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Abstract. We present a joint face alignment technique that takes a
set of images as input and produces a set of shape- and appearance-
consistent face alignments as output. Our method is an extension of the
recent localization method of Belhumeur et al. [1], which combines the
output of local detectors with a non-parametric set of face shape models.
We are inspired by the recent joint alignment method of Zhao et al. [20],
which employs a modified Active Appearance Model (AAM) approach
to align a batch of images. We introduce an approach for simultaneously
optimizing both a local appearance constraint, which couples the local
estimates between multiple images, and a global shape constraint, which
couples landmarks and images across the image set. In video sequences,
our method greatly improves the temporal stability of landmark esti-
mates without compromising accuracy relative to ground truth.

1 Introduction

Face alignment is an important problem in computer vision [1,5,9, 15,16, 20]
with many compelling applications, including performance-driven animation [10],
automatic face replacement [2], and as a pre-process for face recognition and ver-
ification. As digital cameras become cheaper and more ubiquitous, and visual
media-sharing websites like Flickr, Picasa, Facebook, and YouTube become more
popular, it is increasingly convenient to perform face alignment on batches of
images for other applications such as face image retrieval [17] and digital media
management and exploration [11].

Intuitively, by using the additional information provided by multiple images
of the same face, we can better handle a range of challenging conditions, such as
partial occlusion, pose and illumination changes, image blur, and image noise.
This intuition has been used in the face tracking literature, for example, to
impose local appearance constraints across multiple video frames [14, 21].

Inspired by this intuition, we propose a joint face alignment technique that
takes a set of images as input and produces a set of shape- and appearance-
consistent face alignments as output. By appearance-consistent we mean that
the local appearance at each landmark estimate is more similar across input im-
ages, and by shape-consistent we mean the spatial arrangements of landmarks
on the input faces are more consistent. We might expect that the final set of
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alignments will drift somewhat from ground truth in order to achieve an inter-
nally consistent solution among input images. However, we show experimentally
that our approach does not sacrifice alignment accuracy to achieve consistency.

2 Background

Non-rigid face alignment algorithms can be divided into two categories: holistic
and local methods. Our approach is most directly inspired by a recent holistic
method [20] that operates on a batch of input images simultaneously, and a
recent local method [1] that combines the output of local detectors with a non-
parametric set of shape models. In this section, we highlight some key differences
between holistic and local methods, and give a brief overview of [20] and [1].

2.1 Holistic methods

In the domain of non-rigid alignment, Active Appearance Models (AAMs) [5]
are among the most popular, with many recent works [3,6,7,15,20] relying on
the AAM framework. Broadly, AAMs model both the overall appearance a and
shape X of the face linearly:
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where p,, and \; are the m-th shape and [-th appearance parameters (or load-
ings), respectively; X,, and «y capture the top M shape and L appearance
modes, respectively; and Xy and o are the average shape and appearance vec-
tors, respectively. The goal is to minimize the difference between the target image
and the model: 2

: (2)
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where W warps the image I in a piecewise linear fashion using the shape pa-
rameters p.

One of the major challenges in applying AAMs is that it is difficult to ade-
quately synthesize the appearance of a new face using a linear model. As demon-
strated experimentally by Gross et al. [6], it is much more difficult to build a
generic appearance model than a person-specific one. This is known as the gen-
eralization problem.

To overcome this problem, Zhao et al. [20] introduced a joint alignment
technique in which a batch of person-specific images are simultaneously aligned
in a modified AAM setting. Intuitively, their approach aims to simultaneously
(1) identify the person-specific appearance space of the input images, which are
assumed to be linear and low-dimensional, and (2) align the person-specific ap-
pearance space with the generic appearance space, which are assumed to be
proximate rather than distant. This joint approach was shown to produces ex-
cellent results on a wide variety “real-world” images from the internet. However,
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the approach breaks down under several common conditions, including signifi-
cant occlusion or shadow, image degradation, and outliers. Like Zhao et al., we
operate on a set of input images jointly, but our approach is more robust to
these conditions.

