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Abstract
In this paper, we present a new framework for non-rigid

structure from motion (NRSFM) that simultaneously addresses
three significant challenges: severe occlusion, perspective
camera projection, and large non-linear deformation. We in-
troduce a concept called a model graph, which greatly reduces
the computational cost of discovering groups of input images
that depict consistent 3D shapes. A 3D model is constructed
for each input image by traversing the model graph along mul-
tiple evolutionary paths. A compressive shape representation
is constructed, which (1) consolidates the multiple 3D models
for each image reconstructed during model evolution and (2)
reduces the number of models needed to represent the input
image set. Assuming feature correspondences are known, we
demonstrate our algorithm on both real and synthetic data sets
that exemplify all three aforementioned challenges.

1. Introduction
Structure from Motion (SFM) is a fundamental problem in

computer vision. For rigid objects, the problem is well under-
stood [6] and impressive results have been demonstrated on
large scale data sets, e.g. [1]. In the realm of nonrigid objects,
there are several challenges that prevent existing techniques
from being more widely used in practice. Two typical cases
where one would want to use non-rigid structure from motion
(NRSFM) are:

• Reconstructing 3D models for deformable and/or articu-
lated targets, e.g., human movement;

• Reconstructing 3D models for a collection of similar-but-
not-identical objects in a category, e.g., faces of different
people.

In order to be used in practice for such applications, NRSFM
techniques must robustly address the following challenges:

• Feature occlusion due to large variation of viewpoints;
• Perspective projection camera model;
• Large non-linear object deformation.
As discussed in Section 2.4, we know of no existing al-

gorithms that can deal with all three of these challenges si-
multaneously. In this paper, we present a new framework for
NRSFM that seeks to address all three challenges.

2. A Model Graph Formulation of NRSFM
M images {Ii}Mi=1 are given, each represented as a collec-

tion of 2D feature points Ii = {xi,j}, where j is the index for
the 2D feature points in Ii. In this work, we assume that some
feature points may be occluded in each image, but the feature
correspondences are known. That is, we know the mapping
πi(·) from the index of a 2D feature point in image i to the
index of the corresponding 3D feature point in the model.
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Figure 1. The concept of a Model Graph for a set of 10 input im-
ages for NRSFM. The numbers in the nodes represent image indices.
Blue nodes represent clusters of 3 images that share very similar 3D
shapes. An edge is defined between two nodes that differ by a single
image, and 3D shapes for neighboring nodes must be very similar un-
der this edge definition. We formulate NRSFM as an efficient Model
Graph traversing problem, in which 3D models can be constructed in-
crementally in the presence of severe occlusion, perspective camera
projection, and large non-linear deformation.

Consider a group of Q images within the input image set.
This group of images may correspond to objects of very dif-
ferent shapes; in this case, we call it an inconsistent image
cluster. If all images in this group happen to correspond to
objects of very similar shapes, we call it a consistent image
cluster. More precisely, we call an image cluster ε-consistent
if rigid SFM techniques can be used to reconstruct a full 3D
model (i.e., it contains all 3D feature points of interest) from
these images with a reprojection error less than ε.

Now we consider all ε-consistent clusters and construct a
model graph, in which each node represents one consistent
cluster and its associated 3D model. For this graph, we define
an edge connecting two nodes only if the two corresponding
clusters have Q − 1 images in common; in other words, the
two clusters differ by only one image. For example, forQ = 3,
nodes representing clusters {I1, I2, I3} and {I1, I2, I5}will be
connected. Figure 1 illustrates an example of a model graph
for M = 5 and Q = 3. In this case, there are a total of “M
choose Q,”

„
M
Q

«
, number of clusters; we label the consistent

ones in blue and connect them using our edge definition above.
A key property of our model graph is that, if two nodes

are connected by an edge, their 3D models must be similar,
because these two nodes differ by just one image (and all the
rest of the Q− 1 images are the same).

