
1

Decomposing Workload Bursts for Efficient
Storage Resource Management

Lanyue Lu, Member, IEEE, Peter J. Varman, Senior Member, IEEE, Kshitij Doshi, Member, IEEE

Abstract—The growing popularity of hosted storage services and shared storage infrastructure in data centers is driving the recent
interest in resource management and QoS in storage systems. The bursty nature of storage workloads raises significant performance
and provisioning challenges, leading to increased resource requirements, management costs, and energy consumption. We present
a novel workload shaping framework to handle bursty workloads, where the arrival stream is dynamically decomposed to isolate its
bursts, and then rescheduled to exploit available slack. We show how decomposition reduces the server capacity requirements and
power consumption significantly, while affecting QoS guarantees minimally. We present an optimal decomposition algorithm RTT and
a recombination algorithm Miser, and show the benefits of the approach by evaluating the performance of several storage workloads
using both simulation and Linux implementation.

Index Terms—Workload Decomposition, Graduated QoS, Storage System, Resource Management, Scheduling

F

1 INTRODUCTION

T HE increasing complexity of storage management and the
economic benefits of consolidation are driving storage

systems towards a service-oriented paradigm, in which per-
sonal and corporate clients lease space and access bandwidth
on shared storage servers. In a typical setup, Service Level
Agreements (SLAs) between the service provider and clients
stipulate guarantees on throughput [1; 2] or latency [3; 4] for
rate-controlled clients. The service provider must provision
sufficient resources to meet these performance guarantees
based on estimates of the resource demands of the individual
clients, and the aggregate capacity requirements of the client
mix. The run-time system must isolate the clients to avoid
interference, and schedule their requests appropriately [5]. A
fundamental challenge in data center operations is the need to
deal effectively with high-variance bursty workloads arising
in the network, storage server, and multi-tiered systems [6;
7; 8; 9]. These workloads are characterized by unpredictable
periods of high activity during which the instantaneous arrival
rates can significantly exceed the average long-term rate. In
the absence of explicit mechanisms to deal with it, the effects
of these bursts are not confined to the localized regions where
they occur, but spill over and affect adjacent well-behaved
regions of the workload as well. Consequently, although the
bursty portion may be only a small fraction of the entire
workload, it has a disproportionate effect on performance and
provisioning decisions. This “tail wagging the dog” situation
results in the server being forced to make unduly conserva-
tive estimates of resource requirements, leading to excessive
provisioning and energy consumption costs, and unnecessary
throttling of the number of the clients admitted into the system.

In this paper we present a novel approach to improve client
performance and reduce resource provisioning at the server.
In our approach we modify the characteristics of the arriving
workload so that its behavior is dominated by the largely well-

behaved portions of the request stream; the portions of the
workload comprising the tail are identified and isolated so that
their effects are localized. This results in more predictable
behavior, and significantly lower resource requirements. By
slightly relaxing the performance requirements for a small
fraction of the workload, a significant reduction in server
capacity can be achieved while maintaining stringent QoS
guarantees for most of the workload. The server can pass
on these savings by providing a variety of SLAs and pricing
options to the client. Storage service subscribers that have
highly streamlined request behavior, and who therefore require
negligible surplus capacity in order to meet their deadlines, can
be offered service on concessional terms as reward for their
“well-behavedness”.

This paper makes the following specific contributions. We
present a new framework for run-time scheduling of a client’s
workload based on decomposition and recombination of the
request stream. This reshaped workload helps localize the neg-
ative consequences of bursts so that a large percentage of the
workload has superior response time guarantees, while keeping
the behavior of the tail comparable to that achieved by tradi-
tional methods. The resource requirements for the reshaped
workloads are shown to be significantly lower than that for
the original workload, being closer to the average rather than
the worst-case requirements. This translates into reductions in
provisioned capacity, and reduced energy consumption as well.
Finally, we show how the framework can be used to improve
estimates of the aggregate resource requirements of multiple
concurrent clients. Due to statistical variations, the peaks of
the workloads are unlikely to line up simultaneously. Simple
aggregation of the clients’ requirements leads to significant
over provisioning of the capacity, but estimating the savings
from statistical multiplexing is difficult [10]. We show that
aggregation of the capacities needed by the reshaped work-
loads provides more realistic estimates of system resource
requirements. This paper extends our previous work [11] in



2

two ways. First we analyzed the optimality of our workload
decomposition technique and applied it to reduce power con-
sumption in storage systems. In addition, we implemented the
scheduling framework in the Linux kernel, and evaluated it on
an actual system using recent enterprise storage workloads.

The rest of the paper is organized as follows. Section 2
describes the workload shaping framework and its use for
better capacity and power provisioning. An optimal decompo-
sition algorithm RTT is described and analyzed in Section 3
along with several recombination schemes, including a new
slack-based algorithm called Miser. Detailed evaluation results
are presented in Section 4. Related work is summarized in
Section 5, and conclusions are presented in Section 6.

2 WORKLOAD SHAPING
The goal of workload shaping is to smoothen the workload
to reduce the unpredictability and performance degradation
caused by bursty arrival patterns. With traditional scheduling
methods the effects of these bursts are not confined to the
localized regions where they occur, but spill over and affect
the following well-behaved regions of the workload as well.
Consequently, even a small amount of bursty behavior can
have a disproportionate effect on performance and provi-
sioning. The workload shaping procedure consists of two
complementary operations: decomposition and recombination,
as shown schematically in Figure 1.

In the decomposition phase, the workload of a single
application (or client) is partitioned into two or more classes
with different performance guarantees. The requests belonging
to the different classes are directed to separate queues. Figure 1
shows a two-class scheme with queues Q1 and Q2 respectively.
Requests belonging to Q1 will be guaranteed a response time
R1 while requests in Q2 are served in a best-effort fashion.
In the recombination phase the requests of the two classes
are suitably multiplexed to satisfy the individual performance
constraints. Scheduling algorithms with different response
time distributions can be used in this phase as discussed in
Section 3.

Fig. 1. Architecture of workload shaper providing gradu-
ated QoS guarantees

Figure 2(a) shows a portion of an OpenMail trace [12]
of I/O requests (displayed using aggregated requests in a

time window of 100 ms). Note that the peak request rate
is about 4440 IOPS while the average request rate is only
about 534 IOPS. Figure 2(b) shows the class Q1 containing
90% of the requests after decomposing the workload using our
decomposition algorithm RTT (described later). The capacity
of the server is chosen so that all requests in Q1 meet a
response time of 10 ms. As may be seen Q1 is relatively even
at this granularity. All requests in Q1 can meet their response
time bounds with a capacity of only 1080 IOPS, compared
to 9241 IOPS required for the original workload. Finally,
Figure 2(c) shows the workload following recombination of
Q1 and Q2 using the Miser algorithm (described later). This
algorithm monitors the slack in the arrivals where it can
schedule a request of Q2 without causing any of the requests
waiting in Q1 to miss their deadline, and schedules a request
from Q2 at the earliest such time.

2.1 Decomposition and Recombination

The workload is characterized by its arrival sequence that
specifies the number of I/O requests ni arriving at time ai,
i = 1, · · · , N . The Cumulative Arrival Curve (abbreviated
AC) A(t) is the the total number of I/O requests that ar-
rive during the interval [0, t]; i.e. A(t) =

∑K
j=1 nj , where

aK ≤ t < aK+1. Figure 3 (a) shows AC as a staircase function
with jumps corresponding to the arrival instants. The server
provides service at a constant rate of C IOPS as long as there
are pending requests. The Service Curve (SC) is shown by
a line of slope C during a server busy period. At any time,
the vertical distance between SC and AC is the number of
pending requests (either queued or in service). Each request
has a response time requirement of δ, so that requests arriving
at ai have a deadline of di = ai +δ. If the number of pending
requests exceeds C×δ it signals an overload condition. Since
at most C×δ requests can be completed in time δ, some of the
requests pending at an overflow instant must necessarily miss
their deadlines. In Figure 3(a) the line above and parallel to
the Service Curve is an upper bound on the number of pending
requests that can meet their deadlines. We call this the Service
Curve Limit (SCL).

