
NoFAQ: Synthesizing Command Repairs from Examples
Loris D’Antoni
loris@cs.wisc.edu

University of Wisconsin
Madison, USA

Rishabh Singh
risin@microso�.com
Microso� Research

Redmond, USA

Michael Vaughn
vaughn@cs.wisc.edu

University of Wisconsin
Madison, USA

ABSTRACT

Command-line tools are confusing and hard to use due to their cryp-
tic error messages and lack of documentation. Novice users o�en
resort to online help-forums for �nding corrections to their buggy
commands, but have a hard time in searching precisely for posts
that are relevant to their problem and then applying the suggested
solutions to their buggy command. We present NoFAQ, a tool that
uses a set of rules to suggest possible �xes when users write buggy
commands that trigger commonly occurring errors. �e rules are
expressed in a language called Fixit and each rule pa�ern-matches
against the user’s buggy command and corresponding error mes-
sage, and uses these inputs to produce a possible �xed command.
NoFAQ automatically learns Fixit rules from examples of buggy
and repaired commands. We evaluate NoFAQ on two fronts. First,
we use 92 benchmark problems drawn from an existing tool and
show that NoFAQ is able to synthesize rules for 81 benchmark
problems in real time using just 2 to 5 input-output examples for
each rule. Second, we run our learning algorithm on the examples
obtained through a crowd-sourcing interface and show that the
learning algorithm scales to large sets of examples.

CCS CONCEPTS

•So�ware and its engineering→ Command and control lan-

guages; Programming by example;

KEYWORDS

Domain Speci�c Languages, Programming by Example, Program
Synthesis, Program Repair, Command Line Interface
ACM Reference format:

Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017. NoFAQ: Syn-
thesizing Command Repairs from Examples. In Proceedings of 2017 11th

Joint Meeting of the European So�ware Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of So�ware Engineering, Paderborn,

Germany, September 4–8, 2017 (ESEC/FSE’17), 11 pages.
DOI: 10.1145/3106237.3106241

1 INTRODUCTION

Command-Line Interfaces (CLIs) let users interact with a comput-
ing system by writing sequences of commands. CLIs are especially

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, Paderborn, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5105-8/17/09. . .$15.00
DOI: 10.1145/3106237.3106241

popular amongst advanced computer users, who use them to per-
form small routine tasks such as commi�ing a �le to a repository
with version control, installing so�ware packages, compiling source
code, �nding and searching for �les etc. Even though this mode
of interaction has been supplanted by more natural graphical user
interfaces for many common tasks, CLIs are still routinely used
for most scripting tasks in Unix and Mac OS. Even the Windows
operating system now o�cially provides complex command-line
interfaces with products such as Windows Powershell.

Since command-line interactions o�en require complex param-
eters and �ag se�ings to specify behavior, non-expert users �nd
CLIs challenging to use. Moreover, a�er entering an incorrect com-
mand, the user has to deal with cryptic errors that are hard to
decipher by just looking at the verbose text-based documentation
of the commands. For these reasons, users typically resort to online
help-forums for �nding corrections to their buggy commands. Un-
fortunately, this can also be problematic as users need to precisely
search for posts related to the issues with their commands and then
transform the suggested solutions to apply them in their context.
What About Common Errors? Recently, TheFxxx1 was devel-
oped to automatically address common errors when working with
a CLI. If a�er typing a command a user receives an error message,
TheFxxx uses a set of hard-coded rules to suggest possible �xes
to the command. Typical �xes include adding missing �ags, cre-
ating a missing directory, or changing �le extensions. TheFxxx
is extremely popular and, on GitHub, it has already been starred
by more than 24,000 users and has been forked more than 1,200
times. Despite its success, TheFxxx has a signi�cant limitation: to
add a new rule a developer �rst needs to understand the syntax
and precise semantics of TheFxxx and then manually hard-code
the rule into the tool. Due to this, newly added rules have at times
caused non-terminating or unexpected behaviors2.
Synthesizing Rules From Examples Inspired by the success and
limitations of TheFxxx, we built NoFAQ (No more Frequently
Asked �estions), which also uses a set of rules for �xing common
errors, but it di�ers from TheFxxx in the following key aspects:
(1) Rules are encoded in a declarative domain-speci�c language

(DSL) called Fixit.
(2) New rules are automatically synthesized from crowd-sourced

examples of buggy and repaired commands.
NoFAQ is used by novice programmers, who query it for sugges-
tions for common errors (Figure 1), and by expert programmers,
who contribute examples of �xes for commands for which users
asked for hints, but NoFAQ did not have a suitable rule (Figure 2).
Unlike TheFxxx, NoFAQ can add rules in a completely unsuper-
vised fashion and does not require contributor access to source code

1We censored the name of the tool h�p://bit.ly/CmdCorrection.
2h�p://bit.ly/1j7zxOr and h�p://bit.ly/1YgngXJ.

http://bit.ly/CmdCorrection
http://bit.ly/1j7zxOr
http://bit.ly/1YgngXJ

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Loris D’Antoni, Rishabh Singh, and Michael Vaughn

Figure 1: Interface to get suggestions.

or know a complex framework. In fact, while TheFxxx only con-
sists of fewer than 100 rules in a li�le over 1 year, NoFAQ already
contains hundreds of rules and constantly learns new ones.

�e Fixit DSL for encoding �x rules is inspired by the types
of rules appearing in TheFxxx and by common command repairs
requested by users on help-forums. A Fixit rule �rst uses pa�ern
matching and uni�cation to match the command and error mes-
sage, and then applies a �x transformation if the match succeeds.
�e transformations consist of substring and append functions on
strings present in the command and error message.

We present an algorithm that e�ciently synthesizes Fixit rules
consistent with a given set of input-output examples using a Version-
space Algebra (VSA) [12]. VSA-based synthesis techniques are used
to succinctly represent the set of all expressions that are consis-
tent with a set of examples [7]. Even though existing VSA data
structures can represent an exponential number of Fixit rules in
polynomial space, this space can still be quite large. To address this
problem we introduce lazy version-space algebra, which is inspired
from Plotkin’s [22] work on using least general generalization for
unifying two logical predicates. Given a set of examples, our al-
gorithm maintains a lazy representation of a subset of all Fixit
rules consistent with the examples. �e missing rules are only
enumerated when necessary—i.e., when a new input-output exam-
ple can only be accounted for by adding a Fixit rule that is not
already present in the version-space. Because of the careful design
of Fixit, our synthesis algorithm has a polynomial time complex-
ity. In contrast, existing VSA-based synthesis techniques for string
transformations require exponential time [7]. �e polynomial time
complexity is crucial, allowing our synthesis algorithm to scale to
a large number of �x examples.