2.1. A Thought Experiment
If the computational cost is not an issue, one way to pose

the NRSFM problem is simply to reconstruct all models for
nodes that correspond to consistent image clusters. It is ad-
vantageous to view NRSFM this way, as it does not assume
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any particular deformation model (linear or nonlinear). Fur-
thermore, the 3D model for each node can be reconstructed by
existing (incremental) rigid SFM techniques, which can han-
dle both perspective camera projection as well as feature oc-
clusion, if the cluster size Q is not too small.

Assumption 1: To ensure that we can recover a 3D model
for each input image, we assume that each image must be-
long to at least one ε-consistent image cluster. Intuitively, this
assumes that the input images collectively observe all of the
shape configurations up to the ε reprojection error.

As a counter example of this assumption, if we have a sin-
gle cat face image in a large collection of human face images,
this cat face cannot belong to any consistent image cluster, and
therefore its 3D shape cannot be reconstructed. A similar ex-
ample is an image of a crouching body within a collection of
images depicting normal human walking. We can view these
images as outliers in the reconstruction process.
2.2. NRSFM as Model Graph Traversal

Even if we have enough image data to cover all the shape
configurations, the number of consistent clusters is exponen-
tial and the thought experiment cannot be realized in practice.
Instead, we pose NRSFM as a node selection problem in the
model graph: select a subset of nodes so that their correspond-
ing consistent clusters together cover all M input images.

Notice that we only need a maximum ofM clusters to cover
the M input images. Recovering a 3D model for each node
will provide at least one 3D model for each input image; an
image may get more than one reconstructed 3D model if the
image exists in multiple selected clusters.

The node selection problem is still difficult to solve because
consistent clusters are not known a priori and yet we need to
identify them. GivenM and clusters of sizeQ, we need at least
M
Q consistent clusters to cover all the M input images; each

cluster needs O
((

M
Q

))
operations to be discovered, which is

computationally prohibitive.
Assumption 2: The node selection process becomes effi-

cient if we assume that the model graph is connected. Under
this assumption, we can identify one consistent cluster as the
starting node, and find other consistent clusters by traversing
the model graph efficiently. At each node, we move to the next
node by determining which image in the current cluster should
be replaced by an unvisited image. Once we move to the next
node, we can reconstruct its 3D model by slightly updating the
model inherited from its predecessor.

We present the details of our graph traversal algorithm in
Section 3. At the end of the traversal, we have M 3D models,
one for each traversed cluster node. Each image has one or
more 3D models, depending on the number of cluster nodes it
belongs to. In Section 4, we present algorithms to consolidate
multiple 3D models for each image and optimize a reduced set
of 3D models to fit the input image set.
When is the Model Graph Connected? As the number of
input images M increases, the model graph is more likely to

be connected. For example, for continuously varying shapes,
such as facial deformation and body articulation, if the input
video is long enough, the observation of similar shape config-
urations in multiple images becomes more likely.

How to Reconstruct Full 3D Models? In practice, allow-
ing feature occlusions allows the input images to have a large
variety of viewpoint changes; such input data are necessary
for reconstructing full 3D models. Therefore, our formula-
tion is well suited to a large number of input images, each of
which may have a nontrivial portion of important features oc-
cluded. Most previous formulations take images with limited
viewpoint change (little or no occlusions) as input. Therefore,
they are not suitable for reconstructing full 360 degree models.

2.3. Our Contribution
This paper makes the following technical contributions.
• A model graph formulation for NRSFM that addresses

three open challenges: severe occlusion, perspective
camera projection, and large non-linear deformation;

• A model evolution algorithm that traverses the model
graph and reconstructs 3D models for each non-outlier
input image;

• A compressive shape representation, which (1) consol-
idates the multiple 3D models for each image recon-
structed during model evolution and (2) reduces the num-
ber of models needed to represent the input image set,
and its associated bundle adjustment algorithm.

In addition to these technical contributions, our approach has
a practical advantage.

• All the well-understood rigid SFM techniques are conve-
niently integrated into our framework as separate mod-
ules. For practitioners, there is no need to implement our
approach from scratch.