The operation of a decomposition algorithm can be de-
scribed easily with respect to the Service Curve Limit. The
goal is to identify requests to drop from the workload (in
actuality dropped requests are merely moved to Q2 and served
from there). Consider time instants like 2 and 3 in Figure 3(a)
where the AC exceeds SCL. From the previous discussion,
requests overshooting the SCL result in overload, and some
requests must be dropped in order for the rest to meet their
deadline. When requests are dropped from the workload, the
AC shifts down by an amount equal to that removed. This
is shown in Figure 3(b), which shows the situation following
the removal of 1 request at time 1 and another at time 2.
The modified AC now lies below the SCL which means that
all these later requests will meet their deadlines. A different
choice of dropped requests is shown in Figure 3(c), where
requests at times 2 and 3 are removed. For this example at
least two requests must necessarily miss their deadlines. On
the other hand dropping two requests at time 1 is a poor choice,



3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  500  1000  1500  2000  2500  3000  3500  4000

R
e
q
u
e
s
t 
R

a
te

 (
IO

P
S

) 

Time (second)

(a) Original workload

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  500  1000  1500  2000  2500  3000  3500  4000

R
e
q
u
e
s
t 
R

a
te

 (
IO

P
S

) 

Time (second)

(b) 90% of workload after Decomposition

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  500  1000  1500  2000  2500  3000  3500  4000

R
e
q
u
e
s
t 
R

a
te

 (
IO

P
S

) 

Time (second)

(c) 100% of workload after Recombination

Fig. 2. Shaping the OpenMail trace by Decomposition and Recombination

since a request arriving at time 3 will still miss its deadline.
Note also that the decomposition method needs to be online
and make a decision to keep or drop a request without knowing
the future request pattern. We show in Section 3 that our
online decomposition algorithm RTT minimizes the number
of dropped requests for a given capacity and deadline.

We now describe the operation of a recombination algo-
rithm. The goal is to service the overflowing requests that have
been placed in Q2 concurrently with the guaranteed requests
in Q1. For instance, in Figure 3 (d) the two requests that were
dropped at times 2 and 3 are scheduled from Q2 at times 4
and 5 when there is slack in the server. Several strategies with
different tradeoffs can be employed for the recombination.
One simple approach is to offload the overflowing requests
to a separate physical server where they can be serviced
without interfering with the guaranteed traffic (this is similar in
principle to the write offloading strategy in [13] where bursts
of write requests are distributed to a number of low-utilization
disks for service). In cases where this offloading is not feasible,
perhaps due to lack of a suitable off-load sever or the need for
dedicated resources available only on the main server, a good
strategy is to treat the two parts of the workload independently
and multiplex them on the server using a Fair Queuing
scheduler to keep them isolated. This approach actually has
significant capacity benefits over the dedicated offload server
approach (as we show in Section 4), due to the benefits of
statistical multiplexing. Since the overflow workload is active
only during bursts, the capacity during its idle periods can
be profitably used by the guaranteed portion of the workload
to improve its response time profile. We also propose a new
slack-based scheduling algorithm called Miser to combine the
two portions of the workload. Miser allows better shaping of
the tail of the workload than a Fair Queueing scheduler, but
in some cases may increase the fraction of requests missing
their deadlines.

2.2 Capacity Provisioning

We profile the workload of a client to determine the capacity
reservation needed to meet its QoS guarantees. For a response
time bound δ, we estimate the minimum server capacity Cmin

required for a stipulated fraction f of the requests to meet their
deadlines. This is done by an efficient search of the state space
as follows. We use the optimal RTT algorithm (described in

Section 3.1) to find the maximum number of requests that
can meet the response time bound δ, with a fixed capacity
C. If this is higher than the required fraction f we reduce the
capacity and try again; else we increase the capacity and retry.
Since f is a monotonically non-decreasing function of C, a
binary-search converges within a logarithmic number of probes
to the minimum capacity Cmin. We provision a capacity of
Cmin + ∆C, where the latter is used to prevent starvation of
the best-effort requests in Q2. In our simulation experiments
an additional capacity of ∆C = 1/δ was found to be sufficient
to obtain good performance for the entire workload.

Figures 4(a) and 4(b) show the QoS variation of the Fi-
nancial Transaction workload from UMass Storage Reposi-
tory [14] as the capacity is varied. They show the server
capacity in IOs/sec (IOPS) needed for a fraction f of the
requests in the workload, to meet response time bounds of
50 ms, 20 ms and 10 ms, for f between 90% and 100%,
and 99% to 100% respectively. As can be seen, the capacity
required falls off significantly by exempting between 1% and
10% of the workload from the response time guarantee. For a
10ms latency, the capacity increases 7.5 times (from 200 IOPS
to 1500 IOPS) when f increases from 90% to 100%, and by
a factor of 4.2 in going from 99% to 100%. Corresponding
capacity increases by factors of 5.0 (10%) and 3.5 (1%) for a
response time of 20ms can be observed. In fact, for response
times of 10ms, 20ms and 50ms, the capacity increases in going
from 99.9% to 100% guarantees are by factors of 3.0, 2.7, and
1.6 respectively. Similar trends for other storage workload are
noted in our experiments, and presented in detail in Section 4.

Multiple Concurrent Clients: In a data center environment,
the service provider needs to provision sufficient resources for
several clients simultaneously sharing the system. A brute-
force approach is to simply aggregate the worst-case capacities
required for each client. However this results in poor server
utilization and unnecessarily conservative admission control.
There are two main issues: first, as shown above the worst-
case capacity requirements of a client are usually several times
the average demand; secondly, adding the individual capacity
requirements presumes that the peaks of all the individual
workloads occur simultaneously, an extremely unlikely situ-
ation in practice.

We argue that aggregation of the capacity requirements of
individually reshaped workloads provides a good estimate of
the server capacity needed for handling multiple concurrent



4

(a) Workload model (b) One way of drop requests (c) RTT-based request dropping (d) RTT-based Recombining

Fig. 3. Illustrating the Decomposition and Recombination process

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 90  91  92  93  94  95  96  97  98  99  100

C
ap

ac
ity

 R
eq

ui
re

m
en

t (
IO

P
S

)

Percentage of Workload

R=50ms
R=20ms
R=10ms

(a) f : from 90% to 100%

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 99  99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8 99.9  100
C

ap
ac

ity
 R

eq
ui

re
m

en
t (

IO
P

S
)

Percentage of Workload

R=50ms
R=20ms
R=10ms

(b) f : from 99% to 100%

Fig. 4. Capacity required for different percentages of the workload to meet a specified latency bound (Financial
Transaction trace)

clients. That is, the capacity required by the reshaped workload
serves as a measure of “effective bandwidth” [10] of the
client. We evaluate this in Section 4 and show that using
the aggregated effective bandwidths provides a much better
estimate of the required server capacity.

2.3 Power Efficiency

Many proposals for power management of general servers
and storage systems are based on exploiting the temporal
periodicity in workloads [15; 16; 17]. The load fluctuates in
daily, weekly or even monthly cycles, with periods of high
load and periods of low load. The periodic pattern provides
opportunities for predicting the future traffic and varying the
number of active servers (or storage pools) accordingly, to
meet the performance requirements in different time periods.
By keeping the inactive servers in the low power (or powered
down) state, power consumption is reduced during periods of
low utilization.

At the end of a time epoch, the load in the next epoch
is predicted, and just enough servers are spun up (or down)
to satisfy the performance QoS in that interval. Although
the longer term trends of the workload are predictable, the
workload is very bursty at a finer granularity, meaning that
the instantaneous arrival rates in some time intervals can
be higher than the long-term rate by an order or two in
magnitude. Thus during the high load period, estimates based
on worst-case patterns result in significant over-provisioning
of capacity and increased power consumption. On the other

hand, spinning up a powered-down commodity disk can take
tens of seconds, and starting a server from the sleeping state
needs up to several minutes to power on and warm up;
hence, changing the number of active servers dynamically
at a fine granularity is not a viable option. Consequently, to
meet the QoS performance requirements, a large number of
servers, (in some cases maybe all the servers), are always kept
powered on, although they are critical only for short periods of
bursty or worst-case activity. This results in significant power
consumption even if most of the time the workload is relatively
low.