We evaluate the synthesis algorithm implemented in NoFAQ
on 92 benchmark problems obtained from both TheFxxx (76) and
online help-forums (16). NoFAQ is able to learn the repair rules for
81 of the buggy commands in these benchmark problems from only
2 to 5 input-output examples each. We also evaluate the algorithm
on crowd-sourced examples and show that, on average, we process
a new example in less than .37 seconds.

Figure 2: Interface to crowd-source examples of �xes.

Contributions summary:

(1) NoFAQ, a tool for learning rules for �xing common errors using
crowd-sourced examples (§ 3)

(2) Fixit, a domain-speci�c language for encoding rules that map
a command and an error message to possible �xed commands

(3) A sound and complete polynomial time synthesis algorithm for
Fixit rules based on lazy version-space algebra (§ 4 and § 5).

(4) A qualitative and quantitative evaluation of the synthesis al-
gorithm on 92 benchmarks obtained from both TheFxxx and
online help-forums (§ 6).

2 MOTIVATING EXAMPLES

We �rst present the main ideas behind NoFAQ using concrete ex-
amples appearing in TheFxxx system.

2.1 Adding Missing File Extension

Novice Java programmers are likely to encounter the following
error when accidentally passing a class name instead of a source
code �le to the javac compiler:

cmd1: javac Employee
err1: Class names, ‘Employee’, are only accepted if annotation

processing is explicitly requested

A novice user, who does not know how to proceed, can use the
NoFAQ interface to ask for a �x. If no �x is available, NoFAQ will
add this input to the ones for which crowd-sourcing is needed. A
seasoned programmer who uses the crowd-sourcing interface of
NoFAQ (Figure 2) would immediately recognize the problem and
add the extension .java at the end of the input �le.

�x1: javac Employee.java

Let’s assume that another user submits a similar query and a
skilled developer provides the following �x for it.

cmd2: javac Pair
err2: Class names, ‘Pair’, are only accepted if annotation pro-

cessing is explicitly requested
�x2: javac Pair.java

NoFAQ : Synthesizing Command Repairs from Examples ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

NoFAQ synthesizes the following �x rule from the two examples:
match [Str(javac), Var-Match(1, ε, ε)]
and [Str(Class), Str(names,), Var-Match(2, ‘, ’,), Str(are),
Str(only), Str(accepted), Str(if), Str(annotation),
Str(processing), Str(is), Str(explicitly), Str(requested)]
→ [Fstr(javac), Sub(0, 0, ε, .java,Var(1))]

�e �rst part of the rule (i.e., up to the symbol→) pa�ern-matches
against the command and the error message and binds the input
strings to corresponding variables, which are then used by the
second part of the rule to produce the output. In this case the
Sub(0, 0, ε, .java,Var(1)) expression extracts the complete string
associated with Var(1) (a start index of 0 and an end index of
0 denotes the identity string extraction), and then prepends the
string ε at the beginning, and appends the string .java at the end.
If another user submits a query for a similar mistake, NoFAQ will
be able to provide a suggestion for it using this rule (Figure 1).

2.2 Extracting Complex Substrings

In the following example, a user trying to move a picture from
one location to another gets the following error message, which is
addressed in NoFAQ with the proper �x.
cmd1: mv photo.jpg Mary/summer12.jpg
err1: can’t rename ’photo.jpg’: No such �le or directory
�x1: mkdir Mary && mv photo.jpg Mary/summer12.jpg

Given this example and another similar one, NoFAQ synthesizes
the following rule.
match [Str(mv), Var-Match(1, ε , ε), Var-Match(2, ε, ε)]
and [Str(can’t), Str(rename), Var-Match(3, ‘, ’),

Str(No), Str(such), Str(file), Str(or), Str(directory)]
→ [Fstr(mkdir), Sub(0,Cp(/, 1, 0), ε, &&,Var(2))

Fstr(mv), Sub(0, 0, ε, ε,Var(1)), Sub(0, 0, ε, ε,Var(2))]

�e second expression in the output extracts the directory name—
i.e., the substring that starts at index 0 and ends at the index of �rst
occurrence of the character /. �e rule also adds a string && at the
end of the extracted string to sequence the two output commands.

3 THE NOFAQ SYSTEM

In this section, we brie�y describe the NoFAQ system and the ways
users interact with it. NoFAQ is structured as a web app with three
main sections: 1) a section that allows users to request sugges-
tions on how to �x erroneous commands, 2) a section that allows
skilled users to contribute example �xes to previously requested
commands, and 3) a section that allows users to view existing ex-
amples of �xes. We describe the features of the three sections and
how they interact with our synthesis algorithm.

To request a �x, a user simply enters an erroneous command
with the corresponding error. If NoFAQ has already learned some
rules matching the input, the corresponding outputs are presented
to the user (Figure 1).3 �e user can decide to upvote some �x or
�ag some of the suggested �xes as bad ones. If no rule matches,
or the user clicks that none of the suggestions was helpful, the

3A�er observing that many users were not providing the error message or only parts
of it, we allow the provided error to match a substring of the error in the rule.

command and error are added to the set of inputs for which we
need to crowd-source an example �x. Skilled users can then use
the second section to contribute �xes to such inputs.

In the second section, a user is prompted with a random input
for which NoFAQ currently does not have a �x. �e user can 1)
provide a �x for it, 2) ask NoFAQ to provide a di�erent random
input, or 3) �ag the input as not �xable (e.g., there is not enough
information to provide a meaningful �x). If two users provide the
same �x for a given input, the example is added to the database of
NoFAQ and is used by our synthesis algorithm to learn new rules.

In the third section, users can see random examples of �xes
provided by other users and upvote some �x or �ag some �xes as
bad ones. �is mechanism mitigates the problem of malicious users
trying to provide bad �xes. To further address the problem, we also
use a blacklisting mechanism to remove all inputs and �xes that
contain profanity or typical bad �xes like rm -rf /*.

4 SYNTHESISING RULES IN NOFAQ

In this section, we �rst describe Fixit, a domain-speci�c language
for expressing repair rules and then present an algorithm for syn-
thesising Fixit rules from examples.