2.4. Comparison with Previous Work
After the pioneering work by Bregler et al. [5], a number

of excellent solutions [3, 12, 10, 9, 4, 14, 15, 11, 13, 2] have
been proposed to solve NRSFM in the past decade. All of
these method assume a linear deformation model, with the ex-
ception that the kinematic chain of human motion is modeled
in [15]. Our formulation is more general, as it does not as-
sume any form of motion a priori. Most of these methods also
assume that there is no feature occlusion in the input image
sets. For those methods that do consider occlusion [9, 11], the
occlusion is modeled as an outlier process; it can handle oc-
clusion situations like a forearm occluding features on a torso,
but more severe occlusion such as a torso turning 180◦ away
from the camera cannot be handled properly. Furthermore, all
of these previous works assume affine camera projection. Im-
ages with strong perspective effects cannot be handled.

The only work, to the best of our knowledge, that can han-
dle general large nonlinear deformation is [8], in which the
authors group a set of images into rigid clusters and recover a
rigid shape for each cluster as an initialization for shape man-
ifold learning. Their clustering method favors a large number



of small clusters (of size 3), and the clusters are isolated, i.e.,
each image belongs to only one cluster. The isolation between
clusters forces the authors to use a small cluster size; indepen-
dently searching for each consistent cluster is computationally
expensive otherwise. Furthermore, a small cluster size forces
the adoption of an affine camera model and requires that all
features be visible in each cluster; reconstructing a complete
3D model using perspective SFM with missing features from
only 3 views is otherwise a very challenging problem.

Our formulation is opposite to [8]. We use large, overlap-
ping image clusters. Large clusters make a perspective cam-
era model practically feasible, and overlapping clusters avoid
an independent search for each consistent cluster. Both clus-
ter search and 3D reconstruction become efficient incremental
computations. Based on this soft clustering, our formulation
is also non-parametric in that it is not limited to any specific
form of deformation.

3. Model Evolution
In this section, we present our model evolution algorithm,

which traverses the model graph to discover ε-consistent nodes
for 3D reconstruction. The algorithm starts from a known con-
sistent node and traverses the graph along multiple paths, until
all of the M input images are covered. During the process, the
model in the starting node gradually evolves to fit the images
in subsequent clusters.

3.1. Reliable and ε-Consistent Models
ε-consistency is a necessary but not a sufficient condition to

reconstruct correct 3D models. Considering an extreme case,
where all images in a cluster share the same viewpoint, an ε-
consistent model can still be generated but does not resemble
the underlying groundtruth model of this cluster. In our frame-
work, we require an ε-consistent model to be reliable, defined
as follows. Each 3D point is visible to at least M cameras,
and all pairwise angles between these cameras are within a
predefined range, [θ0, θ1]. In this paper, we use M = 3 and
[θ0, θ1] = [15◦, 165◦].

3.2. Seed Model Creation
Given a consistent cluster as the starting node, we first

use the incremental rigid SFM [6] technique to reconstruct
its 3D model. We perform projective reconstruction, followed
by auto-calibration assuming zero-skew, unit aspect ratio, and
principal point at origin. In the end, we perform a metric bun-
dle adjustment to recover the 3D model for the starting node.

Assuming a single consistent cluster as a starting point is
not a restrictive assumption in practice. For example, working
with faces, we can easily find multiple images of one person’s
face; working with human body articulation, we can always
find multiple images of a typical pose.

3.3. A Tree of Models
Once a seed model has been constructed, we form a candi-

date list L of input images that have not yet been used in any

visited nodes. We then iterate over the following steps until
L is empty or until no additional ε-consistent models can be
generated. At each step, we want to search for a pair consist-
ing of a visited node v and an unused image and move to a
new consistent node by replacing one of v’s images with the
unused image. We can search exhaustively at each step to find
the next move; in practice, we find the following two heuristic
steps work well in our experiments.