A recently proposed method PowerNap [18] advocates the
elimination of server idle power by quickly transitioning in and
out of an ultra-low power state in response to instantaneous
load. However, PowerNap assumes the use of SSD storage de-
vices, which are not widely deployed at present. Furthermore,
PowerNap focuses on saving idle power consumption, while
we target decreasing the peak power by decreasing resource
requirements. PowerNap provides a complementary approach
orthogonal to our method, and targets idle power rather than
peak provisioning.

2.3.1 Power Model
The experiments in Figure 4 show that by using a graduated
QoS policy to shape the workload, one can reduce the capacity
requirements significantly. We exploit this observation to re-
duce power consumption in typical data center environments.
Our power savings due to decomposition come from powering
up fewer disks than the baseline case. In contrast to the



5

approaches described above, we focus on decreasing the peak
power consumption instead of keeping disks in lower power
states as long as possible.

Fig. 5. Runtime scheduler for storage pools

Figure 5 shows the basic architecture of the target storage
system logically organized as multiple storage pools. A pool
may be considered as a logical volume that stores the entire
data set. For reliability and performance, data is replicated
and stored redundantly in several pools. Data replication is
very common in current large-scale data centers and enterprise
storage systems. For example, Hadoop DFS [19] and Google
File System [20] both maintain at least three copies of each
data block. With the increasing popularity of cloud storage
service like Amazon S3, redundant data storage both within
and across data centers is being increasingly employed to meet
reliability, availability, and performance requirements.

At the start of an epoch, a subset of the storage pools are
placed in the powered on state (ON pools) and the rest are
powered down in the sleep mode (OFF pools). The number
of ON pools is estimated by analyzing the workload using
the workload decomposition algorithm RTT (explained in
section 3). We first use RTT to statically profile the workload
to get the capacity requirement Ctotal for providing the QoS
guarantees for the workload during this epoch. If the capacity
of each pool is Cpool, then a conservative estimate of the
number of pools that must be powered ON during this epoch
is dCtotal/Cpoole. Using the example in Figure 4, it requires
a server capacity of Ctotal = 1500 IOPS to guarantee a 10ms
response time for 100% of the workload, while satisfying
99% of workload with a 10ms deadline only requires a
capacity of around 400 IOPS. The remaining 1% has a much
larger deadline and requires only a small additional capacity.
Assuming, for instance, that each pool has capacity Cpool of
around 500 IOPS, then provisioning 100% of workload needs
3 pools while provisioning 99% of the workload only needs
1 active pool while keeping the 2 pools in the OFF state for
power conservation.

3 WORKLOAD SHAPING ALGORITHMS

The system model is shown in Figure 1. The scheduler
maintains two queues Q1 and Q2. The primary queue Q1

has bounded length to control the latency of requests accepted
into it. The overflow queue Q2 holds requests that are not
accepted into Q1 because their latency cannot be guaranteed.

The server has a capacity C and the response time bound for
the requests in the primary queue is δ.

3.1 RTT Decomposition
The decomposition algorithm RTT, shown in Algorithm 1, is
used to partition the requests dynamically into the two queues.
The algorithm is extremely simple. If the arriving request will
cause the length of the primary queue Q1 (lenQ1) to exceed
its maximum length (maxQ1), the request is diverted to the
overflow queue; else it joins the end of the primary queue.
The maximum length of Q1, maxQ1 = C × δ. Despite its
simplicity, RTT satisfies the following optimality property:

RTT Optimality Property: For a given workload, capacity
and response time bound, RTT correctly identifies a maximal-
sized set of requests that can meet the deadline, among all
online or offline partitioning algorithms.

Algorithm 1: RTT Decomposition
RTT Decompose( );
begin

maxQ1 = C × δ;
if lenQ1 ≤ maxQ1 − 1 then

begin
Add request to Q1;
Increment lenQ1;

end
;

else
Add request to Q2;

end

3.2 Proof of RTT Optimality
To show the optimality of RTT, we first show that in any period
that RTT is continuously busy, the number of requests it drops
is the minimum possible. Lemma 3.1 shows a lower bound on
the number of dropped requests in any interval, and Lemma
3.2 shows that RTT matches that bound in a busy period.
Following this, we consider an arbitrary period of operation
in which RTT may alternate between idle and busy periods.
We show inductively in Theorem 3.3, that RTT cumulatively
drops no more than a hypothetical optimal algorithm OPT at
the end of any busy period.

Recall from Section 2.1 that ai represents a request arrival
instant, and A(t) and S(t) represent the cumulative arrivals
and service up to some time t. Also, define the function
sgn(x) = dxe for x ≥ 0, and sgn(x) = 0 for x < 0.

Lemma 3.1. Given server capacity C, a lower bound on the
number of requests that cannot meet their deadlines is given
by max1≤k≤N{sgn(A(ak)− S(ak + δ))}.

Proof: By definition, the number of requests with dead-
line less than or equal to ak +δ equals the number of requests
arriving at or before time ak, which equals A(ak). Similarly
the maximum amount of service that can be completed by
time ak + δ is S(ak + δ). Hence, if A(ak) > S(ak + δ)



6

then dA(ak) − S(ak + δ)e of the A(ak) requests that arrive
in the interval [0, ak] will miss their deadlines. Hence at least
sgn(A(ak)− S(ak + δ)) requests will need to be dropped in
the interval [0, ak]. The largest of these values over all times
ak, k = 1, · · ·N is a lower bound on the number of requests
that need to be dropped.

Lemma 3.2. In any busy period [a1, aN ], the num-
ber of requests that RTT will drop is no more than
max1≤i≤N{sgn(A(ai)− S(ai + δ))}.

Proof: Without loss of generality we can assume that
a1 = 0. Let ak be the last arrival instant in the busy period at
which RTT drops a request. The total service done by RTT in
the interval [0, ak] is C×ak. Let the total number of requests
dropped by RTT prior to ak be ∆. Now nk requests arrive
at ak, and any requests which result in a queue length over
maxQ1 must be dropped at ak. That is service to be dropped
at ak is given by A(ak) − ∆ − C × ak − maxQ1. Hence
the total service that cannot be completed in [0, ak] is the
sum of the requests dropped at ak plus the number dropped
before ak (i.e. ∆), and equals A(ak) − C × ak −maxQ1 =
A(ak) − C × (ak + δ) = A(ak) − S(ak + δ), since RTT
is continuously busy in this period. The number of dropped
requests is therefore at most sgn(A(ak)− S(ak + δ)).

Let intervals I1, I2, · · · Im be successive busy periods of
RTT during the time [0, T ]. In particular I1 = [aj1 , b1], I2
= [aj2 , b2] · · · Ik = [ajk

, bk], Im = [ajm
, bm]; RTT is

continuously busy from time ajk
(the start of an interval Ik)

till some time bk, bk < ajk+1 , when it becomes idle; it remains
idle till the start of the next interval equal to the arrival time
ajk+1 . The following Lemma will be proved by Induction.

Theorem 3.3. Let OPT be an optimal algorithm that drops the
smallest number of requests in [0, T ]. Then ∀k, 1 ≤ k ≤ m,
OPT drops at least ∆k requests in Ik and incurs an idle period
of at least ηk, where ∆k is the number of requests dropped
by RTT in Ik and ηk is the amount of idle time of RTT in Ik.

Proof: We prove the Lemma by induction on the interval
number k.

