates the first face retrieval approach based chiefly on

shape manipulation. We show compelling results on a sizable

database of over 10,000 face images captured in uncontrolled

environments.

1. Introduction

Retrieving one or several desired face images from a large

collection has been recently studied in several contexts [1, 6,

7, 21]. These works can be roughly grouped into two cate-

gories: example based (given a query face image, find simi-

lar face images) and attribute based (given some natural lan-

guage description, e.g., black hair, find faces with the desired

attributes). While these methods achieve impressive results,

they lack efficient ways to refine the search, particularly for

geometric face attributes. For example, among the search re-

sults, there is no efficient way to find a face with a specific type

of grin, or a slightly leftward gaze.

In this paper, we propose a new face search technique based

on shape manipulation that is complementary to current search

engines. For example, by clicking on the tip of the nose and

dragging it to the left, our goal is to find faces similar in shape

to the current face, but with leftward pose, as shown in Fig-

ure 1; by dragging the corner of the mouth, we hope to find

smiling faces, etc. Our approach is particularly well suited for

geometric face attributes that (1) cannot be easily expressed in

User Edits Database of Aligned Faces Search Results

Figure 1. Illustration of our face search technique based on interactive

shape manipulation. In this example, the user drags the tip of the nose

leftward to search for similar faces with leftward pose in a sizable

database of aligned faces.

natural language or otherwise supported by current face search

methods, but (2) can be intuitively specified via a mouse or

touchpad interface.

To achieve this goal, we must address the following three

challenges:
• Face alignment. Although well studied, accurately iden-

tifying facial shape contour features (e.g., eyelid con-

tours, mouth contours) in a large database is still a chal-

lenging problem, especially for face images captured in

uncontrolled environments.

• User input interpretation. The user should be able to find

his/her desired faces with very few shape edits. However,

ambiguities exist. For example, when dragging the corner

of the mouth to the right, the user may want to change

the pose, but this could also be interpreted as a desire to

widen the mouth.

• Search metric. User edits must be transformed into ge-

ometric shape features from which desired faces can be

retrieved from the database.
To the best of our knowledge, our system demonstrates the

first face retrieval approach based chiefly on shape manipula-

tion. As part of our system, we propose three techniques that

build upon previous work:
• A novel confidence score for face alignment results. This

score allows us to automatically reject poor face align-

ment results in order to construct a sizable database of

reasonably well-aligned faces.

• A simple algorithm of tensor decomposition in the pres-

ence of missing data. This algorithm is a straightforward

generalization of PCA with missing data.

• A new regularized tensor model of aligned face shape.

We use this model to (1) associate a tensor coordinate

of shape features to each face, (2) resolve shape manip-

ulation ambiguities so that a user can specify his/her in-

tended face shape with few edits, and (3) find the desired

faces in the database.
We next review related work before presenting our system.
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2. Related Work

Our work is directly inspired by Goldman et al. [2], in

which the user can drag points on a face in one frame of a

video to retrieve desired faces from other frames. Their sys-

tem tracks a single person’s face in a single video for retrieval

purposes, and does not differentiate facial motion induced by

pose or expression. Later in [6], Kemelmacher-Shlizerman et

al. demonstrate a system which, given a photo of person A,

finds a photo of person B with similar expression for a pup-

petry application. In this system, the query is the appearance

descriptor of the user’s own face. In our system, a user often

only needs to provide a few (1-3) edits to find desired faces.

Each database they use is on the order of 1000 faces of a sin-

gle person. Our test database is 10 times larger, and contains

many different people. We have only used shape features for

query; including appearance features is complementary and

remains part of our future work.

In computer graphics, creating a desired 3D face model is

a central challenge. Recent solutions [10, 22, 14] generate a

face from a small number of user edits. Their goal is different

from ours in that they seek to generate a new 3D model from

example models, but we hope to find one or several desired

existing images. No new images are generated in our system.