1. For each image i in L, we estimate its pose with respect
to every model that has been constructed. We use the
average reprojection error of the pose estimation as an in-
dicator of how well the image fits with a particular model,
and we use the minimum error among different models as
a score for each image. RANSAC is used during pose es-
timation to remove feature correspondence outliers. We
choose the image inLwith the minimum score, subject to
the requirement that the image has at least 12 inlier point
matches and the camera is facing the model. We pair this
image and its best fitting model node as the candidate pair
for the next step.

2. Given the candidate pair, we want to replace one old im-
age in the node with the new image. Intuitively, we want
to remove the old image in the node that most “conflicts”
with the new image. We could test every old image; in-
stead we heuristically find this image by adding the new
image to the cluster and update the model by performing
a metric bundle adjustment. We pick the old image whose
average reprojection error increases most compared to the
error computed with respect to its previous 3D model. We
remove it from the node if, after removal, the model is re-
liable and ε-consistent. Otherwise, we consider the old
image with the second largest increase in the reprojection
error and so on until we find one. We run bundle adjust-
ment again to update the model and to make sure it is still
reliable. If we cannot find such an old image, we discard
the current model and put image i in L′.

3. Remove image i from L. If L is empty, reset L with L′.
Note that the cost of Step 1 can be made linear in |L| for

each iteration by saving the results of previous image-to-model
pairings, so that the images in L need only be fit to the single
newest node reconstructed in the previous iteration. A new
model in Step 2 will only differ from its parent model by one
image. Therefore, the 3D shape will evolve slightly as the
algorithm progresses. After the evolution, we will have a tree
of 3D models.

3.4. Model Reduction
After the evolution, each image is associated with one or

more 3D models depending on how many visited consistent
clusters it belongs to. Many of these models will be highly
similar. It is desirable to reduce the number of models, both
to represent the image collection and also to estimate a unique
model for each image. In this subsection, we describe a coarse
way to reduce the models, which will be used an starting point
for the algorithm in Section 4.



Specifically, we first use a simple K-means algorithm to di-
vide the reconstructed 3D models into K groups, where K is
currently set by the user and is based on the degree to which
the target object deforms and/or articulates, i.e., an object that
deforms significantly will require more bases than a nearly
rigid object. The mean shapes of each group serves as K basis
shapes for all the reconstructed 3D models.

For each image, we search for the best-fit basis shape,
which has the minimum average reprojection error in pose es-
timation with respect to the image. We then assign this basis
shape and the estimated pose to the image. Using these basis
shapes and estimated poses as an initial value, we next de-
scribe a more accurate solution to 3D model reduction.

4. Compressive Shape Representation
In this section, we present a compressive shape represen-

tation to model large deformation. We seek to estimate this
representation from the input image collection using the result
of Section 3.4 as an initial solution.

Let X = [X1; X2; · · · ; XN ], where each Xn ∈ R3 and
X ∈ R3N , be the set of 3D feature points of an object. To
model the large deformation that the object may exhibit, we
assume thatX is a sparse linear combination of a large number
of basis shapes {Zk}Kk=1:

X =
K∑
k=1

ckZk, (1)

whereZk = [Z1,k; Z2,k; · · · ; ZN,k], and the coefficient vector
c = [c1; c2; · · · ; cK ] has very few nonzero elements.1

For each image i, we use Ki, Ri, and oi to denote its cam-
era intrinsics, rotation, and center. Then, the 3D feature point
Xn and the 2D feature point xi,n on the image i satisfy the
following projection equation

xi,n = KiRi (Xn − oi) , (2)

where Xn =
∑K
k=1 ci,kZn,k, and ci = [ci,1; ci,2; · · · ; ci,K ]

is the coefficient vector for this image. To recover the com-
pressive shape model, we need to solve for a dauntingly large
number of unknowns, namely {Ki,Ri,oi, ci} and {Zk}, by
minimizing their reprojection error. This is possible because
model evolution gives good initialization for this optimization.

Ψ({Ki,Ri,oi, ci}, {Zk})

=
M∑
i=1

N∑
n=1

∥∥∥∥xi,n −KiRi

((
K∑
k=1

ci,kZn,k

)
− oi

)∥∥∥∥2

2

.

