Stereo Matching with Nonparametric Smoothness Priors in Feature Space

Brandon M. Smith
University of Wisconsin—-Madison

bmsmith@cs.wisc.edu

Abstract

We propose a novel formulation of stereo matching that
considers each pixel as a feature vector. Under this view,
matching two or more images can be cast as matching point
clouds in feature space. We build a nonparametric depth
smoothness model in this space that correlates the image fea-
tures and depth values. This model induces a sparse graph
that links pixels with similar features, thereby converting each
point cloud into a connected network. This network defines
a neighborhood system that captures pixel grouping hierar-
chies without resorting to image segmentation. We formulate
global stereo matching over this neighborhood system and use
graph cuts to match pixels between two or more such net-
works. We show that our stereo formulation is able to recover
surfaces with different orders of smoothness, such as those
with high-curvature details and sharp discontinuities. Fur-
thermore, compared to other single-frame stereo methods, our
method produces more temporally stable results from videos
of dynamic scenes, even when applied to each frame indepen-
dently.

1. Introduction

Stereo matching has been one of the core challenges in
computer vision for decades. Two categories of solutions have
been proposed: local methods and global methods. Local
methods use a larger neighborhood (7 x 7 for example) around
each pixel; they have the flexibility to model parametric sur-
faces (such as a quadratic patch) within the neighborhood, but
have difficulties in handling occlusion, which is a global prop-
erty of the scene. Global methods use a smaller neighborhood
(often a pair of pixels) to impose surface smoothness; they
are good at reasoning about occlusion but are often limited
to modeling piecewise planar scenes. In this work, we seek
to combine the advantages of both approaches by designing a
global stereo matching method that uses a large neighborhood
to define a depth smoothness prior.

Using a large neighborhood gives us the opportunity to
model complex local shapes; however, it is also challenging.
Take the image in Figure 1 as an example. Different patches
have different types of smoothness: flat planes, discontinuous
segments, and high-curvature folds. Assuming a single para-
metric surface type would not be a robust solution in all cases,
we argue that a nonparametric smoothness model should be
used for a large neighborhood. Furthermore, it is well accepted
that image features such as intensity edges [4] and color seg-

University of Wisconsin—Madison

lizhang@cs.wisc.edu

Hailin Jin
Adobe Systems Inc.

hljin@adobe.com

Li Zhang

,' .‘-.
Left Cloth3 image [17] Our depth map Woodford et al. [31]
TR kY ~ 7
'\«‘TE flat plane by C a4 -

v
}discontinuity >

high curvature

Smoothness types 2.01% bad pixels 6.33% bad pixels
Figure 1. Different image regions correspond to 3D surfaces with
different types of smoothness, as shown on the left. Such smooth-
ness properties are often highly correlated with local image features
such as intensity gradients and shading. We propose a nonparametric
smoothness prior for global stereo matching that models the correla-
tion between image features and depth values. Depth maps estimated
using this model preserve both high-curvature surfaces and sharp dis-
continuities at object boundaries, as shown in the middle. Our method
compares favorably to an existing state-of-the-art method [31] that
uses a fixed (2nd) order smoothness prior, shown on the right. Our
method also has the advantage of being able to generate stable depth
maps for videos of dynamic scenes. Bad pixels (black) are those
whose absolute depth errors are greater than one. Best viewed in
color.

ments [25] provide important cues for depth estimation. We
therefore hope that this nonparametric model will also be able
to represent the correlation between image features and depth
values in a large neighborhood.

Toward this end, we build a nonparametric depth smooth-
ness prior model that correlates the image features and depth
values. Our key idea is to consider each pixel as a feature vec-
tor and view each image as a point cloud in this feature space.
In general, the feature vector for each pixel can include its
position, shading, texture, filter bank coefficients, efc., which
provide cues that are often correlated with surface continu-
ity, curvatures, efc. Under this view, matching two images
can be cast as matching two point clouds in feature space. In
this space, we introduce a nonparametric model that correlates
feature vectors and depth values. For each image, this model

induces a dense graph with weighted edges that connect pix-
els.Given a pair of such graphs that represent two images, we
match pixels between them using the graph cuts method [5].
Our work makes the following three major contributions.