Technically, they work with 3D models, which eliminates pose

as a shape parameter. We work with 2D images, where pose is

one parameter used to model the underlying object shape.

Face alignment is one important component of our system;

however, face alignment is not our contribution. We imple-

mented Gu and Kanade’s face alignment method [4] as part of

our system. Rather, we propose a novel method of measuring

alignment confidence, which allows us to automatically con-

struct a large database of reasonably well-aligned faces. This

is important because large databases cannot be easily verified

by manual inspection. Human-based computation, e.g., via

Amazon Mechanical Turk, may be suitable for such a task,

but is beyond the scope of this paper. The recent face align-

ment paper by Liu et al. [11] also points out the importance

of measuring confidence. However, the confidence they use

is specific to their objective function. Although their method

achieves impressive results, they demonstrate performance on

datasets of about 300 examples using congealing. We need

to align tens of thousands of images, which would likely be

a very slow process if we choose to use a congealing based

approach.

Tensor analysis [9] has been successfully used in vision and

graphics to model textures [18, 20], for face image recogni-

tion [17], and for 3D face transfer [19]. In this paper, we use

tensor analysis to model 2D face contour shapes.

Our tensor analysis builds upon [17], with the addition of a

regularization term to deal with situations in which the num-

ber of tensor coefficients is greater than the number of user ed-

its. Our regularized tensor analysis differs from the previous

probabilistic tensor analysis of [15] in that our method takes a

single data tensor as input while theirs assumes multiple data

tensors as input.

2.1. A Brief Review of Tensor Algebra

We provide a brief summary of tensor algebra to define

the notations used in subsequent sections of this paper. Ten-

sor analysis generalizes the widely used principal component

analysis (PCA). Given a data matrix X, PCA decomposes X

as

X = UZV
⊤ =

∑

m,n

zm,nu:,mv⊤
:,n, (1)

where zm,n is an element in Z; u:,m and v:,n are columns of

U and V, respectively, following MATLAB notation. In the

case of PCA, Z is diagonal, i.e., zm,n 6= 0 only ifm = n. The

scalar version of Eq. (1) is

xi,j =
∑

m,n

zm,nui,mvj,n. (2)

A matrix is a 2-dimensional array; tensor analysis more

generally operates on a multidimensional array, or a data

tensor. For example, a 3-dimensional data tensor (cube) is

X = [xi,j,k]. The right hand side of the second “=” in Eq. (1)
can be generalized for tensors as

X =
∑

l,m,n

zl,m,nu:,l ◦ v:,m ◦ w:,n, (3)

where each (l,m, n)-triple u:,l◦v:,m◦w:,n is the outer product

of the three column vectors, the result of which is a data tensor

(cube) of the same size as X . A linear combination of such
tensors with zl,m,n as combination weights yields X . Similar
to Eq. (2), the scalar version of Eq. (3) is

xi,j,k =
∑

l,m,n

zl,m,nui,lvj,mwk,n, (4)

in which, if we fix z:,:,: as well as any two of the three row

vectors ui,:, vj,:, and wk,:, xi,j,k is a linear function of the

remaining row vector; that is, Eq. (4) is a tri-linear function.

If the summation in Eq. (4) is executed in a particular order,

Eq. (4) is equivalent to

xi,j,k =
∑

n

(

∑

m

(

∑

l

zl,m,nui,l

)

vj,m

)

wk,n. (5)

Each summation in Eq. (5) can be viewed as a matrix product,

which leads to the matrix form of tensor product as

X = Z × U × V × W, (6)

where Z = [zi,j,k] is the core tensor, which usually has a
smaller size than X ; U, V, andW are the matrices with u,

v, and w in Eq. (5) as elements. Since the summation order

in Eq. (5) can be arbitrarily switched, the tensor product× in
Eq. (6) is commutative.

