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ABSTRACT

We propose Trellis — an in-vehicle WiFi-based tracking sys-
tem that passively observes mobile devices and provides var-
ious analytics for transit operators. Our infrastructure is
fairly low-cost and can be a complementary, yet efficient,
mechanism by which such operators collect various infor-
mation, e.g., popular original-destination stations of pas-
sengers, waiting times of passengers at stations, occupancy
of vehicles, and more. A key challenge in our system is
to efficiently determine which device is actually inside (or
outside) of a transit vehicle, which we are able to address
through contextual information. While our current system
cannot provide accurate actual numbers of passengers, we
expect the relative numbers and general trends to be still
fairly useful from an analytics perspective. We have de-
ployed a preliminary version of Trellis on two city buses in
Madison, WI, and report on some general observations on
transit efficiency over a period of four months.
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1. INTRODUCTION

Public transit systems carry millions of users in their daily
activities throughout the year and are, sometimes, an impor-
tant part of public infrastructure provided by local govern-
ments. Like all systems, public transit has always looked
for mechanisms that allow them to improve their services
for people in terms of, say, what new routes or stops should
be introduced, how do peak and off-peak behaviors be han-
dled, and much more. Traditionally, these decisions are often
based on limited surveys — the local Madison Metro Tran-
sit would use infrequent volunteers ask people about their
transit preferences. However, just as mobile devices have
transformed crowd-sourced data collection in a whole range
of domains, we believe that transit systems can also bene-
fit significantly from it. In this paper, we advocate a fairly
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low-cost and simple system through which a transit opera-
tor can gather significant user and usage analytics about its
operations at a scale and form never possible before.

Examples of transit analytics and Trellis: Transit
systems typically need to learn about a lot of usage charac-
teristics. What are the most popular stops at different times
of the day; what are wait times for its passengers; how long
do they wait at exchange points waiting for the next ve-
hicle; how occupied are different vehicles at different times
of the day; and so on. Some of these questions are signif-
icantly related to funds allocated to them — in particular,
operators sometimes receive government funds based on how
many passenger-miles they carry annually [11, 3, 14]. Today,
these operators use a number of low fidelity methods to col-
lect such information. For instance, farecards swiped inside
inside buses may allow the operator to know the stations at
which passengers get on (although they might not be able
to infer where the passengers get off). Similarly, optional
surveys (either in person or over the phone) allow them to
collect other statistics. Approaches such as the above tend
to provide incomplete data or data with fairly low fidelity.

Our proposed system, Trellis, takes advantage of widely
available mobile devices and the popular notion of crowd-
sourcing from many passengers to quickly gather such infor-
mation at a significantly larger scale. Wi-Fi-based monitor-
ing system has been widely used in many related scenarios,
such as understanding network performance [8], estimating
vehicle trajectories [16], and tracking human queues [18].
Trellis is based on similar principles and is fairly simple —
it uses a low-end Wi-Fi monitoring unit mounted on the
vehicle to determine when a certain passenger gets on and
off the vehicle. The approach relies on the fact that many
mobile devices typically have their Wi-Fi function turned
on, which makes them sufficiently trackable. Obviously sys-
tems such as Trellis will miss accounting for passengers who
travel without mobile devices or those with their Wi-Fi func-
tion turned off, but our experience shows that we can still
track general trends in transit behavior quite effectively !.
We recommend our current version of Trellis to track rel-
ative trends in transit systems, as opposed to using them
for exact and absolute counts. (We note that in Trellis, we
maintain user privacy by simply using consistent hashes on
MAC addresses, and not the actual MAC address itself; the
latter is dropped immediately.)

!Techniques such as randomized MAC addresses may lead to
inaccuracies, but we should be able to systematically elimi-
nate all devices that do so, while still keeping relative counts
somewhat accurate.
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Figure 1: Different RSSI patterns between passen-
ger and pedestrian, and the Wi-Fi monitor installed
on vehicle.