e Nonparametric Smoothness in a Large Neighborhood
We propose to use kernel density estimation in a large
neighborhood to correlate image features with depth val-
ues. Using this correlation prior in a global matching
framework, our method is able to preserve both high-
curvature shape details and sharp discontinuities at object
boundaries, as shown in Figure 1.

e Sparse Graph Approximation Our large neighborhood
smoothness prior yields an energy function defined over
a dense graph that is challenging to minimize. We pro-
pose novel techniques to simplify the energy function and
approximate the dense graph with a sparse one that con-
tains its dominant edges. Applying graph cuts for stereo
matching over such sparse graphs has the same computa-
tional complexity as matching over regular image grids.

e Stereo Matching with Implicit Segmentation Our
sparse graph differs from the original image grid in that
it connects pixels with similar feature vectors. Such a
graph encodes an image segmentation hierarchy. In prac-
tice, matching pixels over such graphs preserves the dis-
continuity boundaries well, but without requiring seg-
mentation as a preprocessing step. Segmentation is of-
ten temporally inconsistent when applied to videos; by
avoiding it as a preprocessing step, our method recov-
ers a more temporally stable depth estimate for dynamic
scenes, even when applied to each frame independently.

Our method is simple to implement: by replacing rectangular
image grids with our sparse graphs, one can use our idea in
most of the global stereo matching methods. We use it in clas-
sic graph cuts stereo [5] in this paper. We show that our stereo
formulation clearly improves upon existing methods on both
the Middlebury benchmark dataset [17, 19] and on a range of
real-world video examples with different content.

2. Related Work

In the last decade, great progress has been made in the
stereo matching literature. We refer readers to [18] and [20]
for excellent reviews on two-view and multi-view stereo meth-
ods, respectively. One breakthrough is the application of MRF
inference algorithms in stereo [24], which enables efficient es-
timation of piecewise smooth depth maps. When using this
approach, most algorithms [11, 23] use first-order smoothness
priors which favor fronto-parallel planes.

One approach to address this issue is to use “segment-
based” stereo, proposed by Birchfield and Tomasi [1] and Tao
et al. [25]. In Tao et al.’s work [25], they assume that image
regions with uniform color correspond to planar 3D surfaces.
This idea has inspired many recent works on stereo match-
ing [10, 22, 32, 33], just to name a few. Almost all of the
top performing methods on the Middlebury website [18] use

segments for stereo matching, either directly [10] or as a con-
straint [22, 32, 33]. The segment-based stereo methods favor
piecewise planar reconstruction. One potential problem with
segment-based stereo methods arises when they are applied
to videos of dynamic scenes. Since image segmentation is
usually inconsistent between video frames [30], the resulting
depth estimation often includes “popping” artifacts [36]. In
contrast, our method does not require segmentation as a pre-
processing step, and therefore often produces more temporally
stable depth maps in practice.

The other approach to address the bias toward “fronto-
parallel” planes is to use second-order (or higher-order)
smoothness priors. In the early 1980s, Grimson [9] and Ter-
zopoulos [26] both proposed second-order priors for stereo.
Later Blake and Zisserman [3] proposed a piecewise second-
order model. However, second-order priors have not been
widely used in recent global stereo matching methods because
it is difficult to minimize an energy function if second-order
terms are included. In [15], Lin and Tomasi minimized an
energy function including a second-order prior using an opti-
mization procedure that alternates between segmentation and
depth estimation. Recently, Woodford et al. [31] used an ex-
tension of a-expansion to effectively optimize energy func-
tions that involve triple cliques for second-order prior terms.
Methods based on second-order priors produce excellent re-
sults. However, as shown in Figure 1, they favor piecewise
planar surfaces, which are not ideal for dealing with curved
surfaces such as those with folds that have different curva-
ture in different directions. Li and Zucker [14] proposed a
method that uses both second- and third-order priors for depth
estimation, thereby allowing curved surfaces in the solution.
However, their method requires that local surface normals to
be pre-computed. In contrast, our prior model is nonparamet-
ric. It correlates depth values with image features without the
need of specifying a fixed order. As a result, our method is able
to preserve both discontinuity boundaries and high-curvature
surface details like folds, as shown in Figure 1.