Finally, in Eq. (4), if we fix j, k and vary the index i, the

column vector x:,j,k can be viewed as a degenerate cube, eval-

uated in the following three equivalent ways:

x:,j,k =
∑

l

u:,l

(

∑

m,n

zl,m,nvj,mwk,n

)

= (Z × vj,: × wk,:) × U

= U (Z × vj,: × wk,:) .

(7)
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3. System Overview

Our face retrieval system consists of the following four

components.

• Face database construction. We construct a sizable

database of aligned faces that exhibit a wide range of pose

and facial expression variation. Unfortunately, even state-

of-the-art alignment methods [4, 11, 13, 16, 23] cannot

guarantee perfect results in all cases; we therefore pro-

pose a novel confidence score to filter out poor alignment

results based on the face alignment method from [4].

• Tensor model training. From a set of 2D training face

shapes of different poses, expressions, and identities

(each shape is represented by a set of points), we form

a 4-dimensional data tensor X , with each of the four di-
mensions indexing point vertex, pose, expression, and

identity. We decompose the tensor as

X = Z × Uvert × Upose × Uexpr × Uiden. (8)

We propose a new and simple iterative algorithm to

achieve this decomposition in the presence of missing

data. Note that the dataset for training the model is much

smaller than the database used for searching.

• Tensor coefficient recovery. Using the estimated Z and
Uvert, we associate each aligned face in the database

with three coefficient vectors, cpose, cexpr, and ciden for

pose, expression, and identity, respectively. For each

search, we also estimate the three coefficient vectors

cpose, cexpr, and ciden for the user-specified query shape,

which we expect to have few known vertices (correspond-

ing to user edits).

• Search by tensor coefficient comparison. The coefficient

vectors associated with each face in the database are com-

pared against the coefficient vectors estimated for the

query face; the closest face images (according to this ten-

sor coefficient comparison) are retrieved. The user can

then edit one of the retrieved faces to refine the search.

More details are presented in the subsequent sections.

4. Technical Details

4.1. Tensor Decomposition with Missing Data

In order to obtain Z , Uvert, Upose, Uexpr, and Uiden,

we need a training set in which each subject’s face is pho-

tographed under a complete set of known expressions and

poses, along with ground truth shapes. Such a subset of data is

difficult to obtain. Even highly structured datasets like Multi-

PIE [3] have missing faces. Computing tensor decomposition

in the presence of missing data is unavoidable in practice. We

propose a simple algorithm for this purpose.

We separate a data tensor X into two parts:

[Xknown,Xmissing]. For notational convenience, we inter-

changeably view X as a multidimensional array or as a

vector consisting of all elements in X (i.e., X (:) in MATLAB
notation). Without loss of generality, we assume that the

vectorized form is arranged such that the missing elements

come after the known elements. Under this arrangement, we

seek to estimate Xmissing, Z ,Uvert,Upose,Uexpr, andUiden

by minimizing the following error function:
∥

∥

∥

∥

Z×Uvert×Upose×Uexpr× Uiden−

[

Xknown

Xmissing

]∥

∥

∥

∥

2

. (9)

We iterate between the following steps to minimize Eq. (9):

1. Fix Xmissing and optimize Z , Uvert, Upose, Uexpr, and

Uiden. This step is the standard tensor decomposition, as

given in [9].

2. Fix all theU’s and optimize Xmissing and Z . This step is
a least squared problem because Z × Uvert × Upose ×
Uexpr × Uiden is linear with respect to Z when all the
U’s are fixed. More specifically, we use

AZ =

[

Aknown

Amissing

]

Z (10)

to represent this linear transformation, and Eq. (9) be-

comes
∥

∥

∥

∥

[

Aknown 0

Amissing −I

][

Z
Xmissing

]

−

[

Xknown

0

]∥

∥

∥

∥

2

. (11)

This function can be efficiently minimized using the con-

jugate gradient method, assuming both transformations

A andA⊤ can be implemented without explicitly storing

the matrix elements. This is indeed the case becauseAZ
representsZ×Uvert×Upose×Uexpr×Uiden andA

⊤X
represents X × U

⊤

vert × U
⊤

pose × U
⊤

expr × U
⊤

iden.