We believe a simple and low-cost infrastructure such as
Trellis mounted on public transit vehicles can be used to
perform transit analytics for a wide range of questions effec-
tively. For the purpose of this paper, we demonstrate how
such a system maybe used to answer one specific question
(just as an example) — what are the origin-destination pairs
of the user population and how does the popularity of these
origin-destination pairs vary for different stations, at differ-
ent locations, and at different times of the day. Through our
work, we demonstrate how we can build an origin-destination
matrix to understand passenger travel patterns using Trel-
lis, which can often identify alternative bus scheduling or
routing to improve passenger travel times.

In the end, Trellis provides yet another approach to col-
lect transit information in real-time and can potentially be
combined with other existing or complementary approaches.

Trellis approach, some challenges, and preliminary
implementation: We implement the Trellis system using
off-the- shelf embedded platforms equipped with Wi-Fi in-
terfaces and have deployed it to operate on two city buses in
Madison, WI (in collaboration with our partners — Madi-
son Metro Transit). In particular, our functionality is built
into an existing system that provides a free Wi-Fi service,
called WiRover [13], that is available on these city buses.
Given that Wi-Fi services on transit systems are a grow-
ing phenomenon, the ability to add a system such as Trellis
may not even require new hardware to be installed on these
vehicles.

Many aspects of the design of Trellis is fairly intuitive.
However, there are some specific challenges that we needed
to address. Onme of them is to reliably determine whether
an individual is actually located inside the vehicle (passen-
ger) or outside of it (pedestrian). While one may consider
existing localization techniques as that use mobile device
Received Signal Strength Indication (RSSI) to infer this in-
formation, we have a much simpler mechanism to solve this
issue. When a vehicle is moving, typically the signal strength
of a passenger’s mobile device observed by a vehicle-mounted
observer will stay somewhat stable, while that of a pedes-
trian will fluctuate and eventually disappear (Fig. 1). Hence,
by observing device signal strengths coupled with either ve-
hicle location changes or speed of movement, one can easily
discern who is inside the vehicle and who is not. This capa-
bility is a key building block in the Trellis system.

Contributions. We present, Trellis, a low-cost in-vehicle
wireless monitoring system that can track station-to-station
passenger movements to assist transit operators for transit
user analytics. We develop various simple heuristic algo-
rithms to separate passengers from pedestrians and identify
where passengers get on or off a vehicle. To test the efficacy
of our system, we have deployed this on two city buses in
Madison, WI, over a period of four months and have evalu-

ated how it can be used to infer popular original-destination
stations of passengers over time and space. As we continue
to work with our partners from Madison Metro Transit (our
local transit operator), we continue to evaluate how such a
system can be used to identify where to add new bus routes,
or when to add faster (non-stop) services between various
stations throughout the city at different times of the day
and over different days of the week.

2. TRELLIS SYSTEM DESIGN AND IMPLE-
MENTATION

In this section, we discuss the system design, implemen-
tation and deployment.

2.1 System Design

Our system uses a front-end sniffing module to collect Wi-
Fi devices’ signals and transit GPS information, and uses
a back-end modeling module to reconstruct transit sched-
ules and human mobility patterns. The sniffing module
collects the data from mobile devices and stores the data
into local database. Meanwhile, the sniffing module can
send calculated passenger number to remote server in real-
time through cellular link, i.e., for the purpose of real time
monitoring. Although our system supports real-time com-
munication, we use separated program to send the data
from databases to remote back-end server. The back-end
server reconstruct public transit schedules and human mo-
bility patterns from the collected data. It further aggregates
the data from multiple transit sniffing system instances to
provide a more complete view of the transit schedules and
human mobility patterns. On top of the abstraction and ag-
gregation modules, we construct origin-destination matrix to
analyze transit efficiency in spatial and temporal domains.

