Nondeterministic Finite Automata

CS 536
Previous Lecture

Scanner: converts a sequence of characters to a sequence of tokens
Scanner and parser relationship
Scanner implemented using FSMs
FSM: DFA or NFA
This Lecture

NFAs from a formal perspective

Theorem: NFAs and DFAs are equivalent

Regular languages and Regular expressions
NFAs, formally

\[M \equiv (Q, \Sigma, \delta, q, F) \]

- finite set of states
- the alphabet (characters)
- start state \(q \in Q \)
- final states \(F \subseteq Q \)
- transition function \(\delta : Q \times \Sigma \to 2^Q \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>{s1}</td>
<td>{s1, s2}</td>
</tr>
<tr>
<td>s2</td>
<td>{}</td>
<td>{}</td>
</tr>
</tbody>
</table>
NFA

To check if string is in $L(M)$ of NFA M, simulate set of choices it could make

At least one sequence of transitions that:

- Consumes all input (without getting stuck)
- Ends in one of the final states
NFA and DFA are Equivalent

Two automata M and M' are equivalent iff $L(M) = L(M')$

Lemmas to be proven

Lemma 1: Given a DFA M, one can construct an NFA M' that recognizes the same language as M, i.e., $L(M') = L(M)$

Lemma 2: Given an NFA M, one can construct a DFA M' that recognizes the same language as M, i.e., $L(M') = L(M)$
Proving lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M’ that recognizes the same language as M, i.e., L(M’) = L(M)

Idea: we can only be in finitely many subsets of states at any one time

\[2^{|Q|}\] possible combinations of states

Why?
Why $2^{|Q|}$ states?

Build DFA that tracks set of states the NFA is in!

- $0 \ 0 \ 0 = \{}$
- $0 \ 0 \ 1 = \{C\}$
- $0 \ 1 \ 0 = \{B\}$
- $0 \ 1 \ 1 = \{B,C\}$
- $1 \ 0 \ 0 = \{A\}$
- $1 \ 0 \ 1 = \{A,C\}$
- $1 \ 1 \ 0 = \{A,B\}$
- $1 \ 1 \ 1 = \{A,B,C\}$
Defn: let $\text{succ}(s,c)$ be the set of choices the NFA could make in state s with character c

\[
\begin{align*}
\text{succ}(A,x) &= \{A,B\} \\
\text{succ}(A,y) &= \{A\} \\
\text{succ}(B,x) &= \{C\} \\
\text{succ}(B,y) &= \{C\} \\
\text{succ}(C,x) &= \{D\} \\
\text{succ}(C,y) &= \{D\}
\end{align*}
\]
To build DFA: Add an edge from state S on character c to state S’ if S’ represents the union of states that all states in S could possibly transition to on input c.
\(\varepsilon \text{-transitions} \)

\textbf{Eg: } \(x^n \), where \(n \) is even \textbf{or} divisible by 3

Useful for taking union of two FSMs

In example, left side accepts even \(n \), right side accepts \(n \) divisible by 3
Eliminating ε-transitions

We want to construct ε-free FSM M' that is equivalent to M.

Definition:
$\text{eclose}(s) = \text{set of all states reachable from } s \text{ in zero or more epsilon transitions}$

M' components
s is an accepting state of M' iff $\text{eclose}(s)$ contains an accepting state

$s \xrightarrow{c} t$ is a transition in M' iff $q \xrightarrow{c} t$ for some q in $\text{eclose}(s)$
Eliminating ϵ-transitions

Definition: Epsilon Closure
$\text{eclose}(s) = \text{set of all states reachable from } s$ using
zero or more epsilon transitions

We want to construct ϵ-free NFA M' that is equivalent to M.

<table>
<thead>
<tr>
<th></th>
<th>eclose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>${A, B, D}$</td>
</tr>
<tr>
<td>B</td>
<td>${B}$</td>
</tr>
<tr>
<td>C</td>
<td>${C}$</td>
</tr>
<tr>
<td>D</td>
<td>${D}$</td>
</tr>
<tr>
<td>E</td>
<td>${E}$</td>
</tr>
<tr>
<td>F</td>
<td>${F}$</td>
</tr>
</tbody>
</table>
Def: $\text{eclose}(s) = \text{set of all states reachable from } s \text{ in zero or more epsilon transitions}$

s is an accepting state of M' iff $\text{eclose}(s)$ contains an accepting state

$s \xrightarrow{c} t$ is a transition in M' iff $q \xrightarrow{c} t$ for some q in $\text{eclose}(s)$
Recap

NFAs and DFAs are equally powerful
any language definable as an NFA is definable as a DFA
ε-transitions do not add expressiveness
to NFAs

we showed a simple algorithm to remove epsilons
Regular Languages and Regular Expressions
Regular Language

Any language recognized by an FSM is a regular language

Examples:

• Single-line comments beginning with //
• Integer literals
• \{ε, ab, abab, ababab, abababab, ababababab, \}
• C/C++ identifiers
Regular expressions

Pattern describing a language

operands: single characters, epsilon

operators: from low to high precedence

alternation “or”: \(a \mid b \)

catenation: \(a.b, \ ab, \ a^3 \) (which is aaa)

iteration: \(a^* \) (0 or more a’s) aka Kleene star
Why do we need them?

Each token in a programming language can be defined by a regular language.

Scanner-generator input: one regular expression for each token to be recognized by scanner.

Regular expressions are inputs to a scanner generator.
Regexp, cont’d

Conventions:

a+ is aa*

letter is a|b|c|d|...|y|z|A|B|...|Z
digit is 0|1|2|...|9
not(x) all characters except x
.
 is any character
parentheses for grouping, e.g., (ab)*
ε, ab, abab, ababab
Regexp, example

Hex strings
start with 0x or 0X
followed by one or more hexadecimal digits
optionally end with l or L

0(x|X)hexdigit+(L|l|ɛ)
where hexdigit = digit|a|b|c|d|e|f|A|…|F
Regexp, example

Single-line comments in Java/C/C++

// this is a comment

//(not(‘\n’))*(‘\n’|epsilon)
Regexp, example

C/C++ identifiers: sequence of letters/digits/ underscores; cannot begin with a digit; cannot end with an underscore

Example: a, _bbb7, cs_536

Regular expression

letter | (letter|_)(letter|digit|_)* (letter|digit)
Recap

Regular Languages
Languages recognized/defined by FSMs

Regular Expressions
Single-pattern representations of regular languages
Used for defining tokens in a scanner generator
Creating a Scanner

Scanner Generator

- Last lecture: DFA to code
- This lecture: NFA to DFA
- Next lecture: Regexp to NFA
- This lecture: token to Regexp

= Scanner