(3)
We next describe ambiguities in this problem formulation

to motivate our optimization procedure. These ambiguities
have been identified in the study of NRSFM using weak or-
thographic projection [14, 11]. We briefly summarize them
below for the perspective camera projection model.

1Such a sparse linear representation is widely used in compressive sensing
literature, which is why we call it a compressive shape representation.

Shape Translation Ambiguity If each basis shape Zk is
translated by a vector tk, such translations can be com-
pensated by translating camera centers appropriately. For-
mally, the following two solutions are equivalent: {Zn,k −
tk,oi} ≡ {Zn,k,oi −

∑K
k=1 ci,ktk}, which suggests we

can move the center of each basis shape to 03×1 by using
tk = 1

N

∑N
n=1 Zn,k.

Shape Scale Ambiguity If each basis shape is scaled down
by a factor αk, such scales can be compensated by scal-
ing up the corresponding basis coefficient by the same fac-
tor. Formally, the following two solutions are equivalent:
{ci,k, 1

αk
Zk} ≡ {αkci,k,Zk}. This ambiguity is due to the

bilinear relationship between c and Z. We can force each basis
shape vector Zk to have unit L2-norm by using αk = ‖Zk‖2,
where ‖ · ‖2 denotes the L2-norm.

Coefficient Scale Ambiguity If each basis coefficient vector
is scaled down by a factor βi, such scales can be compensated
by scaling down the corresponding camera center by the same
factor. Formally, the following two solutions are equivalent:
{ci,oi} ≡ { 1

βi
ci, 1

βi
oi}. This ambiguity is due to the per-

spective projection. We can force each coefficient vector ci to
have unit L2-norm by using βi = ‖ci‖2.

Subspace Rotation Ambiguity If all coefficient vectors
ci ∈ RK are rotated by the same rotation R ∈ RK×K , such
a rotation can be compensated by rotating all shape bases by
R−1. Formally, the following two solutions are equivalent:

{Rci, [Z1, · · · ,ZK ]} ≡ {ci, [Z1, · · · ,ZK ]R−1}. (4)

Based on the above ambiguity analysis, we formulate the
compressive shape reconstruction as a constrained optimiza-
tion problem as follows.

Φ({Ki,Ri,oi, ci}, {Zk})

= Ψ({Ki,Ri,oi, ci}, {Zk}) + τ
M∑
i=1

‖ci‖1
such that

∀k,
N∑
n=1

Zn,k = 03×1

∀k, ‖Zk‖22 = 1
∀i, ‖ci‖22 = 1

(5)

where Ψ is defined in Eq. (3), ‖ · ‖1 denotes the L1-norm and∑M
i=1 ‖ci‖1 is the sparsity regularization that we introduce

to remove subspace rotation ambiguity as follows. The three
groups of constraints can remove the shape translation, shape
scale, and coefficient scale ambiguities, but they cannot re-
move the subspace rotation ambiguity, because a subspace ro-
tation does not change the center or the L2-norm of any basis
or the L2-norm of any coefficient vector.

We note that, given the L2-norm constraint ‖ci‖2 = 1, the
L1-norm ‖ci‖1 is minimized when only one element in ci is
1, and 0 for all others. Therefore, in the absence of feature
noise, the sparsity regularization favors shape bases whose co-
efficients are mostly zero except for a few; in the presence



of noise, it will balance between fitting error and coefficient
sparsity. Such shape bases are intuitive for human observers
because they are similar to what is observed in the input im-
ages.

We note that, for any solution p = {Ki,Ri,oi, ci,Zk}, we
can always use {tk}, {αk}, and {βi} defined above to trans-
form p to an equivalent solution that satisfies the three groups
of constraints. We can then refine it using the following opti-
mization procedure.

4.1. Minimization of Eq. (5)
We divide all of the unknowns in two groups: camera vari-

ables {Ki,Ri, ti, ci} and shape variables {Zk}. Such a divi-
sion allows us to build our solution upon existing bundle ad-
justment techniques [6]. Indeed, if K = 1, our problem is the
same as the classic metric bundle adjustment problem. When
K > 1, our problem is equivalent to a bundle adjustment prob-
lem in which each camera has an additional parameter ci, and
each shape point has a dimensionality of 3K rather than 3.