Our work is very much inspired by Tsin and Kanade’s
work [28]. They proposed using kernel correlation between
3D points as a nonparametric smoothness prior for stereo
matching. However, they do not offer global solutions to
minimize their energy function. Instead, they resort to per-
pixel winner-take-all estimation, which is sensitive to the ini-
tial depth estimate. We propose novel techniques to approxi-
mate our nonparametric prior and use graph cuts to efficiently
optimize its upperbound. Lan er al. [13] proposed using adap-
tive state space reduction to approximate higher order MRFs
with 2 x 2 cliques and demonstrated its application for de-
noising. In our case the clique size is usually much larger. It
remains an interesting question whether their method can be
used in stereo vision. Veksler [29] proposed using a single
tree extracted from the original image grid for stereo match-
ing. In her trees, only neighboring pixels can be connected.

Our sparse graphs consist of multiple trees and each can con-
nect pixels that are not immediate neighbors. This large neigh-
borhood flexibility allows our method to better preserve object
boundaries.

In [34], Yoon and Kweon proposed a weighted window
matching metric for local stereo matching. In our work, the
approximated upperbound energy uses weights of the same
form as theirs. However, their method is a local method that
assumes disparity is the same in each window; our method,
which is a global method, does not make such an assumption.
Freeman and Torralba [8] infer 3D scene structure from a sin-
gle image. Unlike Freeman et al.’s approach, our method does
not require training images—regression coefficients are based
on feature vector proximity.

3. Problem Formulation

In this section, we define our stereo matching model. For
notation clarity, we present our model on binocular stereo.
However, our approach can be easily extended to handle multi-
view stereo, as shown in our results section. Given a stereo
image pair, I; and I3, we compute their disparity maps, D;
and Dy, respectively, by minimizing the following function ®:

(I)(D17D2) :(I)ph(DlaD2)+(I)sm(D1)+©sm(D2)7 (1)
where ®,;, measures photo consistency and ®g,,, regularizes
the depth maps. The subscripts “ph” and “sm” stand for
“photo” and “smooth” respectively. In our model, the regular-
ization gy, is our novel contribution; the photo consistency
measure Py, is based on previous work.

3.1. Photo Consistency

Many photo consistency measures have been proposed in
the literature [18]. We use the one proposed in [11], which
incorporates geometric visibility. Specifically,

Opu(D1, Da) = Y dpnldp, dy),)
pely
where d, = D (p) is the disparity for pixel pin I1, ¢ = p +
D (p) is p’s corresponding pixel in I5, and d, = Ds(q) is the
disparity for ¢ in I. ¢y, is defined as

0, if dp < dg;
Gpn(dp,dg) = § ppu(llep — Cq||2)a if dp = dg; 3
0, if d, > d,.

where ¢, = I1(p), ¢; = I2(g), and ppy, is a robust metric for
photo consistency. We use ppn(2) = min(0, |z| — 7n). For
multi-view stereo, photo consistency is measured over a set of
selected image pairs as in [11].

3.2. Regularization using Nonparametric Regression

Regularization plays a key role in stereo matching. With-
out regularization, stereo matching is not only susceptible to
image noise, but is also largely ambiguous. We write our reg-
ularization in the following form:

P (D) = Z Psm (dp; {dq}qup)v 4)

pel

where ¢, models the correlation between the disparity d,, for
pixel p and the other disparity d, for pixel g in p’s neighbor-
hood N,

Traditionally, a neighborhood is defined based on the image
grid, such as 4- and 8-neighborhood systems. Such a neighbor-
hood definition is incompatible with human perception: when
we see an image, we associate pixels with similar visual fea-
tures and perceive object parts (image segments) and hierar-
chies rather than a grid of pixels.

In this paper, we use this fact to argue that the neighborhood
system should not be limited to the image grid. Instead, we
view each pixel as a feature vector and each image as a point
cloud in feature space, and therefore define the neighborhood
between pixels in this feature space. A consequence of this
definition is that finding a pixel grouping hierarchy comes out
naturally as one step toward finding an approximate optimal
solution of stereo matching.

There are many quantities which we can assign as a feature
vector to each pixel: for example, pixel location x = [z, y],
color ¢ = [R,G, B|, steerable filter responses, etc. In our
current implementation, we use the 5D vector f = [x,c| as
the feature vector for a pixel at location x with color c.