Base Case: For the base case consider the interval I1
corresponding to k = 1. Now RTT server is continuously busy
in the interval I1 and the initial amount of service done by
RTT at the start of the interval is zero. Now by Lemma 2 the
number of requests dropped by RTT in I1 equals the lower
bound of the number of requests that must miss their deadline
in that interval, and hence both OPT and RTT will drop ∆1

requests. Now RTT is continuously busy throughout I1 and no
further work arrives till the start of interval I2; the idle time
cannot be reduced further.

Inductive Step: For the Induction Hypothesis we assume
the Lemma is true for all intervals up to Ik and show it
holds in the interval Ik. The proof is similar to the base case,
additionally noting that by the Induction Hypothesis, OPT has
incurred no less idle time than RTT till the start of Ik, and
hence cannot have done more service till this time. Then by
Lemmas 1 and 2, OPT will need to drop at least ∆k requests
in Ik as well.

3.3 Recombining Algorithms
We now describe four methods for combining the workload
split by RTT and scheduling them at the server. Their perfor-
mance evaluation is described in Section 4.
• FCFS: The requests are not partitioned and serviced

in a FCFS manner. This serves as a base case for the
evaluation.

• Split: The requests are partitioned by RTT and the
overflow requests in Q2 are served by a separate physical
server. The primary server’s capacity Cmin is based on
profiling the workload, and a small additional amount
∆C is provided to the secondary server.

• Fair Queueing: The requests are partitioned by RTT and
the two queues Q1 and Q2 are served using a proportional
share bandwidth allocator (like WF2Q [21], SFQ [22],
RFQ [23]) that divides the server capacity in the specified
ratio of Cmin : ∆C. The total capacity of the server is
Cmin + ∆C, but by sharing a single physical server we
hope to leverage the benefits of statistical multiplexing.

• Miser: The scheduler uses the free slack in the scheduling
of the primary queue to schedule requests in Q2 as
early as possible. Unlike the previous two methods the
two queues are more closely coupled. Due to its online
nature, servicing requests of Q2 could trigger overflow
of future requests in some cases. That is, Miser could
sometimes drop more than the theoretically minimum
number of requests. Our simulations show that even with
a small amount of additional capacity ∆C, few additional
requests are delayed beyond the deadline in practice, and
the tail distribution of Q2 is much nicer.

Algorithm 2 shows the actions taken by Miser on request
arrivals and completions. On a request arrival the routine
RTT Decompose is first invoked to classify the request. If
placed in the primary queue it is assigned a slack value equal
to the number of places still available in Q1. A request in the
overflow queue Q2 is scheduled when the smallest slack value
of the requests in Q1 is at least 1.

If there are several different workloads with different re-
sponse time requirements, the underlying server capacity is
multiplexed among the workloads using a fair sharing sched-
uler like [3]. Decomposition and recombination are performed
independently for each workload, which has its own Q1 and
Q2.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the workload shaping based
scheduling framework using the storage system simulation tool
DiskSim [24] and actual Linux implementation. For the simu-
lation we assumed a simple constant-rate server model in order
to concentrate on the workload characteristics and properties
of the scheduling algorithms. For the actual implementation we
implemented the framework as a Linux device driver module
and compared it with FCFS by replaying several real storage
traces, with a mix of different request sizes, types, and access
patterns (random and sequential). The Linux implementation
was tested on a server equipped with a hard drive as the storage
device.



7

Algorithm 2: Miser Scheduling
On a request arrival:
begin

RTT Decompose( );
/* Compute Slack*/
if request ri in Q1 then

ri slack = bmaxQ1 − lenQ1c
minSlack = min{minSlack, ri slack}

end

On a request departure:
begin

/*Dispatch a request*/
if ( minSlack ≥ 1 ) & ( Q2 is not empty ) then

Remove a request from Q2 in FIFO order,
and dispatch it

else
Remove a request from Q1 in FIFO order,
and dispatch it

/*Update Slack*/
if scheduled request ri is from Q1 then

if ri slack = minSlack then
minSlack = minj∈Q1{rj slack}

else
for ∀i ∈ Q1 do

ri slack = ri slack − 1
minSlack = minSlack − 1

end

For the DiskSim experiments, we used traces of three dif-
ferent storage applications: Web Search Engine (WebSearch),
OLTP application (FinTrans) and Email service (OpenMail).
The traces are obtained from the UMass Storage Reposi-
tory [14] and HP Research Labs [12]. All of these are low-level
block storage I/O traces, which have not been served by the
file system cache. The WebSearch traces are from a popular
search engine and consist of user web search requests. The
FinTrans traces are generated by financial transactions in an
OLTP application running at two large financial institutions.
OpenMail traces are collected from HP email servers during
the servers’ busy periods. For the Linux experiments, we
used a more recent Microsoft Research Cambridge trace
(MSRC) [25]. This is also a block-level trace below the file
system cache. It captures activity on 13 different type of
servers with 36 storage volumes during a one week period. It
contains user home directories servers, source control servers,
web servers, print servers, research projects servers, etc.

We conducted six types of experiments: (i) measuring server
capacity requirements as a function of the fraction f of
requests meeting the latency bound δ; (ii) the tradeoff between
the power consumption and the performance guarantees in the
graduated QoS model; (iii) response time distribution of a tra-
ditional FCFS scheduler; (iv) comparison of the response time
distribution of recombination algorithms Split, Fair Queueing
and Miser with FCFS and relative to each other; (v) capacity
estimation for multiple concurrent clients using decomposition

and (vi) response time distribution of Miser using the Linux
prototype implementation in the actual test machine.

4.1 Capacity-QoS Tradeoffs
Resource provisioning is a difficult problem due to the un-
predictable bursty behavior of real workloads. This set of
experiments explores the tradeoffs between the fraction f of
the workload that meets a response time bound δ, and the
minimum server capacity Cmin required. The case f = 100%,
gives the minimum capacity required for all the requests to
meet the latency bound. As f is relaxed, a smaller capacity will
suffice. Our results confirm the existence of a sharp knee in the
Cmin versus f relation, that shows that a very small percentage
of the workload necessitates an overwhelming capacity to meet
its guarantees.

Table 1 shows the capacity required to meet response time
bounds of 5, 10, 20, 50 ms for f between 90% to 100%
using three different workloads. The capacity required falls off
significantly by relaxing the response time guarantee for 1% to
10% of the workload. For instance, with δ = 5ms, increasing
f from 90% to 100% requires large capacity increases: almost
4 times (590 to 2325 IOPS) for WebSearch, 7.5 times (400
to 3000 IOPS) for FinTrans, and more than 10 times (1350
to 13990 IOPS) for OpenMail. Even going from 99% to
100% the capacity required increases by factors of 2.4 (960
to 2325 IOPS) for WebSearch, 5 (600 to 3000 IOPS) for
FinTrans and 3.5 (3950 to 13990 IOPS) for OpenMail. For
higher response times, the capacity required also increases by
significant, though smaller factors. For instance, in OpenMail
for δ = 10, 20, and 50ms respectively, the required capacity
increases 8.6, 6.4 and 4.9 times in going from 90% to 100%
and 3.1, 2.4 and 2 times in going from from 99% to 100%.
The extent of burstiness (and potential for capacity savings)
can be gauged by looking at the range from 99% and 100% of
FinTrans, where increasing f from 99.9% to 100% required
capacity increases by factors between 3.0 and 1.6 for different
response times.

Summarizing, the experiments clearly indicate that exempt-
ing even a small fraction of the workload from the response
time guarantees can substantially reduce the required capacity.
The more aggressive the QoS specifications (lower response
time) the greater the potential for capacity savings.

4.2 Power-QoS Tradeoffs
We evaluate the power efficiency of the workload shaping
framework with OpenMail, TPC-D and WebSearch traces in
this section. The test system consists of multiple storage pools
containing several disks as shown in Figure 5. The baseline
system provisions enough capacity to serve the entire workload
(100%) with a 20ms response time guarantee. By decomposing
the workload using RTT, we filter out the burstiest 1% of the
workload and serve the rest of the requests with the same 20ms
response time guarantee.