Specifically, following [6], we use the axis-angle represen-
tation for Ri and the local tangent plane parameterization for
the unit vector ci; doing so removes the constraints on ci.
Since the number of views is often large, this parameterization
makes the constrained optimization more efficient. We do not
use reparameterization to remove the first two groups of con-
straints on shape bases, because it is not easy to find an explicit
parameterization that always satisfies these constraints. Even
if such a parameterization exists, we prefer to leave them as
constraints because each constraint contains many variables.
Explicitly parameterizing them will very likely damage the
sparsity of the Hessian matrix in the optimization procedure.

At a current solution p, we compute the Hessian matrix H2

and gradient vector g and seek to compute the update vector
∆p subject to the two constraints on shape bases. We linearize
these two groups of constraints as

∀k,
N∑
n=1

∆Zn,k = 03×1,

N∑
n=1

Zn,k ·∆Zn,k = 0. (6)

We represent these 4K constraints in matrix form as
C∆p = 0 and compute ∆p by solving the following linear
system augmented by a Lagrangian multiplier λ[

H CT

C 0

] [
∆p
λ

]
=
[

g
0

]
. (7)

In fact, our method is the standard Sequential Quadratic Pro-
gramming (SQP) method; we provide details here to illustrate
how the classical sparse bundle adjustment technique can be
conveniently extended to solve our problem with constraints.

We use the Schur-Complement method [7] to solve this
equation. We first compute λ by solving (CH−1CT)λ =
CH−1g and then compute ∆p = H−1g − H−1CTλ. Note

2For readers familiar with the notations in Hartley and Zisserman [6],

H has the form
»

U∗ W
WT V∗

–
, which is augmented by multiplying their

diagonal entries by a factor of 1 + κ, for varying parameter κ.
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Figure 2. The effectiveness of sparse regularization in Eq. (5). The
initial bases (middle row) span the same linear subspace as the ground
truth bases do (top row). However, they require a denser set of com-
bination coefficients. After bundle adjustment with sparse regular-
ization, the final basis estimates (bottom row) resemble ground truth
bases well because the Eq. (5) favors bases with sparse coefficients.

that in this process, the key intermediate results we need to
compute are A = H−1CT and b = H−1g. Computing the
inverse of H is expensive, but we can compute it by solving
HA = CT and Hb = g, respectively. Solving an equation
like Hf = q is exactly what a classic sparse bundle adjustment
does. In summary, our iterative procedure works as follows:

1: evaluate Hessian H, gradient g, and constraint matrix C;
2: compute [A,b] = H\ [CT,g];
3: compute λ = (CA)\Cb;
4: compute ∆p = b−Aλ.

We augment the diagonal of H as done in Levenberg-
Marquardt [7] so the step size is automatically selected. We
approximate |x| as

√
x2 + ε2 − ε so that its derivative can be

conveniently computed without the kink.

5. Experimental Results
We have implemented both model evolution and compres-

sive shape bundle adjustment in C++. We created both real
and synthetic data to evaluate our methods.

5.1. Effectiveness of Sparse Regularization in Eq. (5)
In this example, we demonstrate the effectiveness of the

sparse regularization in Eq. (5) and show that it favors basis
shapes that resemble actual shapes well, rather than an arbi-
trary linear combination of bases. We generate five ground
truth basis shapes; due to space constraints only three are
shown in Figure 2. For each basis shape, we project it to 10
different images. With these 50 images, we estimate the shape



bases. We set our initial shape bases by rotating the ground
truth bases by a 5 × 5 rotation matrix, shown in the second
row of Figure 2; we also apply the inverse of the same rota-
tion matrix to the basis coefficient vectors, as in Eq. (4). These
initial bases span the same subspace as the ground truth bases,
although they do not resemble natural looking faces. If we set
the sparse regularization weight to τ = 0 in Eq. (5), the opti-
mization will not update the initial bases because they fit the
image data perfectly. If we set τ = 100, the final estimated ba-
sis shapes resemble the ground truth bases well because, with
these bases, the linear combination coefficients are sparse.