To formulate regularization in feature space, we consider a
pixel p with its neighbors V. In general, N, includes all other
pixels in the image excluding p. We seek to predict d,, based
on the information in N, using nonparametric regression [2].
Specifically, we model the joint distribution of disparity d and
feature f in V, as

P(d,fIN,) = 7 D 9a(55) 00 (5524)g(55%2), (9)
qEN,
where ¢4, g, and g. are the kernel functions for disparity d,
pixel location x, and pixel color c, respectively, and o4, 0,
and o are the associated bandwidths. To predict d,,, we com-
pute the conditional probably of d, given f,, which can be
shown (e.g., in [2]) to be

d|fp7 Z Wp, qu (6)
geEN,
where xxy) (e
Wp,q = gz(pr):ZC(cp)cq : (7)
Z 9o (T 1) ge (1)
qEN, P

Eq. (6) follows a mixture distribution; we use it to construct
the regularization for d,,. ¢« in Eq. (4) therefore becomes

d)sm(dP;NP) = 7)‘10g(P(dP|fP7NP))7 (8)

where)\ is the regularization coefficient. In practice, we do
not need to use the whole image to evaluate P(d,|f,, V,) in
Eq. (6). Instead, we evaluate it only within the support of the
kernel functions. Examples of the weight distribution w,, 4 are
shown in Figure 2.

Note that Eq. (8) depends on both unknown variables
(depth) and observations (pixel color and location). This en-
ergy function can be formulated in a Conditional Random

Field (CRF) framework [12] as in [17]. This formulation can
help learn the hyper-parameters (o4, A, etc.), which is a future
research topic. In the CRF, the log of Eq. (6), or Eq. (7), is
viewed as a “feature” function [12], which can take any ana-
lytical form. Eq. (6) itself is not the exact marginal distribution
of the CRF; it is used only to predict the depth of a pixel from
its neighbors.

4. An Optimization Algorithm

Optimizing Eq. (1) with Eq. (8) as a regularization term is
a challenging task for two reasons. First, each ¢gm(dp; Ny)
is based on the conditional distribution P(d,|f,, N,) which is
multi-modal and therefore has many local optima. Second,
each term involves a large number of disparity variables, mak-
ing methods such as graph cuts [5] and belief propagation [22]
inapplicable or computationally expensive. We present three
approximation techniques to solve this problem.

Our solution has two stages. First, we quantize the dis-
parity space and apply discrete optimization to find an initial
solution. Second, we apply continuous optimization to refine
the initial solution at subpixel resolution.

4.1. Discrete Initialization

In this stage, we first design an upperbound for Eq. (4)
which only consists of terms with two disparity variables, and
then find an efficient way to optimize this upperbound.

4.1.1 The Upperbound &, for &,

We note that — log(+) is a convex function. Therefore, using
the expression of P(d|f,) in Eq. (6), we have the following
inequality for ¢gp, in Eq. (8):

Samn(dpi Ny) < —A 3" wpqloglga(52).)
qeEN,

Let pan(d — dg) < —log(ga(%5%)). Substituting Eq. (9)
into the original regularization energy in Eq. (4), we obtain an
upperbound &, for @4, that only consists of terms with two

disparity variables

Py (D) < 5, (D) =)‘Z Z Wp,qPsm(dp — dg), (10)

p€El qEN,

where the superscript “u” stands for “upperbound.” In this
upperbound, each term is modulated by the feature-similarity
weight w,, , in Eq. (7). Replacing ®,,, with ®f, in the original

stereo model of Eq. (1), we have an upperbound ®" for ®:
@ (D1, D3) = @pn (D1, D2) + @5, (D1) + @5, (D2). (11)
In principle, graph cuts can be applied to optimize ®"; in prac-

tice, it is computationally expensive to execute because P
includes a huge number of pairwise terms.

4.1.2 Sparse Graph Approximation

To efficiently optimize Eq. (11), we notice that many of the
wp,q weights are small, such as those that involve two pixels
that are located far apart or have very dissimilar color. We

Figure 2. Illustration of weight wy, 4 in Eq. (7) and edges in the sparse
graph described in Section 4.1.2. Left: Close-up views of Cloth3
(top) and Teddy (bottom) from the Middlebury dataset. Right: The
neighborhood weights w, 4 for the center pixel are shown by the in-
tensity of the pixels in the images. The sparse graph edges for the
center pixel are shown as red line segments. The graph connects pix-
els with similar image features; these pixels may not be spatially near
one another on a regular image grid.

ignore these terms and seek to find a set of dominant terms
that approximate @3, .