In practice, we initialize Xmissing using subsets of face shapes

from Xknown. That is, for a needed pose i, expression j, and

identity k vector x:,i,j,k in Xmissing, we gather all vectors in

Xknown that share pose i and expression j; the mean average of

these vectors is used to initialize x:,i,j,k.

4.2. Tensor Coefficient as Facial Feature Vector

In this subsection, we present an algorithm that takes a face

shape (partial or complete) as input and computes three coef-

ficient vectors describing the pose, expression, and identity of

the face. This algorithm is used in two places in our retrieval

system. First, it gives each face shape in the database pose,

expression, and identity coefficient vectors, which are used as

features vectors. Second, it estimates the three feature vectors

from a few user constraints and retrieves faces with similar

feature vectors from the database in real time.

Since a user seldom wants to edit every point on the face

contour for retrieval, our algorithm needs to be able to handle

partial shapes. From Eq. (8), we know that a face shape vector

f can be expressed as

f = Z × Uvert × c
⊤

pose × c
⊤

expr × c
⊤

iden, (12)

where the core tensor Z and the vertex basis matrixUvert are

estimated in Section 4.1, and cpose, cexpr, and ciden are the
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coefficient vectors we seek. We break f into [fknown, funknown];
our goal is to compute all the c vectors from fknown.

In practice, the dimension of fknown is often much less than

the total number of variables in cpose, cexpr, and ciden, which

makes the estimation under-constrained. To address this issue,

we estimate all of the c’s by minimizing a regularized objec-

tive function as follows:
φ(cpose, cexpr, ciden)

= 1

2σ2 ‖fknown −Z × U
known
vert × c

⊤

pose × c
⊤

expr × c
⊤

iden‖
2

+ ‖cpose‖
2 + ‖cexpr‖

2 + ‖ciden‖
2,

(13)
whereUknown

vert are the rows inUvert that correspond to fknown,

and σ2 is the variance of tensor shape fitting noise, estimated

as the average of the squared residual errors after tensor model

fitting by minimizing Eq. (9).

We minimize Eq. (13) iteratively. Starting with an initial

estimate of cpose, cexpr, and ciden, we iteratively hold two of

them constant and update the remaining one until Eq. (13) de-

creases by 10−6 or less compared to the previous iteration.

This algorithm is used both during runtime for retrieval and

during the face database construction stage; the initialization

of the c’s are described in the following two subsections.

4.3. Searching for Faces Using Tensor Coefficients

Using the tensor coefficient vectors cpose, cexpr, and ciden

in Section 4.2, our system enables a user to search images by

shape manipulation. For example, starting with one face im-

age, the user can drag the tip of the nose to find images with

desired pose. Constraining the locations of multiple points on

the face will further refine the search results.

In general, computing all the c coefficient vectors from a

single user input is under-constrained even with the regular-

ization term in Eq. (13). For example, dragging the corner of

the mouth may result in a smiling face or a rotated face.

To address this ambiguity, our search interface allows the

user to specify whether the pose vector or the expression vec-

tor should be adjusted to satisfy the edit. Given this user spec-

ification, only the selected coefficient vector(s) will be esti-

mated when minimizing Eq. (13). For example, if the user

selects “pose,” then only the pose coefficient vector will be

estimated. The non-selected coefficient vector (e.g., expres-

sion in the previous example) is used to calculate the distance

between each image in the database and the current query im-

age; the nearest 1000 images form a search candidate set. This

winnowing procedure helps to minimize non-selected shape

variation in the search results (e.g., expression will remain ap-

proximately constant if only pose is selected). Once the coef-

ficient vectors are estimated, we use them to construct a face f

using Eq. (12). Finally, the most similar 50 faces in the search

candidate set are retrieved based on their Euclidean distance

from f .