2.2 System Implementation

We operate the Wi-Fi monitoring system on the Ubuntu
14.04.1 64bit distribution (with linux kernel version 3.19.0-
28-generic), that runs on PC Engines APU platform [1].
APU platform is a mobile embedded platform that is equipped
with 1GHz dual core CPU and 4G DDR3 DRAM. We use
multi-thread program written in C/C++ to conduct the
sniffing tasks. One thread is used to collect the Wi-Fi pack-
ets from the specified wireless interface. It also includes
a module to check the correctness of received packets by
validating the Cyclic Redundancy Check (CRC). Another
thread is used to collect the GPS location information from
the GPS module. All the data is stored in SQLite database
files. There is another thread to send packets back to the
data analysis modules, e.g., the number of passengers on bus
for real-time demo. There are also bash scripts written to
keep the cellular card and sniffer system running when the
bus starts or the system aborts due to software or hardware
failures. The data analysis modules are written in Java.
Each data analysis module performs difference tasks, e.g.,
transit schedule reconstruction, automatic passenger count-
ing etc.

2.3 System Deployment

We deploy our Wi-Fi monitoring system in two city buses.
The bus route is illustrated in Fig. 2. The bus route covers
the main campus of the University of Wisconsin-Madison
(bottom right) as well as a residential area (top left) ac-
commodates graduate students and visiting scholars. The
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Figure 2: Bus route with labeled bus stops. The
map size is around 1.5 mile x 2 mile. Each route
traversal takes 45-50 minutes and covers about 8
miles. We divide the route into seven adjacent re-
gions for easy analysis.
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Figure 3: Distribution of devices by vendors in log
scale.

city buses are operated by one local bus company. Based on
our observation, the scheduling of each city bus is relatively
random and the on-road or maintenance dates of each bus
is unpredictable. There are usually multiple buses on the
same route, while each bus is separated by 7 to 20 minutes
based on the time of the day.

2.4 Statistical Properties

We collect data from both buses for around 90 days and 12
hours per day. In total, both buses travel more than 10,000
miles. Among the collected traces, we find 114,227 unique
devices. By looking at the Organizationally Unique Identi-
fier (OUI) of the MAC address (the first three octets), we
are able to compare the distribution of various vendors. As
shown in Fig. 3, Apple dominates all other vendors. Start-
ing from iPhone 5s and iOS 8, Apple introduces randomized
MAC address in probe requests under certain settings to
protect user privacy. MAC randomization happens only in
sleep mode (screen off) where the probe request with ran-
domized MAC sent out roughly every 2-3 minutes. This
feature certainly overestimates the number of iPhone users,
but it exposes limited impact on statistical transit analytics.

3. PASSENGER TRACKING

In this section, we describe how to reconstruct bus sched-
ules and passenger riding patterns.

3.1 Transit Schedule Reconstruction

For the purpose of public transit analytics, e.g., route de-
sign, scheduling, evaluation etc., it is important to track and
record public transit when it passes each station. To recon-
struct the public transit schedule from collected data, we ex-
tract the bus routes and stations from the transit operator’s
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Figure 4: Identify where the passenger get on or off
the bus.

website [5]. Each bus station is labeled by an index, GPS
location information and direction. By matching the GPS
information of the bus stations and that of collected from the
sniffing system, we can know when the buses pass each bus
station. Location information is not sufficient to accurately
localize the bus at any specific time, because there are bus
stations that are paired across street as dual way stations.
To address this issue, we also need to match the heading di-
rection of bus station with that of calculated from collected
GPS. This module essentially provides when the bus arrives
each station and how long it stays at that station. This in-
formation is important for transit operator to compare the
actual operations of the bus with the ideal schedules. It can
also be used to accurately identify when one passenger get
on/off the bus.