5.2. SUV Example
We have collected a set of 100 SUV images from the web,

containing 20 different SUV makes (Touareg, Landcruiser,
etc.), examples of which are shown in Figure 3. Each SUV
is shown in 5 images in the set. Since the viewpoints of im-
ages for each particular SUV model are randomly distributed
and are often widely separated, it is difficult to reconstruct the
complete 3D model for each vehicle individually using a tradi-
tional approach. We defined N = 54 local features (e.g., door
knobs, windshield corners) that are common to all SUV mod-
els in our image set. We manually marked the visible features
on each of the 100 images.

There are two challenges in applying previous NRSFM
methods to this data set: (1) the large amount of missing fea-
tures (> 60%) due to the significant viewpoint differences and
(2) the strong perspective effect in the images. As discussed in
Section 2.4, no previous methods have been successful in the
presence of both challenges.

Indeed, we have experimented with one of the state-of-the-
art methods [11] that has shown promising performance with
respect to missing data. It unfortunately does not perform ef-
fectively on our data, which we believe is due to the fact that
the method assumes that missing data is randomly distributed.
In practice the distribution of missing data due to occlusion is
structural.

Figure 4 shows the result of our method. This result ver-
ifies that the recovered compressive 3D model fits the input
image features well. We use Q = 16 in the model evolution,
τ = 100, 5 basis shapes, and a maximum of 20 bundle ad-
justment iterations for estimating the compressive shape rep-
resentations. The model evolution takes 32 seconds and the
compressive shape bundle adjustment takes 1.5 minutes.

5.3. Deforming Spiral Example
In this example, we synthetically created a deformation

process in which a spiral object is bent gradually from a cylin-
der shape to a torus shape. Such a deformation is highly non-
linear. We sampled 100 points uniformly along the spiral and
generated 500 perspective images depicting the deformation
process from random viewpoints around the object. Some of
the input images are shown in Figure 5. Each image has about
50 visible feature points. Occlusions are simulated by com-

Figure 3. A subset of images used in our experiment for SUV shape
reconstruction. Our full collection has 100 images in total, containing
20 different SUV makes each with 5 images. Since the viewpoints of
images for each particular SUV model are randomly distributed and
are often widely separated, it is very challenging to take a traditional
approach to individually reconstruct the complete 3D model for each
vehicle. We demonstrate that, by combining all the images together,
the family of the SUV shapes can be recovered.

puting the inner product between line of sight and surface nor-
mal, which means they are structural rather than randomly dis-
tributed on the surface. This data set has all the challenges that
existing NRSFM methods cannot handle: perspective camera
projection, severe occlusion due to large viewpoint change,
and large non-linear deformation.

Figure 6 shows the result of our method. Again, the recov-
ered compressive 3D model fits the input image features well.
We use Q = 16 in model evolution, and τ = 100, 50 basis
shapes (much larger than the SUV example), a maximum of
20 bundle adjustment iterations for estimating the compressive
shape representations. The model evolution takes 2.5 minutes,
and the compressive shape bundle adjustment takes 2.5 hours
for this case due to the larger number of points and views com-
pared to the SUV example.

5.4. Human Skeletal Motion Example
We now evaluate our method on input data with smooth

camera trajectories. We generate the input using the golf mo-
tion from the CMU Mocap database (subject #63). The mo-
tion is represented as a sequence of joint angles and we ap-
plied different skeleton parameters from 20 people (also from
the same data base) on this motion and generated 20 3D mo-
tion sequences. Golf swing is a very fast motion; in order to
guarantee a continuous deformation hence a connected model
graph, we adaptively interpolated the 3D motion data so that
the inter-frame differences are below a threshold (roughly 2%
of skeleton size). Then we project each interpolated 3D se-
quence to a camera rotating around the subject (0.5 degree per
frame) with a random initial camera position. Each sequence
has about 400 frames and in total we have 7924 input frames.
For each frame, we sort the 3D points based on their distance
to the camera and discard the farthest 30% to simulate struc-
tural occlusion.