4.1 �e Fixit Language

�e syntax of Fixit is presented in Figure 3. �e Fixit language
is designed to be expressive enough to capture most of the rules
we found in TheFxxx and in online help-forums, but also concise
enough to enable e�cient learning from examples.
General structure Each Fixit program is a rule of the form

match cmd and err → f ix

that takes as input a command s̄cmd and an error s̄err and either
produces a �xed command or the unde�ned value ⊥. �e inputs
s̄cmd and s̄err are lists of strings that are obtained by extracting
all space-separated strings appearing in the input command and
error message respectively. �e output �x produced by the rule is
also a list of strings. From now on, we assume that the inputs and
outputs are lists of strings that do not contain space characters.

A rule has 3 components: 1) A list of match expressions cmd =
[m1, · · · ,ml] used to pa�ern match against the input command
s̄cmd . 2) A list of match expressions err = [m1, · · · ,mk] used to
pa�ern match against the input error message s̄err . 3) A list of �x
expressions f ix = [f1, · · · , fn] to produce the new �xed command.
Match expressions A match expression m is either of the form
Str(s) denoting a constant string s or of the form
Var-Match(i, l , r). A Var-Match(i, l , r) expression denotes a vari-
able index i and requires the matched string to start with the pre�x
l and end with the su�x r . We assume that no two variable ex-
pressions appearing in the match expression have the same index.
When a list of match expressions [m1, · · · ,ml] is applied to a list of
strings s̄ = [s1, . . . , sl] with the same length l , it generates a partial
function σ : N 7→ Σ∗ that assigns variables appearing in the match
expressions to the corresponding strings in the input. For example,
evaluating the expression

[Str(mv),Var-Match(1, ϵ, .jpg),Var-Match(2, ϵ, .jpg)]

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Loris D’Antoni, Rishabh Singh, and Michael Vaughn

Fix rule r := match cmd and err → f ix
Input cmd cmd := [m1, · · · ,ml]

Input error err := [m1, · · · ,mk]

Output cmd f ix := [f1, · · · , fn]
Match expr m := Str(s) | Var-Match(i, sl , sr)
Fix expr f := Fstr(s) | Sub(pL ,pR , sl , sr ,Var(i))
Pos expr p := Ip(k) | Cp(c,k,δ)
s, sl , sr : strinд i,k,δ : inteдer c : character

Figure 3: Syntax of the rule description language Fixit.

on the list of strings [mv, a.jpg, b.jpg] produces the function σ
such that σ (1) = a.jpg and σ (2) = b.jpg. On the other hand,
evaluating the same expression on [mv, a.png, b.jpg] yields ⊥, as
a.png does not match the required su�x in Var-Match(1, ϵ, .jpg).
Fix expressions A �x expression f is either of the form Fstr(s) de-
noting the constant output string s , or of the form
Sub(pL ,pR , sl , sr ,Var(i)) denoting a function that is applied to the
string si matched by the variable Var(i). �is function outputs the
string sl ·m · sr , where · denotes the string concatenation operator
andm = substr(s, jL , jR) where jL and jR are the indices resulting
from respectively evaluating the position expressions pL and pR
on the string s . Here, given a string s = a0 . . . an , the expression
substr(s, jL , jR) denotes the string ajL . . . ajR−1 if jL , jR ≤ n + 1
and the unde�ned value ⊥ otherwise. Notice that, unlike previous
VSA-based languages [7], Fixit does not allow binary recursive
concatenation. Prohibiting this enables polynomial time synthesis.
Positions expressions A position expression p can either be a
constant or a symbolic position. A constant position expression
Ip(k), which denotes the index k if k is positive and the index |s |+k
if k is negative. If k = 0, this expression evaluates to 0 when
evaluated for pL (i.e., the starting index of the substring) and to |s |
when evaluated for pR , where |s | denotes the length of the string
s . For example, in the function Sub(Ip(0), Ip(0), ε, ε,Var(1)), where
σ (1) = File, the �rst constant position evaluates to the index 0,
while the second constant position evaluates to the index |File| = 4.
A symbolic position expression Cp(c,k,δ), which denotes the result
of applying an o�set δ to the index of the k-th occurrence of the
character c in s if k is positive, and the result of applying an o�set
δ to the index of the k-th to last occurrence of the character c in s if
k is negative. For example, given the string www.google.com, the
expression Cp(., 1,−2) denotes the index 2 (two positions before the
�rst dot), while the expression Cp(.,−1, 2) denotes the index 12 (two
positions a�er the last dot). �is operator is novel and can express
operations that are not supported by previous VSA-based work.
In particular, FlashFill [7] only allows the extraction of the exact
position of a character and not positions in its proximity. Despite
this additional capability, Fixit programs can be synthesized in
polynomial time.
Comparison with FlashFill DSL At the top-level, Fixit consists
of match expressions over commands and error messages, which
perform pa�ern-matching and uni�cation of variables with strings.
�is form of matching and uni�cation is not expressible in FlashFill,
so we cannot use it to learn the �x rules directly. However, we
can use FlashFill as a subroutine to learn string transformations

corresponding to expressions similar to Sub expressions in No-
FAQ. However, the FlashFill DSL has two major limitations: 1) No
support for o�sets from regular expression matches in computing
position expressions (in contrast to Fixit’s Cp(c,k,δ) operator),
and 2) A �nite hard-coded token set for regular expressions (e.g.
no support for constant character tokens). Moreover, as described
in Subsection 4.2 and Section 7, our Sub operator yields a synthe-
sis algorithm that operates in polynomial time in the number of
examples, which enables the algorithm to scale to a large number
of examples. Because of the recursive binary concatenation expres-
sions in FlashFill, the DAG intersection based synthesis algorithm
is exponential in the number of examples.

4.2 Synthesizing Rules from Examples

In this section we describe our algorithm for synthesizing a single
Fixit rule from a set of examples of concrete command �xes.

�e algorithm for learning a single Fixit rule is described in
Figure 5; it takes as input a list of examples E = [e1, . . . , en] where
each example ei is a triple of the form (s̄cmd , s̄err , s̄f ix) and outputs
a symbolically represented set of Fixit rules R consistent with
E—i.e., for every rule r ∈ R and example ei = (s̄cmd , s̄err , s̄f ix),
the rule r outputs s̄f ix on the input (s̄cmd , s̄err). �e algorithm
processes one input example at a time, and a�er processing the
�rst i examples Ei = [e1, . . . , ei] the algorithm has computed a set
of rules Ri consistent with Ei . We use ⊥ to denote the unde�ned
result. If at any point our algorithm returns ⊥, there is no Fixit
rule that is consistent with the given set of examples.