3.2 Passenger Tracking
3.2.1 Onboard Detection

To track the passengers, we need to identify when and
where they get on and off the bus. The most challenging
task is to extract useful information from collected data.
First, the RSSI readings are inaccurate and highly fluctuat-
ing. Therefore, we cannot use RSSI alone as the indicator
to identify if one passenger is on bus. Second, the Wi-Fi sig-
nals are opportunistically received. The Wi-Fi signals from
mobile device are based on user activities, e.g., screen on or
off etc. Even worse, users may turn off Wi-Fi function to
save power, which make some applications more challenging,
e.g., automatic passenger counting etc.

To identify when and where one particular passenger get
on and off the bus, we use multiple RSSI readings at differ-
ent locations to track the position of the passenger. Essen-
tially if there are consistent high RSSI readings after the bus
traveling a certain distance, this device is on the bus with
high probability. We will discuss how to find such a RSSI
threshold ¢ in later section.

In Fig. 4, we illustrate the RSSI patterns and the time
when the passenger get on and off the bus. We use similar
logic to identify the bus stations where the passenger get
on and off. We divide the entire bus trip into continuous
road segments and each road segment is between two log-
ically nearby bus stations. We identify if the passenger is
on bus during this road segment by probing the RSSI read-
ings of received packets. If there is at least a portion of «
packets have RSSI readings higher than d, then this device
is on bus in this road segment. For each on bus passenger,
it may travel with bus for one or more road segments. The
starting bus station of the first such road segments is rec-
ognized as the bus station where the passenger get on the
bus. The ending bus station of the last such road segments
is recognized as the bus station where the passenger get off
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the bus. It should be noted that we only use this method
to identify the bus stations where the passenger get on and
off the bus, if there is no packet received during some road
segments in between, we still recognize this passenger is on
the bus during the trip.

3.2.2 Parameter Selection

After we recognize the road segments the passenger is
on bus, we collect the RSSI readings from different devices
of various vendors. The cumulative distribution function
(CDF) of on-bus RSSI readings are summarized in Fig. 5.
This indicates that different thresholds § should be assigned
based on different vendors. Interestingly, the mobile devices
from various vendors have huge difference on emitted power
(10dB), presumably passengers (no matter what device he
is using) are sitting randomly on the bus.

3.3 Origin-Destination Matrix

Another abstraction we build is the origin-destination ma-
trix, which essentially records how many passengers ride
from one bus station to another. Let S denotes this ma-
trix and s;; denotes each element in the matrix. s;; refers
to the number of passengers get on at bus station ¢ and get
off at bus station j. This matrix only builds the spatial rela-
tionships between bus stations, while temporary information
is also important for transit analytics. We divide the 47 bus
stations into seven geographically adjacent regions for easy
analysis, i.e., as illustrated in Fig. 2. In the seven regions,
there are 11,4,6,7,7,5 and 7 bus stations, respectively. Based
on this matrix, we can analyze the region-to-region move-
ment of the passengers. We may also add another dimen-
sion, i.e., time domain, to analyze passenger riding patterns
in different periods of the day.

4. TRANSIT ANALYTICS

4.1 Automatic Passenger Counting

After reconstruct the transit schedules and passenger rid-
ing patterns, we conduct automatic passenger counting to
record how many (essentially which) passengers getting on
and off at each bus stations. This information is important
for transit operators to make transit plans, improve the tran-
sit efficiency and seek government funding.

There are several popular methods that current transit
operators are using to do this task. First, they are using tick-
eting system combined with human labor manual counting
method. However, most ticketing systems only record how
many passengers (assuming they are using traceable tickets
instead of cash) get on buses, and cannot record how many
passengers get off buses. Human labor counting is expen-
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Figure 6: Automatic passenger counting results and
ground truth.

sive and time consuming. Second, they are using camera or
infrared sensors. But these systems are very expensive and
not easy to deploy. Also existing methods are not able to
track individual passenger.