We use Q = 16 for this data set. After model graph traver-
sal, we obtained 7866 3D models. We first verify that for most
frames, its ground truth model is very close to at least one of its
associated models. Specifically, for each frame, we compute
the 3D registration error between its ground truth and its 3D
reconstruction and record the min error. Figure 7 shows the
histogram of this min error over all the frames, which suggests
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that for more than 80% of the frames, this min error is below
0.1, about 6% of the model scale.

For the rest 20% of the frames, their ground truth models
are not similar to any of their reconstructions. This is because
during model graph traversal, once a frame is used to recon-
struct a model, it is removed fromL. That is, a frame is used to
reconstruct multiple consistent models but it may not necessar-
ily be used to reconstruct a model that is similar to its ground
truth. In practice, we found that, the ground truth models for
these 20% frames can be found within the full set of 7866 re-
constructed models. In particular, for each of the 20% frames,
we can find one model within the 7866 reconstructed models
with less than 6% 3D registration error. That is, the full set of
reconstructed models and the set of ground truth models are
very similar; but not every frame is associated with a model
that is very close to its ground truth due to projection ambi-
guity. This ambiguity cannot be resolved without additional
assumption, such as temporal coherence in a video. If we keep
traversing the model graph (without removing images fromL),
eventually each frame will be associated with a model that is
very close to its ground truth; however, this will be very time-
consuming. We have not run compressive bundle adjustment
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Figure 7. The histogram of the minimum alignment error between the
reconstructed 3D models for each image and its ground truth model
after model graph traversal. See Section 5.4 for details.

on this data set because of its size.

5.5. Intuitions for Choosing Q and ε

Q is the number of images in a cluster. If input images
contain few occluded feature points, a small Q (such as 5) can
be used; otherwise a larger Q is needed to ensure a complete
model can be reconstructed from Q images.
ε is the maximum reprojection error allowed for images in a
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Figure 6. Illustration of the compressive shape models recovered in the deforming spiral example. (a) A recovered spiral basis shape (shown as
the red-colored point cluster at the center) and the camera viewpoints (shown as the surrounding blue points). (b) An overlay of reconstructed
model and ground truth model from viewpoints that are not in the input viewpoints. Note these models are registered for comparison. (c) An
overlay of both reprojected 3D points (blue crosses) and 2D features (red circles). The average reprojection error ranges from 0.005-0.02 units
(this is a synthetic data set; the units are arbitrary) and the scale of spiral is 3 units, so the error is about 0.2-0.7%. Best viewed electronically.

cluster to be considered consistent. A small ε limits the num-
ber of consistent clusters in the graph model and may cause
the model graph to be unconnected; consequently our traver-
sal algorithm may not find a model for all images. On the other
hand, if ε is too large, inconsistent clusters will be mislabeled
as consistent, thereby generating inaccurate models. In our
experiments, ε was set to 3%-5% of the image size.

6. Discussion and Future Work
In this paper, we have introduced a new concept we call

a model graph, which we use as a framework for NRSFM.
Based on this concept, we develop a new algorithm called
model evolution that addresses three challenges that existing
NRSFM methods face: severe occlusion, perspective camera
projection, and large non-linear deformation. We also pro-
pose a compressive shape representation to reduce the model
complexity produced by the model evolution algorithm, and
demonstrate how to extend the classic bundle adjustment tech-
nique to estimate the compressive shape representation. Our
preliminary experiments are encouraging. There are three fu-
ture research directions we are planning to pursue. First, our
current model graph traversal is quite heuristic; we are in-
terested in design efficient optimal algorithms to traverse the
graph. Second, we would like to investigate ways to automat-
ically identify seed clusters, and extend our approach to han-
dle image sets that include multiple connected components,
which may correspond to completely different objects. Third,
we are developing robust feature matching algorithms that can
be used to automatically generate input data for our NRSFM
algorithm.
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