4.4. Face Alignment Confidence Measure

To support face search by shape manipulation, our system

needs automatic face alignment to establish the shape of each

face in the database. We implemented the robust face align-

ment method of Gu and Kanade [4] for this purpose. Be-

ing among state-of-the-art methods [4, 11, 13, 16, 23], this

method produces impressive results on real world images, as

we demonstrate in Section 5.1. However, natural face images

exhibit a wide range of shape, pose, illumination, and other ap-

pearance variation; occlusions, image noise, and motion blur

further confound the problem. This method does not guarantee

accuracy in all situations.

One approach might be to remain agnostic—to simply al-

low all aligned faces to exist in the database regardless of their

accuracy. However, this reduces the quality of the query re-

sults, and it burdens users with the additional task of recogniz-

ing and ignoring poorly aligned results. Similarly, manually

removing poorly aligned faces from large databases is burden-

some if not impractical.

4.4.1 Identifying Poorly Aligned Faces

We instead propose a novel method of measuring alignment

confidence, which allows us to automatically remove poorly

aligned faces from the database. In a nutshell, our method

computes a confidence score for each vertex in the aligned

shape, filters the scores along the shape contours, and finally

integrates the filtered scores to arrive at an overall confidence

measure.

More precisely, the alignment confidence score sn for the

point n is computed as

sn = exp

{

−
ρ2

n

2dn

}

. (14)

dn is the average distance from pointn to its contour neighbors

in the shape model (the canonical shape we used is approxi-

mately 160 pixels tall, from eyebrows to chin, irrespective of

the target face size), ρ2

n is found by the alignment algorithm [4]

and is the observation variance, or noise level, of landmark n

at the end of the matching process. Figure 2 shows an illustra-

tion of the ρn values for an actual alignment result.

In Eq. (14), the landmark confidence function maps the raw

observation variance to the range [0, 1]. It acts as a robust mea-
sure of confidence, with 1 denoting maximum confidence, and
0 denoting no confidence; landmark locations with very large
observation variance are clamped to 0. Empirically, we found
that if sn is large, the alignment for point n is often reliable.

However, if sn is small, the alignment for point n may or may

not be reliable, depending on the alignment accuracy of its

neighboring points.

To deal with this phenomenon, we filter the point confi-

dence scores using f(·) defined as

f(sn) = max{sn, g(sn)}, (15)

where g(sn) is a Gaussian filter of the confidence scores along
point n’s contour, centered on point n, with σ = 1.5 in units
of neighbor rank, i.e., 1 = nearest neighbor, 2 = second nearest

neighbor, etc. in one direction.
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Figure 2. An illustration of the alignment confidence of each land-

mark. The radius of each circle is given by the variance ρn, which

measures the noise level of the observation at landmark n; large cir-

cles indicate low confidence and small circles indicate high confi-

dence. Each confidence measure gives a hint at the alignment ac-

curacy of the corresponding landmark. Unfortunately, spurrious lo-

cal image features can cause this hint to be wrong. To correct local

confidence mistakes, we filter the confidence measures. Finally, we

aggregate them to arrive at an overall alignment score, as shown in

Section 4.4.1.

In Eq. (15), the filter aims to eliminate erroneously labeled

bad landmark locations. For example, a landmark might have

low confidence because of spurious local image features de-

spite its contour neighbors exhibiting high confidence. In such

a scenario, the alignment algorithm would significantly reduce

the contribution of the low confidence point so that the contour

will be driven by the surrounding high confidence neighbors.

Assuming the contour is correct, the single low confidence

landmark should also be correct, and should have a higher con-

fidence value than it was originally given.

Finally, the overall alignment confidence for a face shape is

computed as

s̄ =
1

N

N
∑

n=1

f{sn}, (16)

whereN is the number of landmarks.