2.2 Overview of Zhao et al. [20]

Zhao et al. [20] jointly align a batch of images by extending the AAM framework:

2
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where the sum is taken over J images, e; is an indicator vector (i.e., the j-
th element is one, all others are zero), p is a weight parameter that balances
the first term with the second, and all other parts are defined as in Eq. (2).
The rank term encourages the appearance of the input images to be linearly
correlated; intuitively, the rank term favors a solution in which the input images
are well-aligned with one another (not just the global model). Unfortunately,
the rank term is non-convex and non-continuous and minimizing it is an NP-
hard problem. To make the problem more tractable, they borrow a trick from
compressive sensing. That is, they replace the rank term with its tightest convex
relaxation — the nuclear norm || X[, which is defined as the sum of singular
values || X ||, = >, 02(X). See [20] for more details.

Like [20], we incorporate a rank term in our optimization. However, because
we couple the local appearance of faces with global shape models, our rank term
does not operate directly on the holistic appearance of faces. Instead, it oper-
ates on the simplified shape representation of faces, and encourages landmark
estimates that are spatially consistent across images. We encourage the local
appearance at each landmark estimate to be consistent across multiple images
via a separate term, which we discuss in Section 3.

2.3 Local methods

Constrained Local Models (CLMs) [9, 14, 16, 19] overcome many of the problems
inherent in holistic methods. For examples, CLMs have inherent computational
advantages (e.g., opportunities for parallelization) [14], and reduced modeling
complexity and sensitivity to illumination changes [16,19]. CLMs also generalize
well to new face images, and can be made robust against other confounding
effects such as reflectance, image blur, and occlusion [9].

CLMs model the appearance of the face locally via an ensemble of region
experts, or local detectors. A variety of local detectors have been proposed for
this purpose, including those based on discriminative classifiers that operate
on local image patches [19], or feature descriptors such as SIFT [13]. These
local detectors generate a likelihood map around the current estimate of each
landmark location. The likelihood maps are then combined with an overall face
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shape model to jointly recover the location of landmarks. Like AAMs, CLMs
typically model non-rigid shape variation linearly, as in Eq. (1).

Recently, Belhumeur et al. [1] proposed a different approach that avoids a
parametric linear shape model, and instead combines the outputs of local detec-
tors with a non-parametric set of global shape models. Belhumeur et al. showed
excellent landmark localization results on single images of faces under challeng-
ing conditions, such as significant occlusions, shadows, and a wide range of pose
and expression variation. According to their experiments on “real-world” images
from the internet, their algorithm produced slightly more accurate results, on
average, compared to humans assigned to the same task.

Despite its impressive accuracy, we found that Belhumeur et al.’s approach
produces temporally inconsistent results in video. Our method makes use of the
same non-parametric shape model approach proposed by Belhumeur et al., but
we further constrain the local appearance and face shape in a joint alignment
setting. As our experiments show, we produce more consistent results, especially
in video. At the same time, we do not sacrifice localization accuracy to achieve
this consistency.

2.4 Overview of Belhumeur et al. [1]

Formally, [1] aims to solve the following problem:

X* = argmax P(X|D), (4)

X

where X = {x! x2,...,x"} gives the locations of N face landmarks (i.e., the
eye corners, nose tip, etc.), and D = {d',d?,...,d"V} are local detector re-
sponses. In words, the goal is to find the landmark locations X that maximize
the probability of X given the measurements from the set of local detectors.
In general, Eq. (4) is non-convex. Therefore, Belhumeur et al. employ a set of
approximations to make the problem more tractable. The first approximation is
to assume each X is generated by one of M shape exemplars, Xy, transformed

by some similarity transformation ¢; they call X}, ; a global model. This allows
P(X|D) to be expanded as

M
P(X|ID)=Y" i P(X|Xp.t, D)P(Xy 4| D)dt, (5)
L—1/te

where the collections of M global models X}, ; have been introduced and then
marginalized out. By conditioning on the global model X}, the locations of
the parts x’ are assumed to be conditionally independent of one another, i.e.,
P(X|Xk4, D) =TI, P(x'[x}, ;,d"). Bayes’ rule is then applied to Eq. (5), and
all probability terms that only depend on D and X}, ; are reduced to a constant
C. This yields the following optimization problem:

M N
X" = argmax / c 1| Pax: ,)P(x'|d")dt, 6
- kz:l ., [I P(ax ) Pix'|d) (6)

=1
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where P(Ax;, ,) is a 2D Gaussian distribution that models how well the landmark
location in the global model xj , fit the true location x*, i.e., Ax} , = %}, , — x".
P(x'|d?) takes the form of a local response map for landmark i.