To find such a set, we form a graph G in which each pixel
is a node and each w),, , constitutes a weighted edge between
p and q. We make this graph undirected by combining edges
p—q and g—p together with a weight w), +wyq . This graph is
dense; we hope to approximate it using a sparse graph G° with
maximum total edge weights. Our final goal is to approximate
@, with only terms that correspond to the edges in the sparse
graph. With this goal in mind, we require this sparse graph to
be connected so that every pixel will be regularized.

Graph sparsification is a research topic in graph theory [21].
In this work, we use the following procedure to find a sparse
graph. For an image with L pixels, the sparsest connected
graph is a spanning tree with L — 1 edges. We find the maxi-
mum spanning tree using Kruskal’s algorithm [7]' to approxi-
mate the original dense graph. Removing the tree edges from
the original graph, the remaining graph is still very dense. For
a better approximation, we find a second tree within the re-
maining graph, still using Kruskal’s algorithm. Furthermore,
we can iteratively find 7" trees and merge all these trees to-
gether to form a sparse graph that approximates the original
dense graph. Such a sparse graph G® has at most T'(L — 1)
edges and is used to define an approximated upperbound ®%7 .

Pon (D) = 5L (D) = A Z Wp qPsm(dp — dg), (12)
(p,q)€g®
where the superscript “au” stands for “approximated upper-
bound.” Substituting ®;,, with @2} in Eq. (11), we have an
approximated upperbound ®2" for the original stereo model ¢
of Eq. (1):
O™(Dy, Dy) = Py (D1, D) + BF (D1) + @4y (D). (13)

IKruskal’s algorithm is for computing a minimum spanning tree, we run it
on our graph with the edge weight C — wy,_ 4, where C is a large constant.

0% pixels coﬁnected

82% pixels cohnectéd

IO S L
T TR

95% pixels connected

98% pixels connected 100% pixels connected

o

i
3!

Figure 3. An illustration of constructing a pixel neighborhood system in feature space. Each pixel is represented as a feature vector in the
feature space (shown as a 2D point in the bottom row for illustration purpose). Each edge connecting two pixels has a weight defined in Eq. (7);
more similar features share an edge with larger weight. We compute a maximum spanning tree for the pixels using Kruskal’s algorithm [7].
This algorithm initially treats each pixel as a single point cluster. It then iteratively merges two nearest clusters by connecting two points,
one from each of these two clusters, until all the clusters are connected. This process is shown in the bottom row; the thickness of the edges
represents the hierarchy level. For each cluster at each iteration, we color it using its average color, shown in the top row. Such a tree encodes
an image segmentation hierarchy; we build a sparse graph for an image using several such trees. Stereo matching with such sparse graphs as a
neighborhood systems has the advantage of implicitly exploiting a segmentation structure without making hard decisions about how to break
an image into segments. This advantage leads to improved temporal stability in the depth estimation for videos of dynamic scenes.

In practice, we find T' = 2 works well, in which case we have
about 2L edges in the sparse graph. This is almost the same
number of graph edges in the 4-neighborhood system defined
over an image grid. Furthermore, Eq. (13) satisfies the metric
constraint required by the graph cuts algorithm. Therefore, we
can apply graph cuts to efficiently optimize Eq. (13). Exam-
ples of local connections of such sparse graphs are shown in
Figure 2.

Connection to Image Segmentation One interesting prop-
erty of this sparse graph is that it captures the pixel grouping
hierarchy. This can be explained by the way Kruskal’s algo-
rithm works. This algorithm initially treats each pixel as a sin-
gle point cluster. It then iteratively merges two nearest clusters
by connecting two points, one from each of these two clusters,
until all the clusters are connected. We illustrate this procedure
in Figure 3. During this procedure, if the merging is stopped
based on a predefined threshold, we can obtain a set of discon-
nected image segments. Indeed, such an idea has been used
for image segmentation [35].