We found that the confidence score is strongly correlated

with alignment accuracy as shown in Section 5.2. By compar-

ing the confidence score of each alignment result to a thresh-

old, bad alignment results can be identified and removed from

the database.

5. Experiments

In this section we describe in detail the construction of a

sizable and varied database of aligned faces; we demonstrate

experimentally that the alignment confidence score described

in Section 4.4.1 is a good predictor of alignment accuracy; and

we show that the tensor model described in Section 3 allows a

user to find desired faces using only one or a few shape edits.

5.1. Constructing a Database of Aligned Faces

Our system is designed to search for desired face images

in a large database. For experimentation purposes, we con-

structed a sizeable database of approximately 10,000 aligned

faces from the Public Figures (PubFig) dataset [8]. In its en-

tirety, PubFig contains roughly 50,000 images of 200 celebri-

ties from the internet captured in uncontrolled environments.

∼ 0.15 ∼ 0.40 ∼ 0.60 ∼ 0.85

Increasing alignment confidence score−→

Figure 3. Each column shows a selection of alignment results on the

PubFig dataset that share approximately the same alignment confi-

dence score. The scores are ordered from left to right. Each column

shows typical results for the associated score. The score is statisti-

cally a good indicator of alignment accuracy, as we show in Figure 4.

Best viewed electronically

The faces were aligned using our implementation of [4].

We first trained shape and appearance models using ground

truth landmarks provided with the Multi-PIE dataset [3], and

962 additional ground truth landmarks that we supplied (the

original set of ground truth landmarks does not include faces

with both non-frontal pose and non-neutral expression). Ap-

proximately 330 subjects are represented in our training set,

with five different poses (±30, ±15, and 0 degrees relative to
frontal) and six different expressions (neutral, smile, surprise,

squint, disgust, and scream), although about half of the possi-

ble subject-pose-expression combinations are missing.

For each face, we first use a face detector [12] to estimate

the size of the face in each image. We removed all faces with

bounding boxes smaller than 120 pixels in height to ensure the
database would contained few low quality images. We ran the

face alignment algorithm on the remaining 21,919 images.

Our system relies on face alignment accuracy to return good

query results. Therefore, we used a relatively high alignment

confidence score threshold to remove all but the most confi-

dent 10,000 results from the database. In Figure 3, the results

in each column are representative of results with similar align-
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Figure 4. Each data point represents one alignment result. The y-axis gives the normalized root-mean-squared error (NRMSE) of each result,

and the x-axis gives the alignment confidence score, according to Section 4.4.1. A good/bad score threshold can be thought of as a boundary

that separates “bad” results to the left from “good” to the right. The solid red line gives a 95% error bound for any given score threshold. That

is, for a given score threshold, 95% of the “good” results have a NRMSE at or below the red line. The dashed blue line shows the global trend

of the best 95% NRMSE with respect to the score, found by dividing the scores into 0.05-width bins, computing the mean average NRMSE

among points in each bin under the 95% error bound, and fitting a line to the averages. We do not show a linear regression fit of all the points

in the plot because the tightly clustered points in the lower right corner heavily dominate, and the resulting fit does not reflect the global trend.

Best viewed electronically

ment confidence score. The score is statistically a good indi-

cator of the alignment accuracy. However, we note that the

score is not perfect; outliers do exist. Some good results have

uncharacteristically low scores and vice versa, which is quan-

titatively characterized in Figure 4.

5.2. Alignment Confidence Score Performance

The alignment confidence score given in Section 4.4.1

should be correlated with the alignment error. A low score

should predict large alignment error and vice versa. Here we

give experimental results that confirm this relationship.

We first trained shape and appearance models as in Sec-

tion 5.1, but with subjects 1 - 20 omitted from the training set.