A RANSAC:-like approach is used to generate a large number of global models
Xk ¢, which are evaluated using P(X}, | D). The set M of top global models M*

for which P(X}|D) is greatest is used to approximate Eq. (6) as

N
X* =argmax »  [][P(Ax})P(x'|d). (7)
X kteMi=1

X* is found by choosing the image location where the following sum is maximized

X = argmax Y P(Ax},)P(x'|d), ®)
X' pteM

which is equivalent to solving for x* by setting all P(Axf;t) and P(x%|d") to
a constant in Eq. (6) for all ¢ # . For more details, please see [1].

3 Owur Approach

This section provides details of how we couple the shape and appearance infor-
mation from multiple related face images.

3.1 Single Image Alignment

Define w'(x") as the accumulated response map for landmark i in Eq. (8),

w'(x') = Y P(Ax},)P(x'|d"). (9)
k,teM

As in [1], the value of w’(x?) is computed by multiplying the local detector
output at x* by a 2D Gaussian function centered at each x?t, and summing the
resulting products. The Gaussian function is parameterized by a 2 x 2 covariance
matrix that captures the spatial uncertainty of the global shape model fitting
the true landmark locations; the covariances are computed as described in [1].
Note that Eq. (9) couples the local appearance information with global shape
information.

To estimate the location of each landmark, Belhumeur et al. [1] choose the
location xfc,t that maximizes w'(x’). Because the global shape information is
already incorporated via P(AX};_’t), the final selection of the best x’ can be done

independent of all other landmark locations x* for 7/ # i. Therefore, assuming
the global shape models X} ; are fixed after the generate-and-test procedure,
maximizing the product of terms in Eq. (7) is equivalent to maximizing the sum
of terms:

N
X* = argmax wh(x?). 10
gn ; (x") (10)
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3.2 Multiple Image Alignment

In a multiple image setting, we can trivially modify Eq. (10) to incorporate all

images:
{X;-‘ }j:17--~7J = argmax Z Zw (11)

X1,X2,.. T =1 =1

where w; (xj) corresponds to landmark 7 in image j. Note that the selection of
each set of global models M; is still independent for each image j, and finding
the best {XJ* }j in Eq. (11) is equivalent to solving Eq. (10) for each image
separately.

=1,..,J

Enforcing Joint Appearance Consistency Under this multiple image set-

ting, we couple the appearance information of the input images by modifying
Eq. (11) as follows:

{X;}jzl,...,J = argmax J Z Zw P (X;"’ {Xé‘,}i’yéi) ) (12)

X1,X2,...

where

P (x}, {x] }y;&i) =77 Z Nl exp {—7lIsh (x}) — sk (x5)[17} (13)

j/ESj

Sj is the set of input images associated with, but not including, image j, and

s; (x;) is a local feature descriptor centered at x )\’, is a weight reflecting the

confidence that s (x},) describes the correct landmark location. In practice, we
use )\], = wj/(xj/) Intultlvely, Eq. (12) is maximized when two conditions are si-
multaneously optimized: (1) the face shape coincides with positive measurements
according to the local detectors and (2) the local descriptors are consistent across
input images.

Enforcing Joint Appearance and Shape Consistency The optimization of
Eq. (12) will yield landmark estimates that are locally more consistent. However,
the estimated face shapes may not be consistent across the input images. Shape
inconsistency can be due to several factors, including local appearance ambi-
guities and noise, and the randomness inherent in the search for global shape
models. This inconsistency is especially noticeable in video sequences, where the
landmark estimates appear to “swim” around their true location, or jitter along
image contours such as the chin line. We could trivially remove these artifacts by
forcing all of the face shape estimates to be the same, or by applying a low-pass
filter to the landmark trajectories in a video. Unfortunately, this yields a poor
solution that cannot adequately handle non-rigid deformations or fast non-rigid
motion. Instead, we aim to find a set of face shapes that (1) provide locally
consistent landmark estimates, and (2) are linearly correlated, but still flexible
enough to handle a broad range of non-rigid deformations.
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In order to incorporate a shape consistency constraint, we first change Eq. (12)
to a minimization problem:

{X;}jzl ;= argmin f—zzz x x, (14)

where X1, X2, X i § jES;