A disk may be in any of three states: sleep, idle or active.
In the idle state the disk is powered on but is not actively
seeking, while in the active state it is performing a read or
write operation. When in sleep mode, the disk is assumed to



8

Workloads Response Time Percentage of Workload Meeting Response Time
Target 90.0% 95.0% 99.0% 99.5% 99.9% 100%
5 ms 590 711 960 1055 1310 2325

WebSearch 10 ms 417 474 603 658 786 1538
(WS) 20 ms 345 388 462 487 540 900

50 ms 328 363 419 437 467 533
5 ms 400 550 600 800 1000 3000

FinTrans 10 ms 200 300 360 400 500 1500
(FT) 20 ms 150 168 216 236 280 750

50 ms 119 138 172 184 209 330
5 ms 1350 2000 3950 4800 6600 13990

OpenMail 10 ms 1080 1595 2965 3550 4860 9241
(OM) 20 ms 900 1326 2361 2740 3480 5766

50 ms 745 1045 1805 2050 2495 3656

TABLE 1
Capacity (IOPS) required for specified Workload Fraction to meet the Response Time Target

consume negligible power. The energy consumption of a single
disk Edisk is calculated by weighting its power consumption
in a particular mode by the time spent in that mode. The
total energy is the sum of that consumed by each the disk,∑

iEdisk(i).

Edisk = tactive×Pactive + tidle×Pidle + tsleep×Psleep (1)

We use the data from an IBM Ultrastar 36Z15 disk model for
which the active power is 13.5 W and idle power is 10.2 W.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Openmail TPC-D WebSearch

P
ow

er
 (

W
)

workload

Baseline
Decomposition

Fig. 6. Power consumption for OpenMail, TPC-D and
WebSearch workload

The RTT decomposition algorithm partitions the workload
to different classes at runtime to obtain the required 99%-1%
split, and issues them to the underlying storage pools. Within
the collection of ON pools, requests are sent to the disks in
one pool as long as it can handle the workload. This allows the
disks in the remaining pools to stay in the lower power idle
state, until forced to become active to serve a request from an
overloaded disk.

In Figure 6, we compare the power consumption of the
baseline system with that obtained by the decomposition. For
OpenMail, TPC-D and WebSearch workloads respectively, the
baseline system consumes 1.93, 2.88 and 1.90 times the power
of the decomposition-based scheme, while only serving 1%
additional requests within 20ms. The measured response times
using the baseline system and the decomposed workload are
shown in Table 2. We note that both finish their specified
percentages (100% and 99%) within the guaranteed 20ms
bound. From the CDF of the response time, we can see that for
response time categories of 10ms,15ms and 20ms, the results
of decomposition method are very close to that of the baseline.

4.3 Response Time Distribution of FCFS

We next investigate the response time distribution when the
workload is not decomposed, and simply served using FCFS
scheduling. The results show that the bursts in the workload
significantly degrade its response time profile. This is because
the effects of bursts are not isolated but affect the behavior of
the non-bursty part of the workload as well.

The cumulative response time distribution obtained for the
unpartitioned workloads using FCFS scheduling is shown in
Figure 7. Figures 7(a), 7(b) and 7(c) show the response time
distribution for the three workloads assuming target response
times of 10ms, 20ms and 50ms respectively. In each case
the capacity (C in the figure) is chosen so that 90% of the
workload can meet the response time target (P in the figure)
if it were optimally decomposed using RTT.

In Figure 7(a), at a capacity of 417 IOPS, only 54% of
the WebSearch workload meets a 10 ms latency bound. In
contrast, in the partitioned workload 90% of the workload
would meet the response time bound (see Table 1). The
unpartitioned workload reaches 90% compliance only for a
response time around 200ms. A similar behavior is shown by
the OpenMail workload for a 10ms response time bound and
a capacity of 1080 IOPS. In the unpartitioned workload, only
71% of the requests meet the response time bound, and the
system reaches a 90% compliance at around 90ms, In contrast,
the decomposed workload achieves 90% compliance with the
10ms latency (see Table 1). For the FinTrans workload, a
capacity of 200 IOPS resulted in 64% of the unpartitioned
workload, and 90% of the partitioned workload meeting the
10ms response time bound. In Figure 7(b), the response time
target is 20ms. At a capacity of 345 IOPS, only 8% of the
unpartitioned WebSearch workload meets the 20 ms deadline,
compared to 90% of the partitioned workload. For FinTrans
and OpenMail workloads, the corresponding percentages are
57% and 66% respectively. In Figure 7(c), the response time
target is relaxed to 50 ms. In this case, for WebSearch only a
tiny 5% of the requests meet the 50 ms deadline, compared to
90% for the partitioned workload. For FinTrans and OpenMail
the corresponding numbers are still a low 29% and 55%
respectively. The reason for this drop in FCFS performance
is in stark contrast to the improvement in performance of the
decomposed workload. With a more relaxed response time
(50ms instead of 10ms), the partitioned workload can meet the



9

Trace < 10 ms < 15 ms < 20 ms
OM(base) 99.87% 99.98% 100.0%
OM(decom) 94.53% 98.38% 99.00%
TPC-D(base) 99.51% 99.94% 100.0%
TPC-D(decom) 97.78% 98.85% 99.0%
WS(base) 99.92% 99.99% 100.0%
WS(decom) 92.24% 98.58% 99.0%

TABLE 2
Response time performance comparison for OpenMail, TPC-D and WebSearch

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000

F
ra

c
ti
o
n

Response Time (ms)

WS, (C=417, P=90%)
FT, (C=200, P=90%)

OM, (C=1080, P=90%)

(a) Target: (90%,10 ms)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 20  100  1000  10000

F
ra

ct
io

n

Response Time (ms)

WS, (C=345, P=90%)
FT, (C=150, P=90%)

OM, (C=900, P=90%)

(b) Target: (90%,20 ms)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100  1000  10000

F
ra

c
ti
o
n

Response Time (ms)

WS, (C=328, P=90%)
FT, (C=119, P=90%)

OM, (C=745, P=90%)

(c) Target: (90%,50 ms)

Fig. 7. Response time CDF of FCFS scheduling for different response time targets

same 90% compliance with a smaller capacity; however, for
FCFS the smaller capacity results in the queues built up during
the burst to drain even more slowly, increasing the response
time for the well behaved part of the workload as well. Thus,
as the capacity becomes smaller (in going from Figure 7(a) to
Figure 7(c)), the performance of FCFS becomes worse.

4.4 Response Time of Shaped Workload

In this section, we evaluate the recombination methods dis-
cussed in Section 3.3, Split, FairQueueing and Miser, and
compare them with the performance of FCFS. In each case
the total capacity provided for the workload is held fixed at
Cmin +∆C; ∆C was chosen to be a small amount 1/δ. FCFS
uses the total capacity for the unpartitioned workload. For Split
and FairQueueing the capacity is divided in the ratio Cmin

to ∆C for Q1 and Q2 respectively. In Split, the servers are
not shared. FairQueueing multiplexes the capacity of a single
server so that excess capacity can be flexibly moved from one
part to the other, while guaranteeing a minimum reservation
to each. Miser opportunistically uses the capacity to schedule
the overflow requests depending on the amount of available
slack.

In Figure 8, we evaluate the scheduling performance for
WebSearch workload with the response time target of 50ms.
We can see that Split and FairQueueing achieve the 90%
target of 50ms response time following decomposition of
the workload. Miser, as noted previously, may incur some
additional misses, but is still close to the 90% target. However,
FCFS can only finish 14% of the requests within 50 ms.
Furthermore, FCFS has 74% of requests with response time
bigger than 1000ms, while Split, FairQueueing and Miser
have about 10%. Figure 8(b) shows the performance of these
schedulers with percentage target 95% and δ = 50 ms. Split,
FairQueueing and Miser still outperform FCFS with 95%
guarantees of 50 ms response time, while FCFS finishes only

51% within 50 ms. For the response time larger than 1000ms,
Split has 4.9%, FairQueueing has 4.1% and Miser has 4.6% of
the requests respectively, while FCFS has 17.7%. Figures 8(a)
and 8(b) show that Split, FairQueueing and Miser are better
able to guarantee a higher percentage of requests with small
deadlines. But Split, FairQueueing and Miser have larger
maximum response time than FCFS, because a decomposition-
based scheduler will delay requests in Q2 over those in Q1

leading to larger delays for the overflowing requests. But as
shown, the total number of long-delay requests (greater than
1s) is much less than for FCFS, even though the largest value
may be higher.