4.2.1 Symbolic Representation of Multiple Rules. As there can
be exponentially many rules consistent with the input examples,
we adopt a symbolic representation of the set R that is guaran-
teed to have polynomial size. Our synthesis algorithm takes as
input a list of examples E and outputs a symbolic rule of the form
match cmd and err →s f ixes , where cmd and err are lists of
expressions that can consist of either constants or variables, and
f ixes = [f1, . . . , fm] is a list of expressions that symbolically rep-
resents a set of outputs consistent with the examples E. Formally,
each fi in f ixes is either a constant expression Fstr(s) for some s ,
or a set of substring expressions {su1, . . . , suk }, where each sui is
of the form Sub(pL ,pR , sl , sr ,Var(j)). Intuitively, if we replace each
set with one of the �x expressions it contains, we obtain a Fixit
rule. If each fi contains k elements, this symbolic representation
models kn programs using an expression of size kn.

4.2.2 Lazy Rule Representation. �e core element of our algo-
rithm is a lazy representation of the rules that represents match
and �x expressions as constants for as long as possible—i.e., until a
new example shows that some parts of the rule cannot be constants.
Lazy representation reduces the number of variable expressions, in
turn reducing the number of substring expressions to be considered.
We illustrate the idea with a concrete example. Say we are given
the two examples shown in Figure 4a and 4b. A�er processing
the �rst example, our algorithm synthesizes the Fixit rule in Fig-
ure 4c in which every match expression and every �x expression
is a constant. However, since we have only seen one example, we
do not yet know whether some expression appearing in the match
should actually be a variable match expression or whether some

NoFAQ : Synthesizing Command Repairs from Examples ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

cmd1: java Run.java
err1: Could not �nd or load main class Run.java
�x1: java Run

(a) First example.

cmd2: java Meta.java
err2: Could not �nd or load main class Meta.java
�x2: java Meta

(b) Second example.

match [Str(java), Str(Run.java)]
and [Str(Could), Str(not), Str(find), Str(or), Str(load),

Str(main), Str(class), Str(Run.java)]
→s [Fstr(java), Fstr(Run)]

(c) Symbolic rule representation synthesized a�er �rst example.

match [Str(java), Var-Match(1, ε, .java)]
and [Str(Could), Str(not), Str(find), Str(or), Str(load),

Str(main), Str(class), Var-Match(2, ε, .java)]

→s [Fstr(java),

{ Sub(Ip(0), Ip(−5), ε, ε, Var(1))])
Sub(Ip(0), Cp(., 1, 0), ε, ε, Var(1))])
Sub(Ip(0), Cp(., −1, 0), ε, ε, Var(1))])

}
]

(d) Symbolic rule representation synthesized a�er both examples.

Figure 4: Two input examples e1 and e2 and symbolic rules synthesized a�er processing e1 and e2.

element in the �x expression should actually be a function of some
variable. �e main idea is that any of these possibilities can still
be “recovered” when a new example shows that indeed a variable
is needed. Using this, we maintain each expression as a constant
until a new example shows that some expression cannot actually
be a constant.

�is is exactly what happens when processing the input example
in Figure 4b. At this point in order to �nd a rule that is consistent
with both examples we need to introduce a variable match as the
second expression of the command match, and some function ap-
plication as the second element of the �x. To do so, our algorithm
applies the following operations to the previously computed rule.

(1) All match expressions that cannot be constants are “promoted”
to variable match expressions (making sure that all variable
names are unique), which match on the longest shared pre�x
and su�x of all previously seen values at that position. �e
following table illustrates the idea for the case in which we try
to unify the command cmd2 in Figure 4b with the matching
part of the already computed rule in Figure 4c.

rule: Str(java) Str(Run.java)
new-ex: java Meta.java

new-rule: Str(java) Var-Match(1, ε, .java)

(2) All the �x expressions that cannot be constants are “promoted”
to Sub expressions that are consistent with the current exam-
ples and are allowed to use the variables which appear in the
match expressions.

�e second rule in Figure 4(d) re�ects this update. �e �gure also
shows how multiple Sub expressions are represented symbolically
as a set. We describe all of these components in detail in the next
section. �is new notion of lazy VSA is crucial in our domain in
which the input examples can be large. However, the technique
is general and can also be applied to improve other VSA based
synthesizers such as FlashFill [7].

4.2.3 Synthesis Algorithm. Given a list of input examples, the
function SynthRules uses the �rst example and the function Con-
stRule to generate the symbolic rule composed only of constant
operators. It then iteratively re�nes the rule on the remaining ex-
amples as shown in Figure 5. �is second operation is done by the
function RefineRule which takes as input a symbolic rule r , one
new example (s̄cmd , s̄err , s̄f ix), and the list of examples E on which

//Rules consistent with input examples
fun SynthRules([e0, . . . , en])

r ← ConstRule(e0)
for 1 ≤ i ≤ n do . re�ne on each example ei

r ← RefineRule(r , [e0, . . . , ei−1], ei)

return r

//Re�nes a rule to make it consistent with new example
fun RefineRule(r ,E, (s̄cmd , s̄err , s̄f ix))

r ≡ (match cmd and err →s f ixes)
(cmd ′,Vc) ← FindVariables(s̄cmd , cmd, 0)
(err ′,Ve) ← FindVariables(s̄err , err , |s̄cmd |)

V ← Vc ∪Ve
E ′ ← (s̄cmd , s̄err , s̄f ix) :: E
f ixes ′ ← SynthFix(s̄f ix , f ixes,E ′,V)
return (match cmd ′ and err ′ →s f ixes ′)

//Finds variables necessary to match example
fun FindVariables([s1, . . . , sn], [t1, . . . , tm],o)

//Outputs the �xes consistent with examples E and such that Sub
expressions can use any variable in V . �e �x component of the
latest example and the �xes computed on the previous examples
are also passed as input
fun SynthFix([s1, . . . , sn], [t1, . . . , tn], e :: E,V)

Figure 5: Algorithm for synthesizing Fixit rules.

every concrete rule represented by r behaves correctly. RefineRule
executes two main steps using the following functions.