@;.j,(xg,xél) = w;(xz) . w;,( exp{ 'y||s i g7 ‘)12 } (15)
1 1 1 1
N N J J-1
We then add a rank term that encourages the recovered shapes to be linearly
correlated:

and
(16)

{X;}jzl’m"] = argmin P N ZZ Z ’LU]] X Xj/ + rank (X) s

X1,X2,.0,X T T ess

(a7)

where p > 0 is a scalar weight that balances the two terms, and X is formed

by concatinating the face shape vectors into a 2N x J matrix: X = [X71(:), Xa(:

), -+, Xs(2)]- Eq. (17) is similar in form to Eq. (3). However, instead of encourag-

ing the holistic face appearance to be linearly correlated across the input images,
our rank term encourages the estimated face shapes to be linearly correlated.

Reformulation As Zhao et al. [20] point out, the difficulty in incorporating a
rank term is that it is non-convex and non-continuous, which makes minimizing
Eq. (17) NP-hard. Instead, we follow the same approach in [20] and replace the
rank(X) term with its tightest convex relaxation — the nuclear norm [|X]||..

At this point, it is convenient to introduce some additional notation. Let
hij =1,2,..., H;; be an index that selects one of H;; hypotheses for landmark
i in image j, (i.e., X; [hi; = 1] selects the first location hypothesis, xz- [hij = 2]
selects the second, and so on). @} ,(xj,x /) in Eq. (17) can then be written
W' 50 (X5 [hijl, x5 [hije]), or more 51mply W' (hij, hije). Let af[hij] € {0,1} be an
indicator variable that can either be on (1) or off (0) for each possible h;;. Eq. (17)

can then be reformulated into the following energy minimization problem.

min p - ¥(e) + [|[X, Z][|, (18)
s.t. ol [hy;] € {0,1} (19)
> aifhig]) =1 (20)
hij
Ala) —X =0 (21)
Zo—-Z=0 (22)

where

VX S S S Al bl @i hiy) (29

i J]GSh”h/
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and « contains all indicator variables aé— [hij] for j=1,...,J,i=1,...,N, and
hij =1,..., Hj; Zy is formed by concatenating the global shape model vectors
for all images into a 2N X M matrix: Zg = [Z1,Za,...,Zym], and A(a) is a
linear operator on the indicator variables a, which produces a 2N x J matrix
of landmark locations. The intuition behind including Z, which is comprised of
true shape vectors, is that we want to ensure X does not deviate significantly
from the space of plausible face shapes.

To solve the optimization problem in Eq. (18), we use a strategy similar to
[20]. That is, we adapt the augmented Lagrangian method to solve Eq. (18):

L(e,X,Z,Yx,Yz) = 7 (p- ¥(e) + X, Z]|I,) + 3 X, Z]%
where ||U||r = (U,U) is the Frobenius norm, (U, V) = trace(U"V), and Yx and
Yz are Lagrangian multipliers. Here we have also made use of a result from [4],
namely that solving min 7||U||. + 3||U||% subject to linear constraints converges

to the same minimum as solving min ||U||. for large enough 7. We iterate among
four update steps to solve Eq. (24):

Step 1 ak+1 = argminL(aa)(?Z,YXaYZ) (25)
[

2
[x*, 24 = argmin X, Z]1|, + X, 2] - D%, vZ]|
X.,Z F

Step 2 = shrink([Y;’é7 YZIC],T) (26)
Ya+rtl Y€ Ala®) — X*
Step 4 6k+1 = 7]5k- (28)

The shrink operator is a nonlinear function which applies a soft-thresholding
rule at level 7 to the singular values of the input matrix. See [4] for more details.
Steps 2 — 4 can be easily implemented in MATLAB using a few lines of code.
Step 1 is more complicated and so we give it some additional attention.

Solving for a To find the a**! that minimizes Eq. (25), we need consider only

those terms in Eq. (24) that involve a:

o = arg;nin {rp ¥(a) + (Yx, Ala))}. (29)

We solve Eq. (29) by breaking it into independent subproblems, one for each
landmark ¢. Each subproblem is then solved using an iterative greedy approach:
Loop until convergence
For landmark i =1,2,..., N
For image j =1,2,...,J

1. Assume all o, [h;;] for j/ € S; are known and assign a
single hypothesis h;; to each j' € S;.
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2. Extract the portion of (Yx, A(a)) involving landmark ¢
and image j; denote this portion ([¥x]i;, [A(a)];)-

3. Evaluate <[YX}ij7 [A(Oé)]l]> — Tp% Zj’#j @;j/(hij, hij/)
(see Eq. (29)) for each h;; = 1,..., H;;.

4. Choose the hypothesis h;; that minimizes the sum above,
and set the corresponding indicator variable oz§ [hij] to

one and all others to zero.