Finally we compare the performance of Split, FairQueueing
and Miser. For Split there is no capacity sharing between
the two classes; this results in an order of magnitude higher
latency (both average and maximum) for Q2’s requests.
FairQueueing assigns the weighted capacity to the two classes;
Q2 can only use the capacity of Q1 if the latter has no
requests. However, Miser dynamically monitors the slack in
Q1, and uses it to improve Q2’s performance. Figure 8(c)
shows the average and maximal response time of Q2’s requests
attained by Miser normalized to those of FairQueueing in the
above experiments. We can see that for WebSearch the average
response time of Q2’s requests obtained by Miser is about
85% - 90% of FairQueueing, while maximal response time is
roughly 85%.

4.5 Multi-flow Consolidation

In a shared server environment, accurate prediction of ag-
gregate resource requirements is complicated by workload
multiplexing. Simple addition of the clients’ requirements
overestimate the capacity, since it pessimistically assumes
strong temporal correlation between the bursts of different
clients. We evaluate the actual capacity needed for different
combinations of workloads with a response time of 10ms, and



10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

<=50 <=100 <=500 <=1000 >1000

F
ra

c
ti
o
n

Response Time (ms)

FCFS: 328+20 IOPS
Split: 328+20 IOPS

FairQueue: 328+20 IOPS
Miser: 328+20 IOPS

(a) Target: (90%,50ms)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

<=50 <=100 <=500 <=1000 >1000

F
ra

c
ti
o
n

Response Time (ms)

FCFS: 363+20 IOPS
Split: 363+20 IOPS

Fairqueue: 363+20 IOPS
Miser: 363+20 IOPS

(b) Target: (95%,50ms)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

90 95

N
o
rm

a
liz

e
d
 R

a
ti
o
 o

f 
F

a
ir
Q

u
e
u
e

Target Percentage

FairQueue Average
Miser Average

FairQueue Max
Miser Max

(c) Best effort requests performance

Fig. 8. Performance comparison of FCFS, Split, Fair Queuing and Miser: WebSearch workload

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

WS + WS FT + FT OM + OM

C
ap

ac
ity

 (
IO

P
S

)

Workloads

Estimate
Shift-1s

Shift-100s

(a) Traditional 100% combine

 0

 500

 1000

 1500

 2000

 2500

WS + WS FT + FT OM + OM

C
ap

ac
ity

 (
IO

P
S

)

Workloads

Estimate
Shift-1s

Shift-100s

(b) 90% decomposition combine

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

WS + WS FT + FT OM + OM

C
ap

ac
ity

 (
IO

P
S

)

Workloads

Estimate
Shift-1s

Shift-100s

(c) 95% decomposition combine

Fig. 9. Capacity required for the same workloads multiplexing

 0

 2000

 4000

 6000

 8000

 10000

WS + FT FT + OM OM + WS

C
a
p
a
c
it
y
 (

IO
P

S
)

Workloads

Estimate
Real

(a) Traditional 100% combine

 0

 200

 400

 600

 800

 1000

 1200

 1400

WS + FT FT + OM OM + WS

C
a
p
a
c
it
y
 (

IO
P

S
)

Workloads

Estimate
Real

(b) 90% decomposition combine

 0

 500

 1000

 1500

 2000

WS + FT FT + OM OM + WS

C
a
p
a
c
it
y
 (

IO
P

S
)

Workloads

Estimate
Real

(c) 95% decomposition combine

Fig. 10. Capacity required for the different workloads multiplexing

compare it with the simple estimate equal to the sum of the
individual client capacities.

We profile the workload trace to determine the minimum
capacity needed for the stipulated fraction to meet the response
time bound. We then filter the workload using this capacity
by running it through the RTT decomposition algorithm; the
requests that are not dropped by RTT form the decomposed
workload. We aggregate two workloads by simply merging
their requests together based on their arrival time, and use the
same profiling method to find the capacity required to serve
100% of the combined workload.

Figure 9(a) shows the capacity needed when two identical
workloads are combined. The estimated capacity for the pair
is twice the individual requirement. Shift-1s and shift-100s
means that one workload is shifted in time by 1 second or 100
seconds, then merged with the other workload. Figure 9(a),
shows that for WebSearch, FinTrans and OpenMail respec-

tively, the capacities needed for Shift-1s are 63%, 50% and
51% of the estimate. For Shift-100s, the capacities needed are
56%, 53% and 66% of the estimate.

We argue that aggregation based on the decomposed work-
load provides a better estimate of capacity requirements. In
Figure 9(b) and 9(c), we show the capacity requirements based
on decompositions of 90% and 95% and a 10ms response
time, for the workloads of Figure 9(a). After decomposition,
the actual capacities needed by shift-1s and shift-100s are
very near their estimates, with errors of 1% for WebSearch,
0.1% for FinTrans and 0.2% for OpenMail. Similar results
can be found for 95%, with relative errors of 3%, 12.5%
and 1% for WebSearch, FinTrans and OpenMail respectively.
The decomposition process removes the most bursty part from
the workload, leaving a smoother, more predictable workload.
Thus the estimates based on aggregation after decomposition
are much closer to the actual values.



11

Figure 10(a) shows the results when combining different
pairs of the three workloads. For WebSearch and FinTrans, the
actual capacity needed is only 53% of the estimate, indicating
considerable multiplexing gains in the combination. For Fin-
Trans+OpenMail, OpenMail+WebSearch, the actual capacities
needed are 86% and 87% of the estimate. The reason for this
high real value is that the capacity needed individually by
OpenMail (9241 IOPS) dominates that for WebSearch (1538
IOPS) and FinTrans (1500 IOPS); thus the resulting combined
workload needs at least 9241 IOPS. The capacity provision-
ing based on workload decomposition also works well for
combining different workloads. In Figure 10(b) and 10(c), we
report the capacity requirements based on decompositions of
90% and 95%, with the response time guarantee 10 ms, for
the same workload combinations as in Figure 10(a). We can
see that after decomposition, the capacity estimate based on
adding the individual capacity requirements is very close to
the actual capacity needed, with error of 0.3% for WebSearch
+ FinTrans, error of 0.05% for FinTrans + OpenMail, and
error of 0.7% for OpenMail + WebSearch. Similar results can
be found for 95%, with the relative errors of 6.2%, 2.6%
and 0.1% for WebSearch + FinTrans, FinTrans + OpenMail
and OpenMail + WebSearch respectively. By removing the
high variance portion of the individual workloads, the simple
aggregation of the decomposed workloads provides a good
estimate for the combined workload.

4.6 Linux Prototype Evaluation

We implemented our workload shaping framework Miser as
a loadable block device driver module for the Linux 2.6.28
kernel. The device driver module creates a virtual device
backed up by a physical hard drive. The module provides
system call ioctl for user-level programs to assign scheduling
parameters: capacity (IOPS) and response time limit for each
virtual device. For Miser, it uses these two input parameters to
calculate the queue length threshold. After this initialization,
the virtual device can receive IO requests, schedule them using
its own algorithm and send them to the backing physical
device. We implemented two scheduling algorithms: Miser
and FCFS for performance comparison. In order to replay the
traces as mentioned above, we implemented a trace processing
module in FIO tool [26] for replaying the ASCII format
traces. This enhanced tool can honor the request arrival time
when sending requests to the hard drive, which maintains the
burstiness of the original workload. We evaluate our prototype
on a Dell desktop machine running Linux 2.6.28 kernel, with
2.80GHz Intel Pentium(R) D CPU, 3 GB memory and a 1TB
Seagate SATA test hard drive. The test drive has about 130
IOPS for 4K random requests and 100 MB/s of bandwidth for
256K sequential requests.