Image segments are widely used by stereo algorithms for
stereo matching, such as [10, 22, 32, 33]. In practice, the seg-
ments are generated by segmentation methods such as mean
shift [6]. Since image segmentation is usually inconsistent be-
tween frames [30], the resulting depth estimation often has
“popping” artifacts [36] when segment-based stereo is ap-
plied to videos of dynamic scenes. By computing a full mini-
mum spanning tree, our method avoids making hard decisions
about how to break images into segments before stereo match-
ing. Performing matching on the sparse graphs that consist of
several minimum spanning trees, our method produces more

temporally stable depth maps while maintaining clean object
boundaries, even if the matching is done in a frame-by-frame
fashion.

4.2. Continuous Refinement

Given the discrete disparity estimation in Section 4.1.2 as a
starting point, we now compute disparity with subpixel resolu-
tion. We can simultaneously update all the disparity values or
individually update each disparity in turn. Since the Jacobian
matrix for Eq. (11) is quite dense due to the large number of
pairwise terms, we choose to update each disparity value in-
dividually. We find this simple choice works well in practice,
as our initial solution generated by global matching is usually
quite close to the true solution.

To update d,, we consider the sum of all the terms that
involve disparity d,, in Eq. (11). Let this sum be ¢(d,):

#(dp) = ¢pn(dp, dp+dp) + Z Wy gPsm(dp —dg), (14)
qeEN,

and we need to search for
d, = arg n;in o(dp). (15)

P
Since d,, is a scalar, we can use either an exhaustive line search
or a gradient-based search [16]; we choose to use the latter as
it is more efficient given a good initialization.
In our formulation, gradient-based search can be approxi-
mated as a trilateral filtering. We exploit the fact that most of
the image regions have low contrast. Over these regions, the

2Eq. (14) misses a few terms that involve d, for example, the terms that
p contributes to g if p € Ny. However, we find this simple approximation
works well in practice.

-

3

et : a
o €
¥ f e .e. |

(a) Left Cloth2 image [17]

(e) Ground truth (f) 25.06% bad pixeis .

photo consistency term ¢y, in Eq. (14) is roughly a constant
with respect to d, and its derivative gb;)h ~ 0. Consequently,
the derivative of Eq. (14) can be approximated as
¢'(dp) = Z Wp,qPswn (dp — dg) (16)
qEN,
The updated estimate dy, is the solution to ¢'(d,) = 0. It can

be shown [6] that
> Wpqo(dp — dg)dg
d* — qENP
P > Wpqo(dp —dg)
geEN,
where o(-) = pl..(v/*)- Eq. (17) is a trilateral filter (pixel
location, pixel color, disparity) over the initial disparity map.

a7

4.3. Implementation

Our idea can be incorporated into existing global match-
ing methods by replacing regular image grids with the sparse
graph structures; we implemented it on top of the standard
multi-view graph cuts method [11]. Here, we discuss some
implementation details, which will allow the reader to more
accurately replicate our method.

We use the Gaussian kernels for pixel location x and color
¢ 9.(x) = ge(w) = exp(—) in Eq. (7). We use pon (z) =
min(|z|, Tem) in Eq. (12). 0, =~ 20 and 0. ~ 5 typically
perform well. We set 75, = 2 and 7, = 30 for all examples.
For two-view stereo, we find that A = 17.5 generates good
results. For five-view stereo, we use A = 8. On five 480 x 360
images, a neighborhood of 81 x 81, and 32 labels, the runtime
of our code is 15 min. We apply two iterations of trilateral
filtering, which is approximately equivalent to two iterations
of gradient search in terms of computation time.

5. Experimental Results
We have evaluated our method on different static images

and dynamic videos, and we show that it clearly improves
upon existing methods for both cases.

(b) Woodford et al. result [31] (c) Multi-view graph cuts result [11]

SACEET T

.)
TP j

"V

AL

(h) 3.41% bad pixels
Figure 4. Results demonstrating the effectiveness of our method on highly curved surfaces.

(g) 4.82% bad pixels

5.1. Highly Curved Surfaces

In addition to the results shown in Figure 1, we have evalu-
ated our method on other scenes with highly curved surfaces,
as shown in Figure 4. For this case, we compared our results
with those produced by the standard multi-view graph cuts
method [11] and those by Woodford et al.’s method [31]. Our
method outperforms both previous methods at object bound-
aries and in highly curved surface regions. We note that our
implementation is built upon graph cuts stereo with the regu-
lar image grids replaced by our sparse graph structure. This
suggests that the improvement in our results over the classic
multi-view graph cuts stereo [11] results is due to our novel
prior formulation.