�e function FindVariables tries to unify the inputs s̄cmd and
s̄err with the corresponding match expressions cmd and err in the
symbolic rule r and generates new variable match expressions if
necessary—i.e., when r contains a matching expression Str(s) but
the corresponding component in the example is a string di�erent
from s . In this case, a Var-Match(i, l , r) expression is generated
such that i is a new variable name, and l and r are the longest
pre�x and su�x shared by s , respectively. When FindVariables is
presented with a new s̄cmd or s̄err a�er a constant match expression
has been ‘promoted’ to a Var-Match(i, l , r) expression, the pre�x
and su�x are updated accordingly. FindVariables determines
the longest pre�x r ′ and su�x l ′ of l and r , respectively, that is

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Loris D’Antoni, Rishabh Singh, and Michael Vaughn

consistent with the appropriate component of the new example,
and generates Var-Match(i, l ′, r ′).

�e function SynthFix uses the variables computed in the previ-
ous step to synthesize all possible �x expressions that are consistent
with the list of examples {(s̄cmd , s̄err , s̄f ix)} :: E. To simplify vari-
able naming and guarantee unique names, each variable has the
index of the corresponding element in the input—i.e., Var(i) denotes
the i-th string in the list s̄cmd@s̄err obtained by concatenating the
command and error input lists.
Lazy pa�ern matching �e function FindVariables, given a
rule r and a new example e , iterates over the input components of
the new example e and outputs the set of variables necessary to
match this new example with respect to the previously computed
symbolic rule r . �e function SynthFix, given a rule r and a list of
examples E, individually synthesizes all the components fi of the
symbolic output �x expression that are consistent with E. SynthFix
is incremental in the sense that it tries to minimally change the
original �x expression of r :
• if the i-th component ti of the �x expression of r is a constant

string consistent with the new example, then the algorithm
leaves it unchanged;

• in any other case the output has to be a substring operation,
and the function SynthSubstrings is used to compute all the
possible Sub expressions that are consistent with the set of
examples E.

Substring expressions During its computation, the function Syn-
thFix has to compute the set of all substrings consistent with the
current variables detected by the lazy VSA and the current examples.
Figure 5 omits the formal de�nition of this function due to space
limitations, but we describe its main components. Given an example
e = (s̄cmd , s̄err , s̄f ix), a set of variable names V , and the index i
corresponding to the element of the output sequence we are try-
ing to synthesize, the algorithm computes the set of all substring
expressions of the form f un = Sub(pL ,pR , sl , sr ,Var(j)) that are
consistent with e such that the result of applying f un to the j-th
string in s̄cmd@s̄err is the i-th string in s̄f ix . Let’s assume that
|s̄cmd |+ |s̄err | = nI , |s̄f ix | = nO , and nL is the length of the longest
string appearing in any of the three lists in the input example. To
compute the set AllSubstrings(e,V , i) we iterate over all variable
indices and for each variable index j ∈ V we do the following.
(1) Extract the string sj corresponding to the variable Var(j) —

O(nI) iterations.
(2) For each string s that is a substring of both s̄f ix [i] and sj , com-

pute all possible pairs of indicesk1,k2 such that substr(sj ,k1,k2) =
s —O(n2

K) possible substrings andO(nK) possible ways to place
the substring in s̄f ix [i].

(3) For each k1 (resp. k2) compute every position expression p1
(resp. p2) such that evaluating p1 (resp. p2) on sj produces the
index k1 (resp. k2) — O(nK) possible positions.

(4) For each of these possibilities yield the expression
Sub(p1,p2, l , r ,Var(j)) where l and r are such that s̄f ix [i] =
l · substr(sj ,k1,k2) · r .

AllSubstrings produces a set of expressions that in the worst
case has size O(nIn

5
K). If we restrict the o�set component δ to

only range over the values {−1, 0, 1} for the symbolic expressions

Cp(c, i,δ), the size reduces toO(nIn3
K), and the synthesis algorithm

is still sound and complete for this fragment of Fixit.
�is last restriction of the language can capture all the rules we

are interested in. Notice that this analysis still holds in the extreme
case in which all input matches are variable expressions of the form
Var-Match(i, ε, ε). In our experiments on real-world commands,
worst-case performance is uncommon, and is induced by substring
operations over heterogeneous strings which yield many possible
implementations. Consider the following two examples.

cmd1: aaaa aaaa cmd2: bbbb bbbb
err1: aaaa aaaa err2: bbbb bbbb
�x1: aa �x1: bb

Performing synthesis on this pair of examples yields a pa�ern
match consisting of four Var-Match(i, ϵ, ϵ) expressions. Due to
the uniformity of the input strings, synthesis yields 48 possible Sub
expressions. In particular, the desired �x can be generated from
any of the four strings in the supplied scmd and serr . Each of the
four strings has three substrings of length 2, any of which yields
the desired output. For each such substring, there are four pairs
of Ip values that supply the appropriate indices: �e pair with two
positive indices, the pair with two negative indices, and the two
pairs consisting of one positive and one negative index.
Key point At this point we are ready to explain why all the match
expressions can be kept as constants for as long as possible. If a�er
processing a set of examples E, some expression in cmd or err is of
the form Str(si), then, for every input example, the value of the i-th
component is the string si . �erefore, even if we replace this expres-
sion with a variable, all its instantiations will have the same values.
Consequently, every function of the form Sub(p1,p2, l , r ,Var(i))
will produce a constant output, making it equivalent to the some
constant function Fstr(s ′).
Avoiding redundancy We discuss further improvements that
make our symbolic rule representation more succinct. In the set of
�x expressions enumerated by the function AllSubstrings, the
last three components of the expression Sub(p1,p2, l , r ,Var(j)) are
o�en repeated many times. Looking at Figure 4d we can see how
all the synthesized functions have l = r = ε and are applied to
the variable Var(1). We de�ne a data structure for representing
sets of �x expressions that avoids these repetitions. A set of �x
expressions is represented symbolically using a partial function
d : N 7→ (Σ∗ × Σ∗) 7→ Set(P × P) where P is the set of all position
expressions. Formally, given a variable index i and two strings l and
r , the set d(i, l , r) symbolically represents the set of �x expressions
{Sub(p1,p2, l , r ,Var(i)) | (p1,p2) ∈ d(i, l , r)}. �e function d can
be e�ciently implemented and avoids redundancy. Considering
again the example rule in Figure 4d, the �x expressions in the
second component of the output can be succinctly represented by
the function d that is only de�ned on the input (1, ε, ε) such that

d(1, ε, ε) = {(Ip(0), Ip(−5)), (Ip(0),Cp(., 1, 0)), (Ip(0),Cp(.,−1, 0))}.