We tested a WebSearch workload from the original set of
traces used in the simulation experiments, as well as two new
MSRC storage workload traces, and compared the response
time distributions of Miser and FCFS.

WebSearch Workload: The overall request rate of the
WebSearch workload is shown in Figure 11(a). We see that
this workload is very bursty across the entire time range. We

chose the first 500 seconds of WebSearch for our test; its
request rate is shown in Figure 11(b). Since our test hard drive
only has a capacity of about 130 IOPS for random requests,
we slow down the trace by 2x to match the performance of
the drive. First, we compare the response time distribution of
Miser and FCFS with response time preference of 50ms. As
shown in Figure 12(a), about 55% of the requests get response
times smaller than 50ms with Miser scheduling, while FCFS
only finishes about 0.05% of the requests within the 50ms
deadline. About 30% of requests finish between 50ms and
100ms under Miser, while FCFS only gets 12% in this range.
Then, we increase the response time target to 100ms for further
validation using the same workload; the results are shown in
Figure 12(b). We can see that about 70% of requests have
response times smaller than 100ms using Miser scheduling,
compared with only 12% of requests using FCFS.

MSRC Workloads: We chose two representative MSRC
workloads for performance evaluation. Each workload is a one
week long trace. Src workload is from a source control server.
Usr represents user home directories workload.

Src results: The overall request rate of Src is shown
in Figure 13(a) and the first day request rate is shown in
Figure 13(b). We can see that Src workload has a periodic
pattern over the whole week, and high burstiness in the request
rate each day. We slow down the first day’s workload by
4x for the test. In Figure 14(a), we set Miser’s response
time target to 20ms. We find that about 52% of the response
times meet the target while only about 1% of requests do
so using FCFS. 20% of requests finish in between 20ms and
50ms using Miser while only 7.9% such requests do so with
FCFS. In Figure 14(b), we increase the response time target
to 50ms. Miser still outperforms FCFS significantly in terms
of percentage of requests with small response time. Miser can
get about 63% of requests with response time smaller than
50ms compared with 8.8% for FCFS.

Usr results: As the Usr workload also has periodic weekly
pattern, we only show the first day’s workload in Figure 15(a).
There are two busy periods in this workload; we are more
interested in the second one shown in Figure 15(b) since
it represents a typical ON/OFF bursty pattern. Although the
request rate of Usr is very high, it is highly sequential in terms
of its block address access pattern. Thus we do not need to
scale the workload in this test. As Figure 15(c) shows, for this
sequential workload, FCFS can do good job of making about
80% of requests’ response time smaller than 50ms. However,
Miser can still improve the response time distribution over
FCFS for smaller response times. As the figure shows, Miser
can finish 43% of requests within 10ms while FCFS only
completes 3.6% in this range.

5 RELATED WORK

Recently proposed QoS schedulers for storage servers [1; 2;
3; 4; 27] are generally based on Fair Queueing [22; 28; 29]
principles, combined with throughput enhancing mechanisms
to exploit locality and concurrency in the storage arrays.
These works do not explicitly address the issue of reducing
resource requirements, simply assuming sufficient capacity or



12

 0

 100

 200

 300

 400

 500

 600

 0  500  1000  1500  2000  2500  3000  3500

R
eq

ue
st

 R
at

e 
(I

O
P

S
) 

Time (second)

(a) WebSearch request rate

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250  300  350  400  450  500

R
eq

ue
st

 R
at

e 
(I

O
P

S
) 

Time (second)

(b) WebSearch request rate: first 500s

Fig. 11. Request rate of WebSearch workload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

<=50 <=100 <=150 <=200 >200

F
ra

c
ti
o

n

Response Time (ms)

FCFS
Miser

(a) 50ms target

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

<=100 <=150 <=200 <=250 >250

F
ra

c
ti
o

n

Response Time (ms)

FCFS
Miser

(b) 100ms target

Fig. 12. Response time distribution of FCFS and Miser on WebSearch workload

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  2000  4000  6000  8000  10000  12000

R
eq

ue
st

 R
at

e 
(I

O
P

S
) 

Time (Minutes)

(a) MSRC src request rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 460  480  500  520  540  560  580  600

R
eq

ue
st

 R
at

e 
(I

O
P

S
) 

Time (Minutes)

(b) MSRC src request rate: 450M to 600M

Fig. 13. Request rate of MSRC src workload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

<=20 <=50 <=100 <=150 >150

F
ra

c
ti
o

n

Response Time (ms)

FCFS
Miser

(a) 20ms target

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

<=50 <=100 <=150 <=200 >200

F
ra

c
ti
o

n

Response Time (ms)

FCFS
Miser

(b) 50ms target

Fig. 14. Response time distribution of FCFS and Miser on MSRC src workload



13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  200  400  600  800  1000  1200  1400  1600

R
eq

ue
st

 R
at

e 
(I

O
P

S
) 

Time (Minutes)

(a) MSRC usr request rate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 600  650  700  750  800  850  900

R
eq

ue
st

 R
at

e 
(I

O
P

S
) 

Time (Minutes)

(b) MSRC usr request rate: 600M to 900M

 0

 0.1

 0.2

 0.3

 0.4

 0.5

<=10 <=20 <=50 <=100 >100

F
ra

c
ti
o
n

Response Time (ms)

FCFS
Miser

(c) 10ms target

Fig. 15. Response time distribution of FCFS and Miser on MSRC usr workload

proportionately allocating the available capacity by weight.
As shown in the results this requires significant resource
over-provisioning to handle the unpredictable burst patterns
and meet response time goals. Our scheduling framework
differs from the above works by provisioning based on the
overwhelmingly well-behaved portion of the workload rather
than the bursts, and dynamically decomposing each client
workload to conform to the provisioning.

Considerable amount of previous work has been devoted
to designing optimal size-aware schedulers to improve per-
formance [30; 31; 32] in Web servers. The basic idea is to
separate jobs in terms of their size to avoid having short jobs
getting stuck behind long ones. The SRPT scheduler [30] gives
preference to jobs or requests with short remaining processing
times to improve mean response time of Web servers. In a
clustered server environment, D EQAL [32] utilizes the size-
based policy to assign the jobs to different servers in terms
of size distribution, and further enhances this by considering
the autocorrelation property of the workload to deliberately
unbalance the load to improve the performance. Swap [31]
also leverages the size-autocorrelation property of the jobs
to simulate the Short Job First scheduler and delay the long
jobs in preference to short ones. Our scheduling framework
is designed for storage systems, where the request size is not
as diverse as Web applications. The big requests are already
partitioned by the OS or storage device driver into smaller-
sized block requests (e.g. 32KB). We differ from the above
works by considering the correlation in arrival times (leading
to bursts), and proposes decomposing the workload to different
classes dynamically based on the overall shape of the traffic
rather than on individual request characteristics.

A third body of related work can be found in the consider-
able literature on network QoS [33] where traffic shaping is
used to tailor the workloads to fit QoS-based SLAs. Typically,
arriving network traffic is made to conform to a token-
bucket model by monitoring the arrivals, and dropping requests
that do not conform to the bucket parameters of the SLA.
Alternatively, early detection of overload conditions is used to
create back pressure to throttle the sources [34]. In storage
systems, workload request dropping is not a viable option
since the protocols do not support automatic retry mechanisms,
and throttling is difficult in an open system and can lead to
loss of throughput in disks and storage arrays. Techniques
leveraging statistical envelopes have been proposed [10] to

reshape inbound traffic and to allocate resources in network
systems in order to achieve probabilistically bounded service
delays, while simultaneously multiplexing system resources
among the requesters to achieve higher utilization. In general,
the traffic decomposition methods in network literature focus
on shaping the aggregated traffic from several clients by
throttling or dropping based on their traffic classification, to
match transmission bandwidth. We are interested in shaping
one specific client traffic to provide good response time
distribution without throttling or dropping.