Table 1: Ground Truth Data

Date Time | Duration(mins) | Corr.
06/04/2015 | 12:15 42 0.72
06/23/2015 | 11:14 51 0.92
07/01/2015 | 15:28 48 0.71
08/18/2015 | 14:26 63 0.62
08/24/2015 | 11:26 38 0.88
08/28/2015 | 13:44 49 0.69

Our system provides a low-cost approach to assist or even
replace existing counting methods. We evaluate counting
accuracy by calculating the correlation between estimated
passenger numbers and ground truth. The ground truth
data is collected by volunteers who take the bus and count
the number of passengers getting on/off the bus at each bus
station. We collect the ground truth data in six trips on six
different dates. The start time and duration of each trip is
illustrated in Table 1. We mannually count the number of
passengers getting on/off each bus station and record the
numbers in a customized Android app. The Android app is
used for recording the number of passengers only and does
not serve any other purposes. The ground truth data is
then synchronized with the data collect by the sniffing sys-
tem based on time and GPS location. The date, time and
calculated correlation are summarized in Table 1.

While the estimated passenger numbers are strongly cor-
related with actual passenger numbers (with average of 0.76)
the correlation can be lower than 0.62 in some cases. We fur-
ther analyze this particular case by looking into the actual
passenger riding patterns. We summarize the calculated
passenger numbers and the ground truth passenger num-
bers in Fig. 6. Each point in Fig. 6 refers to the number
of passengers at each bus station. The difference between
calculated and ground truth is the estimation error of our
passenger counting system. It is shown that the low corre-
lation is due to some passenger burst, probably caused by
students finish one class together and with phone turned
off. This present little effects on long term statistical analy-
sis since the burst is short and the group of students get off
the bus after only few bus stations.

4.2 Bus Stop Statistics

The strong correlation between estimated passenger num-
bers indicates our method is sufficient for statistical analysis.
For example, our method show that passenger riding is peri-
odic during weekdays. We summarize the average number of
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Figure 8: Passenger statistical riding pat-
terns at morning hours (7am-9am), and evening
hours(17pm-19pm)

passengers getting on and off two specific bus stations during
each hour of one week in Fig. 7. The top one shows the pas-
senger riding patterns in a residential area and the bottom
one is in main campus. In residential areas, people are go-
ing out for work in the morning and going back home in late
afternoon, there are obvious peak in those hours. In main
campus, students and staffs are coming for work in morning
hours and going back home in late afternoon. Further, un-
dergraduate students live on campus. They travel between
dormitories and teaching buildings for different classes dur-
ing the day, so there are peaks in the number of passengers
getting on and off the bus.

4.3 Transit Scheduling Analytics

Transit operators need to make scheduling decisions based
on passenger volume and transit occupancy. By analyzing
the origin-destination matrix, we can evaluate the transit
efficiency and provide suggestions if the transit operators
consider to adjust schedules.

We summarize the passenger region-to-region movements
during morning hours and evening hours in Fig. 8. Each
box in the color map is the number of passengers travel
from (seven) different regions to that region. The darker
the color, the more the passengers. As can be seen from the
figures, nearly half of the passengers travel from region 1 are
going to region 1-3 in morning hours(Fig. 8 left). This ob-
servation indicates that the bus route can be separated into
two segments, while some buses can travel between region 1
and 3 and the rest follow the old schedule but less stop fre-
quency. This can reduce the waiting time of the passengers
want to go to region 3 due to lower duty cycle (the route
is much shorter) while the rest passengers can have better
riding experience due to less travel time. Meanwhile, the
cost of the transit operators are reduced as well due to the
improved efficiency and less frequent stops. In the evening
rush hours(Fig. 8 right), most of the passengers get on the
bus from different regions and are riding back to region 1,
which means passengers are going back home. This indi-

cates the origin schedule during evening hours is reasonable
and efficient.