5.2. Video Sequences of Dynamic Scenes

We have applied our method to videos of dynamic scenes
recorded using a five camera array. Even though our method is
applied to each frame separately, our depth estimation is more
temporally stable than other single frame methods [11, 31, 36].
Due to lack of space, we only show comparison with [31] in
Figure 5 in this paper. The standard multi-view graph cuts
stereo method [11] relies on a smoothness prior defined over
the rectangular image grid; it often does not preserve object
boundaries well and the boundaries tend to flicker over time.
The other methods [31, 36] based on image segmentation bet-
ter maintaining object boundaries, but we see jumps in large
regions of the depth map from frame to frame.

5.3. Static Images

In addition to performing well on dynamic video sequences
and highly curved surfaces, our method performs well on static
scenes. We have evaluated our method on the Middlebury
dataset [18] and our results are comparable to other top results.
Figure 6 shows Teddy and Cones results from our method and
two others, graph cuts and Klaus et al.’s method. Figure 7

(a) Reference image, frame 2

(b) Reference image, frame 3

(c) Reference image, frame 25 (d) Reference image, frame 26

(e) Woodford et al. results

(f) Our results
Figure 5. Depth results for two dynamic scenes using a five-camera. (a)-(b) Reference images from frames 2 and 3 of first scene. (c)-(d)
Reference images from frames 25 and 26 of second scene. (e) Depth results obtained using Woodford ef al.’s method [31]. (f) Depth results
from our method. Note the improved temporal stability of our results, especially in the highlighted regions.

shows quantitative error values for the four evaluation images.

6. Discussion and Future Work

We have shown in this paper that our approach of using
nonparametric smoothness priors in feature space is able to
handle different types of surface smoothness; it both preserves
object boundaries and accurately recovers highly curved sur-
faces. Furthermore, on dynamic videos, our method achieves
greater depth temporal stability than other methods, even when
applied to each frame individually. We believe our work opens
several interesting avenues for future work.

First, the effectiveness of our smoothness term is cur-
rently sensitive to the color and distance bandwidth parame-
ters, which are scene-dependent. We plan to explore parameter
estimation techniques in order to reduce the burden of param-
eter tuning. Second, we are interested in exploring other types
of image features, such as [27], into our model. Third, we
would like to find better ways of dealing with view-dependant
brightness inconsistencies present in many stereo images, for
example using window-based matching cost [34]. Finally,
we would like to explore in more detail how the number of
sparse trees employed affects the approximation accuracy of
the dense smoothness weight neighborhood.

Acknowledgement

This work is supported in part by Adobe Systems Inc.
References

[1] S.Birchfield and C. Tomasi. Multiway cut for stereo and motion
with slanted surfaces. In ICCV, 1999.

[2] C. M. Bishop. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer, 2006.

[3] A.Blake and A. Zisserman. Visual Reconstruction. MIT Press,
1987.

[4] A. F. Bobick and S. S. Intille. Large occlusion stereo. IJCV,
33(3):181-200, 1999.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy
minimization via graph cuts. TPAMI, 23(11):1222-1239, 2001.

[6] D. Comaniciu and P. Meer. Mean shift: A robust approach to-
ward feature space analysis. TPAMI, 24(5):603-619, 2002.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms, 2nd Ed. MIT Press, 2001.

[8] W. Freeman and A. Torralba. Shape recipes: Scene representa-
tions that refer to the image. In NIPS, 2003.

[9] W.E. L. Grimson. From Images to Surfaces: A Computational
Study of the Human Early Visual System. MIT Press, 1981.

[10] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo

matching using belief propagation and a self-adapting dissimi-
larity measure. In ICPR, 2006.

ol

(a) Klaus et al.’s results [10]

(b) Our Results

(c) Multi-view graph cuts results [11]
Figure 6. Our depth results and the results from two other methods.
(a) Klaus et al.’s results [10] on the Middlebury dataset [19]. (b) Our
results using parameters tailored to each stereo pair. (c) Multi-view
graph cuts results [11] also using tailored parameters. Our method
improves upon graph cuts and is comparable to Klaus et al.’s method,
which is the top overall performer on the Middlebury evaluation web-
site as of Nov. 15, 2008. Quantitative error rates are given in Figure 7.