6 CONCLUSIONS AND FUTURE WORK

We addressed the problem of response time degradation in
storage servers caused by the bursty nature of many storage
workloads. Since the arrival rates during a burst can be
an order of magnitude or more than the long-term average
arrival rate, providing worst-case guarantees requires very
significant over provisioning of server resources. Furthermore,
even though the bursts make up only a small fraction of the
requests, their effects are not isolated but affect even the well-
behaved portions of the workload.

We presented a workload shaping framework to address
this problem. In our approach, the workload is dynamically
decomposed into its bursty and non-bursty portions based on
the response time and capacity parameters. By recombining
the bursty portions to exploit available slack in the rest of the
workload, the entire workload can be scheduled with much
smaller capacity and superior response time distribution. We
presented an optimal decomposition algorithm RTT and a
slack-scheduling recombination method Miser to do the work-
load shaping, and evaluated it on several storage traces using
both simulation and Linux implementation. The results show
significant capacity reductions and better response time distri-
butions over non-decomposed traditional scheduling methods.
Finally, we showed how the decomposition could be used
to provide more accurate capacity estimates for multiplexing
several clients on a shared server, thereby improving admission
control decisions.

In future work, we are focusing on how the workload shap-
ing affects the disk throughput and how to best apply workload
shaping in a multi-client environment. Disk throughput highly
depends on the spatial locality in the workload. Thus, during
decomposition, we not only need to schedule the requests



14

across different queues to meet response time bounds, but
also try to improve the system throughput by considering the
data locality in scheduling the queues. In a shared storage
environment, each client or application may have different
QoS requirements. The workload shaping framework could
maintain private primary queues for each client and separate
or consolidated overflow queues, while the total bandwidth is
shared proportionally among all the clients.

ACKNOWLEDGMENT

The research was partially supported by NSF grants
CNS0615376, CNS054136, CNS0917157. We thank the re-
viewers for their constructive suggestions and Tate Hornbeck
for help in the implementation.

REFERENCES
[1] W. Jin, J. S. Chase, and J. Kaur, “Interposed proportional sharing for a storage

service utility,” in Proc. of SIGMETRICS, 2004.
[2] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel, “Storage per-

formance virtualization via throughput and latency control.” in Proc. of MASCOTS,
2005.

[3] A. Gulati, A. Merchant, and P. Varman, “pClock: An arrival curve based approach
for QoS in shared storage systems,” in Proc. of SIGMETRICS, 2007.

[4] C. Lumb, A. Merchant, and G. Alvarez, “Façade: Virtual storage devices with
performance guarantees,” Proc. of FAST, 2003.

[5] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster reserves: a mechanism for
resource management in cluster-based network servers,” in Proc. of SIGMETRICS,
2000.

[6] M. E. Gómez and V. Santonja, “On the impact of workload burstiness on disk
performance,” in Workload characterization of emerging computer applications,
2001.

[7] W. E. Leland, S. T. M, W. Willinger, and D. V. Wilson, “On the self-similar nature
of ethernet traffic,” IEEE/ACM Trans. Networking, vol. 2, no. 1, 1994.

[8] A. Riska and E. Riedel, “Long-range dependence at the disk drive level,” in Proc.
of QEST, 2006.

[9] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel, “Performance impacts of
autocorrelated flows in multi-tiered systems,” in Performance Evaluation, vol. 64,
no. 9-12, 2007.

[10] E. W. Knightly and N. B. Shroff, “Admission control for statistical qos: theory and
practice,” in IEEE Network, vol. 13, Mar. 1999.

[11] L. Lu, P. J. Varman, and K. Doshi, “Graduated qos by decomposing bursts: Don’t
let the tail wag your server,” in Proc. of ICDCS, 2009.

[12] “Public software (storage systems department at hp labs),” June 2007,
http://tesla.hpl.hp.com/publicsoftware/.

[13] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. Rowstron, “Everest:
Scaling down peak loads through i/o off-loading,” in Proc. of OSDI, 2008.

[14] “Storage performance council (umass trace repository),” June 2007,
http://traces.cs.umass.edu/index.php/Storage.

[15] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,
“Managing Energy and Server Resources in Hosting Centers,” in Proc. of SOSP,
2001.

[16] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
Aware Server Provisioning and Load Dispatching for Connection-Intensive Internet
Services,” in Proc. of NSDI, 2008.

[17] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wikes, “Hibernator: Helping
Disk Arrays Sleep Through The Winter,” in Proc. of SOSP, 2005.

[18] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating Server Idle
Power,” in Proc. of ASPLOS, 2009.

[19] “HDFS: Architecture and Design,” http://hadoop.apache.org/, Aug. 2008.
[20] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in Proc.

of SOSP, 2003.
[21] J. C. R. Bennett and H. Zhang, “WF 2Q: Worst-Case Fair Weighted Fair Queue-

ing,” in Proc. of INFOCOM, 1996.
[22] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queueing: a scheduling

algorithm for integrated services packet switching networks,” in IEEE/ACM Trans.
Networking, vol. 5, no. 5, 1997.

[23] A. Gulati and P. Varman, “RFQ: Redemptive Fair Queuing,” in Proc. of ESA, 2008.
[24] Http://www.pdl.cmu.edu/DiskSim/.
[25] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading: Practical power

management for enterprise storage,” in Proc. of FAST, 2008.
[26] “Flexible IO Tester,” http://freshmeat.net/projects/fio/.
[27] P. J. Shenoy and H. M. Vin, “Cello: a disk scheduling framework for next generation

operating systems,” in Proc. of SIGMETRICS, 1998.
[28] J. C. R. Bennett and H. Zhang, “WF 2Q: Worst-case fair weighted fair queueing,”

in Proc. of INFOCOM, 1996.
[29] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queuing

algorithm,” Journal of Internetworking Research and Experience, pp. 3 – 26, Sep.
1990.

[30] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal, “Size-based schedul-
ing to improve web performance,” in ACM Trans. Comput. Syst., vol. 21, no. 2,
2003.

[31] N. Mi, G. Casale, and E. Smirni, “Scheduling for performance and availability in
systems with temporal dependent workloads,” in Proc. of DSN, 2008.

[32] Q. Zhang, N. Mi, A. Riska, and E. Smirni, “Load unbalancing to improve
performance under autocorrelated traffic,” in Proc. of ICDCS, 2006.

[33] J. W. Evans and C. Filsfils, “Deploying ip and mpls qos for multiservice networks,”
in Morgan Kauffman, 2007.

[34] S. Floyd and V. Jacobson, “Random early detection gateways for congestion
avoidance,” in IEEE/ACM Transactions on Networking, vol. 1, no. 4, 1993.

Lanyue Lu received his B.E. from University of
Science and Technology of China in 2006, and
M.S. from Rice University in 2009. His research
interests are in storage and file systems.

Peter J. Varman received his B. Tech from the
Indian Institute of Technology, Kanpur and M.S.
and Ph. D. degrees from the University of Texas
at Austin. Since then he has been on the fac-
ulty of Rice University where he is currently a
Full Professor. He had held visiting positions at
IBM T. J. Watson and Almaden research cen-
ters, NTU Singapore, and Duke University. From
2002 2005 he served as Program Director for
Computer Systems Architecture at the National
Science Foundation. His research interests are

in computer architecture, storage systems, resource scheduling and
power management. He has served on several international science
and engineering review and advisory panels. He is a past editor of the
IEEE Transactions on Computers and serves on the editorial board of
the Journal of Combinatorial Optimization.

Kshitij Doshi received his B. Tech from the
Indian Institute of Technology, Bombay and M.S.
and Ph. D. degrees from Rice University. He has
since then worked with AT&T, Novell, and Intel
corporations in areas of hardware and software
architecture and performance analysis, system
virtualization, and storage hierarchies. His cur-
rent focus also includes database systems ar-
chitecture and performance and computational
energy optimization approaches.