4.3 Concrete Outputs

Taking into account the updated data structures, the algorithm
SynthRules returns a symbolic rule r of the form
match cmd and err →s f ixes where cmd = [c1, . . . , cn] and

NoFAQ : Synthesizing Command Repairs from Examples ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

err = [e1, . . . , em] are lists of expressions of the form Str(s) or
(Var(i),B), while f ixes = [f1, . . . , fl] is a list of expressions of the
form Fstr(s) or (d,B)where d is the data structure for representing
multiple �x expressions. �e set of concrete Fixit rules induced by
this symbolic representation is the following.
con(match cmd and err →s f ix) =

{match cmd and err → f | f ∈ con(f ix)}
con([f1, . . . , fl]) = {[f

′
1 , . . . , f

′
l] | f

′
i ∈ con(fi)}

con(Fstr(s)) = {Fstr(s)}
con(d,B) = {Sub(p1,p2, l , r ,Var(i)) | ∃i, l , r .(p1,p2) ∈ d(i, l , r)}.

4.4 Synthesizing Multiple Rules

�e algorithm we presented can synthesize all rules consistent with
a set of examples in polynomial time. In practice, no single rule will
be able to match all the examples gathered by the system. Instead,
di�erent examples will correspond to di�erent rules—e.g., a rule for
inserting .java, or a rule for moving directories. Here, we brie�y
describe how the algorithm presented in Figure 5 is used by NoFAQ
to synthesize all such rules.

Given the set of examples E, NoFAQ maintains the set of all
symbolic rules R consistent with some subset of the input examples
and keeps track of which examples are consistent with which rules.
In particular, for every subset E ′ ⊆ E, SynthRules(E ′) = r and
r , ⊥, then r ∈ R. When a new example e is added, we iterate over
all rules r ∈ R and use the RefineRule function to see whether
each r can be modi�ed to add e . If that’s the case, the new rule is
added to the system. When bad examples are �agged by the users,
we remove all rules that contained the problematic example. In the
worst case, there can be exponentially many subsets of E for which
some consistent rule exists and our data structure can blow-up. As
shown in Section 6, this happens infrequently in practice.

5 FORMAL PROPERTIES

We study the formal properties of the synthesis algorithm presented
in Figure 5 and of the language Fixit. First, our synthesis algorithm
is invariant with respect to the order in which the training examples
are presented. �us, the properties of a symbolic rule generated by
SynthRules, can be discussed solely in terms of the set of examples
provided to SynthRules.

Theorem 5.1 (Order invariance). Given a list of examples E, for
every permutation of examplesE ′ ofE, we have con(SynthRules(E)) =
con(SynthRules(E ′)).

Second, the synthesis algorithm produces only rules that are
consistent with the input examples. If we select an arbitrary con-
crete rule r from the set speci�ed by a symbolic rule generated by
SynthRules, and run it on the command and error of any of the
examples provided to SynthRules for the synthesis of r , we will
obtain the �x originally provided in that example.

Theorem 5.2 (Soundness). Given a list of examples E, for every
rule r ∈ con(SynthRules(E)) and for every example (s̄cmd , s̄err , s̄f ix) ∈

E, JrK(s̄cmd , s̄err) = s̄f ix .

Since parts of the match expressions are “promoted” to variables
only when the input examples show that this is required, our syn-
thesis algorithm does not explicitly keep track of all the possible
rules that can be consistent with the examples.

Our completeness result re�ects this idea. Namely, the symbolic
rule generated by an execution of SynthRules on a set of exam-
ples E implicitly encodes all Fixit rules consistent with E in the
following sense: either a rule r can be directly obtained via the
concretization operator con, or there exists an example e which can
be added to E to induce the creation of more symbolic variables.
A�er adding e , r can be obtained by concretizing the symbolic rule.

Theorem 5.3 (Completeness). Given a non-empty set of ex-

amples E, for every Fixit rule r that is consistent with E, either
r ∈ con(SynthRules(E)) or there exists an example e such that

r ∈ con(SynthRules(e :: E)).

6 IMPLEMENTATION AND EVALUATION

We now describe the implementation details of NoFAQ, as well as
our experimental evaluation of NoFAQ on a set of examples and
test cases taken from TheFxxx and web forums.

6.1 Implementation

�e NoFAQ web interface is implemented as a JavaScript and HTML
webiste which uses AJAX calls to communicate with the synthesis
server. We implemented the language Fixit and its synthesis algo-
rithm in F# together with the following additional optimizations.
Since, for each symbolic rule, there can be multiple possible expres-
sions in Fixit that are consistent with the examples, we employ
a simple and natural ranking technique to select an expression
amongst them. If there are multiple Sub expressions that can gen-
erate the desired output string, we select the expression that uses
the variable with the lowest index—i.e., the le�most one. Similarly,
the l and r included in Var-Match expressions implicitly encode
all rules matching on pre�xes and su�xes of l and r , respectively.
We choose the expression with the longest l and r .

6.2 Controlled Evaluation

We �rst assess the expressiveness of NoFAQ by evaluating it on a
benchmark suite that includes the rules in the tool TheFxxx. We
then evaluate its performance and scalability on additional bench-
marks obtained from our web interface. �e timing experiments
were run on an Intel Core i7 4.00GHz CPU with 8 GB of RAM. We
present both qualitative and quantitative analysis of the evaluation.

6.2.1 �alitative Evaluation. In this section, we evaluate the ex-
pressiveness of Fixit and the accuracy of our synthesis algorithms
on a selected set of benchmarks. We compiled our benchmark suite
from an initial set of 92 benchmarks, which were collected from
both TheFxxx (76) and online help forums (16). Since rules in The-
Fxxx can use arbitrary Python code, it is hard to exactly compare
them to the ones learned by NoFAQ. We use manual testing to check
that a rule r generated by NoFAQ is consistent with a rule r ′ in The-
Fxxx. To do so, we manually constructed a set of examples based
on the pa�ern-matching and textual substitutions performed by
the TheFxxx rules. �e other 16 example sets were obtained from
examples found on command-line help forums on the web. �ese
commands consist of various types of git, svn, and mvn commands,
including commi�ing, reverting, and deleting from repositories, as
well as installing and removing packages. �ese 92 sets of examples

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Loris D’Antoni, Rishabh Singh, and Michael Vaughn

are also the ones we used to bootstrap an initial set of rules in our
web interface. Cumulatively, we provided 168 examples.