5. RELATED WORK

5.1 Passenger Counting

Transit operators are required to submit passenger statis-
tics to national transit database [4], so they collect passen-
ger numbers either by manual counting or expensive sensor
systems. [7] uses video processing to count the number of
passengers getting on/off each bus station. [11] uses passive,
non-radiating infra-red technology to detect and count peo-
ple moving through a door or gate. These system can detect
number of passengers are passing a door, but they require
expensive hardware and are not able to track individual pas-
sengers that are riding between each pair of stations. Mean-
while, the bus passengers are required to tapping IC card
when get on and get off the bus in some Asian cities [2, 20].
These system does not count the passengers who are paying
by cash. More importantly, tapping the key card when get
off the bus may cause extra delays and queues at each bus
station. Trellis does not require passenger operations.

5.2 Human Mobility Study

Understanding human mobility [6] enables many appli-
cations such as traffic engineering and urban planning. [19]
infers human mobility based on multiple data resources, e.g.,
cellphone and transit data, to avoid baised judgement by sin-
gle data resources. [12] claims that human trajectories show
a high degree of regularity by tracking smartphone locations.
[10] infers human mobility by using taxicab location traces.
Our work falls in the same category and proposes new ap-
plications by performing passenger tracking. However, we
propose novel way to conduct public transit analytics by
deploying Wi-F1i sniffers on city buses, which separate our
work from existing ones.

5.3 Human Tracking by Wi-Fi

[9] uses one pair of fixed Wi-Fi devices to estimate the
total of people walking in an area based on power measure-
ments. [18] tracks human queue length by using received
Wi-Fi signal features and analyzes the waiting time in the
queue. However, it requires customers’ smartphones con-
necting with APs and generating traffics. [16] estimates the
trajectory of smartphone holders by using multiple monitors
on the road. [17] use mobile phone sensors to estimate peo-
ple’s trajectory, which is fundamentally different from our
approach that is using Wi-Fi sniffer to track bus passengers.

6. DISCUSSION

In this section, we discuss the limitations of our system
and propose other potential applications.

6.1 Limitations

First, the accuracy of passenger tracking is limited by
some unpredictable factors. For example, some passengers
are not using smartphones or the Wi-Fi is turned off etc.
In these cases, the sniffing system is not able to detect the
presence of the passenger. Also, some passengers may use
multiple smart devices, e.g., a tablet and a smartphone. In
this case, the sniffing system may overestimate the number
of passengers. Second, some Apple devices are using ran-
domized MAC address that we are not able to identify. Since



randomized MAC address, if triggered, is sent out sparsely
in time domain, which makes little effects on our system.
But if it actually happens, we may over count the num-
ber of Apple users (not our focus though) and may fail to
identify the passenger. Our work focuses on providing sta-
tistical analysis on transit efficiency to assist public transit
operators instead of tracking every single passengers. These
limitations exposes challenges for our tasks, but do not affect
the practicability of our system.

6.2 Other Applications

Although we focus on transit analytics in this paper, some
other applications are possible given the rich data set and
well designed abstraction. For example, our system can
be used to predict the riding route of individual passenger.
Some smartphone applications can use these information to
schedule cellular traffic based on link qualities at different lo-
cations along the route. Some Wi-Fi related applications can
also benefit from accurate predication of passenger’s pres-
ence [15].

7. SUMMARY AND FUTURE WORK

Our work proposes a passive crowd-sourced approach to
infer how passengers use transit systems. The system follows
the popular paradigm of tracking mobile devices as identifi-
able by vehicle-mounted Wi-Fi observers. While our prelim-
inary system demonstrates both feasibility and preliminary
usefulness, numerous challenges remain. They include: (i)
mechanisms to improve device identification accuracy in the
vehicle context; (ii) identification of different analytics ca-
pabilities that such a system can provide efficiently; (iii)
performing a more rigorous privacy analysis in such vehicu-
lar scenarios, even when MAC addresses are obfuscated; and
(iv) evaluating other complementary techniques to achieve
similar goals and how they can either complement or en-
hance our proposed system.
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