The shape and appearance models were then used to align the

375 images of subjects 1 - 20. After alignment, we computed

(1) the normalized root-mean-squared error (NRMSE) relative

to ground truth, and (2) the alignment confidence score de-

scribed in Section 4.4.1. The NRMSE is given as a percent-

age, computed by dividing the root mean squared (RMS) error

by the height of the smallest bounding box that encompasses

the ground truth landmarks in each image. A similar measure

is given in [11], but they divide the RMS error by the pupil-

lary distance; this is not invariant under pose change and so

we don’t use it. Figure 4(a) shows that the NRMSE decreases

significantly as the alignment confidence score increases.

Although the sets of subjects used for training and testing

in the previous experiment were independent, they both came

from the same structured database. Similarities exist between

these training and testing sets that would not occur naturally.

To avoid making erroneous conclusions that might be due to

these similarities, we performed the experiment again using

the same training set, but a different test set—namely 583 im-

ages selected randomly from the PUT face database [5], which

exhibits moderate variation in pose and facial expression.

The ground truth landmarks given in the PUT database do

not exactly match those given in the Multi-PIE database. How-

ever, with few exceptions, corresponding ground truth con-

tours exist. We therefore divide up the PUT contours to obtain

a set of landmark points that very closely match the Multi-

PIE ground truth. The six Multi-PIE landmarks not found on

any PUT contours (four on the vertical portion of the nose and

one near each ear) were omitted in computing the NRMSE.

Figure 4(b) similarly shows that the NRMSE decreases signif-

icantly as the alignment confidence score increases.

5.3. Tensor Model Training

To construct the tensor model, we used 1470 faces (49 iden-

tities × 5 poses × 6 expressions) from the Multi-PIE dataset.
Within the tensor model we used 4 bases for identity, 5 for

pose, and 6 for expression. We specifically retained all bases

for pose and expression because they constitute the two search-

ing options used in our system. We used 120 bases to represent

the point vertices, because the number of bases for point ver-

tices in Eq. (13) should be larger than the number of unknown

coefficients so that solving for the unknown coefficients is

over-determined for known faces.

5.4. Face Retrieval Performance

In this section we demonstrate that users only need to edit

one or a few face points for our system to find desired faces.

Figure 5 shows the top user-selected results for three queries.

By using a combination of multiple edits and holding expres-

sion or pose constant, users can refine their search result in an

intuitive way. Please refer to our supplemental video for a

demonstration of the interactive search experience.

We also quantitatively evaluate how many edits on a query
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(a) One edit. Expression is held constant; the nose tip is dragged left to search for similar faces with slightly leftward pose.

(b) Two edits. Pose is held constant; the lips are dragged apart to search for smiling faces.

(c) Three edits. Pose is held constant; the lips are pulled together and the cheeck is pulled outward to search for serious expressions.

Figure 5. Top user-selected results for three queries. The query images are shown in the leftmost column, with user edits illustrated by yellow

arrows. Each row shows one query. Five selected results are given to the right of each query image. Please refer to our supplemental video

for a demonstration of the interactive search experience.
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Figure 6. The number of edits needed to find desired faces. The x-axis is the number of edits performed; x = 0 corresponds to the original

query shape before any edit is applied. The y-axis shows the shape difference between the result shapes and the target shape. The solid green

line indicates the minimum Euclidean distance between the target face shape and each of the top 10 results (i.e., it represents the best among

the returned results). The dashed blue line indicates the average Euclidean distance. Each curve is computed by averaging over 10 query-target

image pairs. In all the tested cases, with fewer than 5 edits, the target image can be retrieved. Note that the maximum number of edits in the

x-axis is 10, which is only a small portion of the total number (68) of points in the face shape model. In fact, even after only 1-2 edits, the

decrease in shape difference is significant, which suggests that we can retrieve images similar to the desired one within 1-2 edits.