For each repair rule, we observed that it was natural to provide
2 to 5 examples per benchmark for NoFAQ to uniquely learn the
rule. We also provided additional examples for manually testing
the learned rules, yielding a set of 3 to 8 examples. While these
examples are synthetic examples reverse engineered from other
sources, they are also natural examples, exercising the range of e.g.
parameters, paths and �le names one would expect to see in real
Unix systems. In the case of the repaired command in Section 2.2,
the natural two-example set would consist of two distinct directory
names which do not share pre�xes and su�xes, as well as �lenames
with distinct pre�xes and extensions. For example, we used the
two examples in Figure 4 and another example with the �le name
Employee.java.
Results We provided all collected examples to NoFAQ and our
algorithm synthesized 108 rules, each consistent with some subset
of the examples. In this count, if there was a rule r learned from
a set of examples S and rule r ′ learned from a set S ′ ⊂ S , we only
consider the rule r as it is more precise than the rule r ′. We then
performed a leave-one-out analysis to asses whether the learned
rules generalized. For each example e = (s̄cmd , s̄err , s̄f ix), we only
considered the rules learned without using e and checked how
many rules applied to the input (s̄cmd , s̄err) and whether one of
those rules produced the correct output s̄f ix .

For 69 of the 92 sets, regardless of what example e we le� out
of each set, only one of the learned rules matched the input of e
and it always produced the correct output. For 12 out of 92 sets,
regardless of what example e we le� out of each set, multiple rules
matched the input of e and at least one gave the �x in the example
e . �ese are commands for which multiple �xes are possible and
for which the system provides multiple suggestions. For 11 sets, no
rule was learned that could generalize to the example le� out. In
summary, if we omit the constant rules that only matched a single
example, NoFAQ could learn rules that collectively provided the
intended suggestions for 81 of the example sets.

In some cases, for the same example set corresponding to a single
TheFxxx rule, we had to synthesize more than one Fixit rule to
capture the di�erent possible behaviors of a single rule in TheFxxx.
For example, one can try adding ‘sudo’ in front of a command for
several possible errors such as “Command not found”, “You don’t
have the permission” etc. �ese are the cases in which more than
3 examples were given and NoFAQ generated a separate rule for
each possible error message.

We now discuss the 11 TheFxxx rules that Fixit could not learn
to generalize. Two rules were checking complex properties of the
input that Fixit cannot capture. For example, Fixit cannot check
whether the error message contains some special character. Fixit’s
conditional matching is limited to whole string or pre�x/su�x
matching, and thus cannot check if e.g. a �le name contains a non-
unicode whitespace character. Fixit also cannot check whether
some string in the input command is repeated more than once.
Eight rules had hard-coded operations that were searching some
context (the �le system, a con�guration �le, etc.) for speci�c strings
to complete the output. Fixit only receives as inputs the command
and the error message, and the rules currently cannot use any

0	

10	

20	

30	

1	 11	 21	 31	 41	 51	 61	 71	 81	

Si
ze
	o
f	E

xp
re
ss
io
ns
	

Benchmark	iden>fier	

Distribu>on	of	Cmd,	Err,	Fix	Expr	Size	

CmdSize	 ErrSize	 FixSize	

Figure 6: �e distribution of benchmark sizes in terms of

individual sizes of s̄cmd , s̄err , and s̄f ix .

context drawn from e.g. �le system or OS state. �e remaining
rule was both checking complex properties of the input and using
context. Finding ways to use context is an interesting research
direction, but there might be privacy issues for ge�ing access to
user’s context such as the directory contents.
Distribution of rule sizes We de�ne the size of an expression
such as s̄cmd , s̄err , and s̄f ix as the number of strings present in
it. �e distribution of the size of the benchmarks in terms of the
sizes of the s̄cmd , s̄err , and s̄f ix tuples in input-output examples is
shown in Figure 6. Note that we do not show two benchmarks in
the graph with disproportionately high s̄err expression size of 110
for clarity and we do not show the constant rules that were learned
from a single example. �e average total size of the examples in
the benchmarks was 15.91 ± 17.184, with the maximum size of 116.
�e average sizes for the individual expressions of the examples
were: i) s̄cmd : 2.38± 1.01 with maximum of 6, ii) s̄err : 10.12± 16.85
with a maximum of 110, and iii) s̄f ix : 3.41 ± 1.55 with a maximum
of 7. �e output components of the synthesized rule contain on
average 29.01% ± 24.4% Sub expressions. Concretely, a synthesized
rule contains on average 0.91 ± 0.76 Sub expressions.
Ranking Consistent with our hypothesis in Section 6.1, a diverse
set of 2 to 3 examples was su�cient for eliminating spurious re-
strictions and substring expressions. In every test case, the rule
chosen by our ranking was capable of correcting the held-out test
cases. In practice, many rules still have several possible correct Sub
expressions. However, this remaining ambiguity occurs because
the same string can appear many times in the command and error
message (e.g., the string Employee in the example in Section 2.1).

6.2.2 �antitative Evaluation. We evaluate the performance of
our synthesis algorithm with and without lazy VSA.
Evaluation of lazy VSA synthesis time In this experiment, we
also consider the examples collected from our web interface. In
Figure 7, we show the cumulative time taken to synthesize Fixit
rules for the 649 examples of repairs, using both the lazy and a
non-lazy rule representation. �is set contains the 168 examples
we manually provided as well as 481 examples we obtained from
our online tool. �ese examples yield a total of 1257 rules. �e non-
lazy representation always considers match and �x expressions as
variables, rather than initially starting with constants. �e lazy VSA
4We use a ± s to denote an average a with standard deviation s .