We remark that Step 1 above greatly simplifies Eq. (29), because we need only
consider the small subset of terms in Eq. (23) for which a’,[hj] = 1. Further-
more, evaluating ([Yx]|;;, [A(a)]i;) involves relatively few operations.

To initialize a, we solve Eq. (6) for each landmark and image independently,
and then set the corresponding indicator variables in « to one (all others are
zero). In our experiments, this initialization is close to the final solution for
the majority of landmarks. As a result, the algorithm above typically converges
quickly in 2 — 3 iterations.

3.3 Implementation Details

To obtain w; (x;) in Eq. (9), we use the consensus of exemplars approach de-
seribed in [1], with all parameters set according to [1] unless noted. Like [1], our
landmark detectors are simple support vector machine (SVM) classifiers with
grayscale SIFT [13] descriptors. We note that, for a typical 20-image input set,
the detectors account for approximately 86% of our total computation. SIFT
descriptors are also used to enforce joint appearance consistency in Eq. (15).

For efficiency reasons, we do not consider all possible hypotheses aj» [hij] when
solving for . Instead, we consider only the hypotheses that give the largest H;;
values according to w;(hij); we typically choose H;; ~ 200 in our experiments.
This is acceptable because most hypotheses within each local search window
correspond to very low values for w’(h;).

Parameter 7 is set such that the first ~ 7 — 12 singular values are preserved
by the shrink operator in Eq. (26). The step size Jp is set to 1 in our experi-
ments, with 7 = 0.75. p should depend on two things: (1) confidence in the joint
appearance constraint (i.e., p should increase with better image quality, fewer
occlusions, etc.), and (2) confidence in the shape consistency constraint (i.e.,
p should decrease as the local appearance becomes more corrupted). Roughly
speaking, p = C'- || (X0, Z9] H* /¥ (), for an empirically determined constant C
and initial states of X, Z, and a. We set C' ~ 10 in our experiments.

The sum } s in Eq. (23) is straightforward for static image sets: for a
given image j, sum over all other images in the input set. For videos, it changes
slightly: S; becomes the temporal neighborhood around frame j; S; = {j —
5...,5—1,74+1,...,7 4+ 5} in our experiments.

Our algorithm requires an initial estimate of the landmark locations in order
to place the local search windows. For this purpose, we fit a canonical face shape
to the bounding box generated by the OpenCV Viola-Jones face detector [18].



10 Joint Face Alignment with Non-Parametric Shape Models

Subject 83

Barack Obama Keanu Reeves Lucy Liu Miley Cyrus  Oprah Winfrey

Fig. 1. Selected images from two face datasets used for evaluation: Multi-PIE [8] on
top and PubFig [12] on the bottom, with ground truth landmarks shown in green.

4 Results and Discussion

We now discuss our results on a variety of challenging image sets and video se-
quences, and compare them with state-of-the-art alignment methods, namely [1]
and [16]. In general, we find that our method produces landmark localizations
that are more consistent at both the local level (i.e., the local appearance at
each landmark estimate is more similar across input images) and the global level
(i.e., the arrangement of landmarks is more consistent across input faces). At
the same time, we do not sacrifice alignment accuracy relative to ground truth.

4.1 Experimental Datasets

We evaluate our method on two static image datasets and one video dataset.
As training data, we use the LFPW dataset [1], which includes many “real-
world” images from the internet along with hand-labeled landmarks. For testing
purposes, we use randomly selected images from the PubFig dataset [12]. In
PubFig, unlike LFPW, each subject is depicted across many images. In order
to perform a quantitative analysis, we manually labeled the subset of PubFig
image according to the LFPW arrangement. We also perform an evaluation on
the Multi-PIE dataset [8], some images of which are shown in Figure 1. Our video
dataset is composed of several video sequences downloaded from YouTube.