image are needed in order to find a target image. To this end,

we emulate user edits in our system as follows. We start by

picking up query-target image pairs from the database. Each

pair of images either share a similar pose but have different

expressions, or share a similar expression but have different

poses, or are dissimilar in both pose and expression.1

1When selecting a query-target image pair with a similar expression but

different poses, we first randomly pick the target image, then remove all the

images whose Euclidean distance is among the nearest 1/3rd. In the remaining

images, we select the one whose expression is most similar to the target image

by comparing cpose and use it as the query image. We can select a pair with

Given a pair of query and target images, our testing system

randomly orders the landmarks and edits them one after an-

other according to this order. Each edit moves one landmark

from the query to the target image. After each edit, the top 10

results will be retrieved. We calculate the average Euclidean

distance between the top 10 results and the desired image. We

also calculate the minimum Euclidean distance between the

top results and the target image. If the minimum Euclidean

a similar pose but different expressions in a similar way. A pair with both

dissimilar pose and dissimilar expressions can be selected randomly.
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distance is zero, it indicates the target is among the top results.

Figure 6 shows the results, averaged over 10 randomly se-

lected pairs. The x-axis is the number of edits operated; x = 0
corresponds to the original query shape before any edits are

applied. The y-axis shows the shape difference between the

result shapes and the target shape. The solid green line indi-

cates the minimum Euclidean distance between the target and

the returned 10 results, so it represents the best shape among

the returned results. The dashed blue line indicates the average

Euclidean distance. As the number of edits increases, a more

accurate shape will be returned. In all tested cases, with fewer

than 5 edits, the target image can be retrieved. Note that the

max number of edits on the x-axis is 10, which is only a small

portion of the total number (68) of points in the face shape

model. In fact, even after only 1-2 edits, the decrease in shape

difference is significant, which suggests that very often we can

retrieve images similar to the desired one within 1-2 edits.

6. Conclusion and Future Work

In this paper, we have proposed a new face search tech-

nique that aims to address a common problem in face image

search. That is, it is difficult to refine face search results based

on subtle shape attributes that are easy to see, but hard to de-

scribe in text. To the best of our knowledge, our system is

the first face retrieval approach based chiefly on shape ma-

nipulation. This approach is complementary to current search

engines [1, 6, 7, 21], and could be used to further refine face

search results. Such a system could be used by law enforce-

ment agencies to quickly profile a suspect, or a photo editor

could use it to quickly find a face with desired expression and

pose for compositing, for example.

Although we have a reasonable confidence measure which

helps us to automatically construct a sizable database, face

alignment still needs improvement to further enhance the sys-

tem performance and utility, both in terms of query accuracy

and constructing a database with better face alignments.

Our database is relatively sparse compared to much larger

collections [7], which reduces our ability to lock identity in re-

fining search results. In the future we hope to demonstrate our

approach on databases containing millions of face images and

videos. To realize this goal, we will need to use a more effi-

cient coefficient search algorithm than our naive linear search.

Although face image retrieval is a key challenge, we note

that our approach generalizes well. As part of our future work,

we hope to apply our technique to other more general types

of image collections. Additionally, we hope to incorporate

appearance-based attributes into our system to further improve

search results.
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based inverse kinematics. In SIGGRAPH, 2005.

[15] D. Tao, J. Sun, X. Wu, X. Li, J. Shen, S. J. Maybank, and

C. Faloutsos. Neural information processing: Prob. tensor anal-

ysis with akaike and bayesian information criteria. 2008.

[16] Y. Tong, X. Liu, F. W. Wheeler, and P. Tu. Automatic facial

landmark labeling with minimal supervision. In CVPR, 2009.

[17] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of

image ensembles: TensorFaces. In ECCV, 2002.

[18] M. A. O. Vasilescu and D. Terzopoulos. Tensortextures: multi-

linear image-based rendering. ACM Trans. Graph., 2004.

[19] D. Vlasic, M. Brand, H. Pfister, and J. Popović. Face transfer
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