‘ HTsukuba Venus Teddy Cones ‘ Avg. H Rank ‘

Klaus etal.|| 1.11 0.10 422 248 4.23 1
Our results, TP|| 0.84 0.81 640 3.29 5.85 7
Graph cuts, TP|| 1.07 2.12 8.03 4.21 6.71 19
Our results, CP|| 1.12 223 7.25 4.46 6.77 19
Graph cuts, CP|| 1.27 279 12.0 4.89 8.31 32

Figure 7. Middlebury evaluation of our results, compared with Klaus
et al. [10] and graph cuts [11], as of November 15, 2008. “TP” = pa-
rameters tailored to each individual stereo pair; “CP” = constant
parameters throughout. The numbers are the percentage of non-
occluded pixels whose depth differs from ground truth by more than
one level.

[11] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruc-
tion via graph cuts. In ECCV, 2002.

[12] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling
sequence data. In /ICML, 2001.

[13] X.Lan, S. Roth, D. Huttenlocher, and M. Black. Efficient belief
propagation with learned higher-order markov random fields. In

[14]
[15]
[16]
(7]

(18]

[19]

(20]

(21]
(22]
(23]

(24]

[25]

[26]

(27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]
(35]

(36]

ECCV, 2006.

G. Liand S. W. Zucker. Surface geometric constraints for stereo
in belief propagation. In CVPR, 2006.

M. H. Lin and C. Tomasi. Surfaces with occlusions from layered
stereo. In CVPR, 2003.

J. Nocedal and S. J. Wright. Numerical Optimization, 2nd Ed.
Springer, 2006.

D. Scharstein and C. Pal. Learning conditional random fields
for stereo. CVPR, 2007.

D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV, 47(1-
3):7-42, 2002.

D. Scharstein and R. Szeliski. High-accuracy stereo depth maps
using structured light. CVPR, 2003.

S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo reconstruc-
tion algorithms. In CVPR, 2006.

D. A. Spielman and N. Srivastava. Graph sparsification by ef-
fective resistances. In STOC, 2008.

J. Sun, Y. Li, S. B. Kang, and H.-Y. Shum. Symmetric stereo
matching for occlusion handling. In CVPR, 2005.

J. Sun, H.-Y. Shum, and N.-N. Zheng. Stereo matching using
belief propagation. TPAMI, 25(7):787-800, 2003.

R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappen, and C. Rother. A comparative study
of energy minimization methods for markov random fields with
smoothness-based priors. TPAMI, 30(6):1068—-1080, 2008.

H. Tao, H. S. Sawhney, and R. Kumar. Dynamic depth recovery
from multiple synchronized video streams. In CVPR, 2001.

D. Terzopoulos. Multilevel computational processes for visual
surface reconstruction. Computer Vision, Graphics, and Image
Processing, 1983.

E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for dense
matching. In CVPR, 2008.

Y. Tsin. Kernel Correlation as an Affinity Measure in Point-
Sampled Vision Problems. PhD thesis, Robotics Institute,
Carnegie Mellon University, September 2003.

O. Veksler. Stereo correspondence by dynamic programming
on a tree. In CVPR, 2005.

J. Wang, B. Thiesson, Y. Xu, and M. Cohen. Image and video
segmentation by anisotropic kernel mean shift. In ECCV, 2004.
0. J. Woodford, P. H. S. Torr, I. D. Reid, and A. W. Fitzgib-
bon. Global stereo reconstruction under second order smooth-
ness priors. In CVPR, 2008.

L. Xu and J. Jia. Stereo matching: An outlier confidence ap-
proach. In ECCV, 2008.

Q. Yang, L. Wang, R. Yang, H. Stewnius, and D. Nister. Stereo
matching with color-weighted correlation, hierarchical belief
propagation and occlusion handling. TPAMI, 31(3):492-504,
2009.

K.-J. Yoon and I. S. Kweon. Adaptive support-weight approach
for correspondence search. TPAMI, 28(4):650-656, 2006.

C. Zahn. Graph-theoretic methods for detecting and describing
gestalt clusters. IEEE Trans. on Computing, 20:68-86, 1971.
L. C. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using a lay-
ered representation. In SIGGRAPH, 2004.