4.2 Experiments on Static Image

Ten sets of 20 images were used to evaluate our algorithm on static image sets—
five from Multi-PIE and five from PubFig. Each set includes images of the same
subject under multiple expressions, illuminations, and poses; for reference, the
subjects are shown in Figure 1. Figure 2 shows a comparison between our jointly
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Fig. 2. This figure shows a comparison between our jointly aligned results, and the
results generated by our implementations of Saragih et al.’s [16] algorithm (CLM), and
Belhumeur et al’s [1] algorithm (CoE) on five sets of images from the PubFig [12]
dataset (top) and five sets of images from the Multi-PIE dataset [8] (bottom). Please
see Section 4.2 for an explanation of these results.

aligned results, and the results generated by our implementations of Saragih et
al’s algorithm [16] and Belhumeur et al.’s Consensus of Exemplars (CoE) algo-
rithm [1]. For a fair comparison, we used the same landmark detectors (described
in Section 3.3) across all algorithms. The errors shown are the point-to-point dis-
tance from ground truth, normalized by the inter-ocular distance (IOD). As a
reference, 0.05 is 2.75 pixels for a face with an IOD of 55 pixels.

Our method favors landmark localizations that are internally consistent among
images in each set with respect to both the local appearance and the global ar-
rangement of landmarks. To best satisfy these internal constraints, we might
expect to lose some accuracy relative to ground truth. However, we maintain
good localization accuracy similar to other state-of-the-art methods [2, 8] on
challenging static images. Furthermore, as Figure 3 illustrates, our results are
nearly identical even when an image is jointly aligned with entirely different sets
of input images.

4.3 Experiments on Video Sequences

The improvements demonstrated by our joint alignment approach are most dra-
matically seen in video sequences. Figure 4 shows a comparison between our
results, and the results generated by our implementations of Saragih et al.’s [16]
algorithm (CLM), and Belhumeur et al.’s [1] algorithm (CoE), both applied to
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Fig. 3. Test results using our method on PubFig images. Our alignment results are
nearly identical, even when the input image (shown larger than the rest) is jointly
aligned with entirely different sets of input images.

each frame of the videos independently. In all cases, the same detectors were
used. The top row shows the mean acceleration magnitude at each frame, com-
puted as 1 >, [[x% — 5 (x4, +x%,,)||2, where x} is the 2D location of landmark
¢ in frame j. The bottom row shows the mean point-to-point error as a frac-
tion of the inter-ocular distance (IOD). The errors were computed relative to
ground truth locations, which were labeled manually at each 10*" frame. Five
challenging internet videos were used for this experiment.

We notice that the CLM and CoE methods generate landmark estimates that
appear to “swim” or jump around their true location. Our approach generates
landmark estimates that are noticeably more stable over time. Meanwhile, we
do not sacrifice landmark accuracy relative to ground truth (i.e., we do not
over-smooth the trajectories); in fact, we often achieve slightly more accurate
localizations compared to [1] and [16]. Figure 5 shows several video frames with
our landmark estimates overlaid in green. For a clearer demonstration, please

see our supplemental video.

5 Conclusions

We have described a new joint alignment approach that takes a batch of images
as input and produces a set of alignments that are more shape- and appearance-
consistent as output. In addition to introducing two constraints that favor shape
and appearance consistency, we have outlined an approach to optimize both of
them together in a joint alignment framework. Our method shows improvement
most dramatically on video sequences. Despite producing more temporally con-
sistent results, we do not sacrifice alignment accuracy relative to ground truth.
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Fig. 4. This figure shows a comparison between our results, and the results generated
by our implementations of Saragih et al’s [16] algorithm (CLM), and Belhumeur et
al’s [1] algorithm (CoE), where both were applied to each frame of the videos inde-
pendently. Our results are generally both more temporally stable (as measured by the
average landmark acceleration in each frame), and slightly more accurate relative to
ground truth. Please see Section 4.3 for an explanation of these results.

Jim Carrey movie clip: exaggerated facial expressions
3§

Maria Bamford video blog: occlusion from hair

Philip Glass lecture: occlusion from hand gesture and glasses

Fig. 5. Selected frames from a subset of our experimental videos with landmarks esti-
mated by our method shown in green. These video clips, downloaded from YouTube,
were chosen with several key challenges in mind, including dramatic expressions, large
head motion and pose variation, and occluded regions of the face.
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