NoFAQ : Synthesizing Command Repairs from Examples ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

0
100
200
300
400
500
600
700

0 100 200 300 400 500 600C
um

ul
at

iv
e

S
yn

t.
Ti

m
e

(s
ec

)

Examples

Lazy	VSA Non-Lazy	VSA

Figure 7: Cumulative synthesis time for n examples using

the lazy and non-lazy rule representations.

takes an average of .37 seconds to process each individual example
and took, in the worst case, 9.2 seconds to process an individual
example. �e non-lazy VSA takes an average of 1.0 seconds to
process each individual example and took, in the worst case, 23.6
seconds to process an individual example. �e widest di�erence
between processing times for a single example was 16.9 seconds.
�erefore, the non-lazy VSA incurs a signi�cant overhead, and
scales much worse than the lazy version. In summary, the lazy VSA
strictly outperforms non-lazy VSA and can handle much larger sets
of examples, a crucial requirement for our online application. Since
we expect many more examples to be added to NoFAQ, a speed up
of tens of seconds for synthesis-intensive examples is of critical
importance, as maintaining high throughput ensures new rules are
made visible as soon as possible.
Scalability of synthesis algorithm with example size Since
all real-world examples we collected are relatively of small size
(with maximum size of 116 space-separated strings), we evaluate
the scalability of the SynthRules algorithm by creating arti�cial
examples of increasing sizes. We create these arti�cial examples
by repeating the s̄cmd , s̄err , and s̄f ix commands multiple times for
the example shown in Section 2.1. �e synthesis times are shown
in Figure 8. From the graph, we observe that the synthesis times
scale in a quadratic fashion with respect to the example size.

6.3 Live Deployment

We deployed a publicly available live version of NoFAQ. We re-
ceived 1721 queries asking for ways to �x commands, and 496
contributed �xes to queries for which we did not have an answer.
During this �rst deployment, a fraction of users was malicious and
started posting meaningless queries as well as proposing “bad” �xes:
one user proposed rm -rf / as a �x to many of the commands. We
therefore introduced ve�ing mechanisms such as down-voting and
blacklisting and these types of examples quickly disappeared.

Users are enthusiastic and have been contributing interesting
examples. For example, the tool learned how to �x a command
of the form “find -name ‘test*’.” by moving the dot before
-name, as find expects the paths to search to come before other
arguments, this is corrected with “find . -name ‘test*’”. To our
surprise, the tool has also learned how to �x typos and generalize
�ag names in interesting ways. For example, a�er being presented
with various misspellings like “gti status” or “gitt status”, the

0	

10	

20	

30	

40	

50	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	

Sy
nt
he

sis
	T
im

e	
(s
ec
)	

#	Repe<<ons	of	Example	

Lazy	VSA	 Non-Lazy	VSA	

Figure 8: Synthesis times with increasing size of examples.

tool isolated a rule which maps commands that start with ‘g’and
are followed by ‘status’to “git status”.

6.4 �reats to Validity

With respect to construct validity, in our controlled evaluation with
manually provided examples, we have no formal way to check
whether the rules learned by NoFAQ are semantically equivalent
to those present in TheFxxx. We tried to a�enuate this threat by
manually inspecting the rules and using additional examples for
testing the learned rules. For our live deployment experiment, we
cannot guarantee that all the rules learned by NoFAQ are indeed
meaningful as crowd-sourced examples can be noisy or incorrect.
We mitigate this aspect by providing an additional interface that
allows users to �ag incorrect rules or examples.

Concerning internal validity, since we manually provided the
examples to train the rules from TheFxxx, these examples may
not be representative to the examples provided by a real user. To
mitigate this threat, we provided NoFAQ additional set of examples
and performed all combinations of leave-one-out cross-validation
to evaluate whether any subset of the examples would yield the
desired result on held-out examples.

Concerning external validity, since we do not know the identity
and skills of our contributors, the corpus of crowd-sourced examples
might not be representative of the kind of mistakes users make in
the real world. Speci�cally, NoFAQ is capable of correcting mistakes
for which enough of the necessary context can be extracted from
the command and error message. Usage of StackOver�ow, however
indicates that users do in fact encounter such errors with common
commands such as java [11], find [3], and mkdir [1]. In the case
of the java command, users were invoking the Java runtime with
the name of the source or class �le, rather than the class to run; this
problem was common enough that Oracle saw �t to include it in
their o�cial documentation [19]. We developed a web interface for
NoFAQ to collect a large number of examples that will over time
be more representative of the repairs needed by real users.

7 RELATEDWORK

Version-space algebra (VSA) for synthesis �e concept of VSA
was �rst introduced by Mitchell [18] in the context of machine
learning and was later used by Lau et al. to learn programs from
demonstrations in SmartEdit [12]. It has since been used for many

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Loris D’Antoni, Rishabh Singh, and Michael Vaughn

PBE systems from various domains including syntactic string trans-
formations in FlashFill [6], table transformations [8, 27], number
transformations [26], text extraction from semi-structured text
�les in FlashExtract [13], and transformation of semi-structured
spreadsheets to relational tables in FlashRelate [2]. Our synthesis
algorithm also uses VSA to succinctly represent a large set of con-
forming expressions. However, in contrast to previous approaches
that represent all conforming expressions concretely and re�ne
via intersection, our synthesis algorithm maintains a lazy repre-
sentation of rules and concretizes the choices only when needed.
Moreover, NoFAQ’s carefully designed DSL operators and VSA
yield a polynomial time synthesis algorithm, unlike the exponential
time algorithms of previous approaches.

In particular, it is illustrative to compare the FlashFill DSL with
Fixit. While, like Fixit, FlashFill synthesizes string manipulations
from input-output examples, speci�c performance properties make
it less suitable for learning from large sample sets. FlashFill scales
poorly as the error messages increase in length, which is a common
occurrence for our benchmarks. Other limitations, namely the lack
of an o�set operator in position expressions and support for �nite
hard-coded regular expression tokens make FlashFill unsuitable
for learning Sub expressions. Moreover, FlashFill’s binary concate-
nation operator is represented using a DAG structure for a given
example, �e DAG is intersected to �nd consistent expressions for
a set of examples, yielding an exponential time algorithm. Fixit
instead possesses unary string operations constrained to speci�c
variable terms. �e Fixit language is disjoint from FlashFill DSL,
and is expressive enough to enable practical command repairs while
also admi�ing a polynomial time synthesis algorithm.

�e concept of Lazy VSA is related to the least general generaliza-
tion from inductive learning [21, 22] where constants are promoted
to variables on a by need basis. Our approach is more general
than [21, 22] since it also allows predicates over the matched vari-
ables (i.e., pre�x and su�x matching).
Programming by Examples (PBE) PBE has been an active re-
search area in the AI and HCI communities from a long time [16].
In addition to VSA-based data wrangling [7], PBE systems have
recently been developed for various domains including interactive
synthesis of parsers [15], synthesis of functional programs over al-
gebraic data types [4, 20], program refactorings [23], data structure
manipulations [28], and network policies [30]. NoFAQ also learns
repair rules from few input-output examples of buggy and �xed
commands, but both our problem domain of learning command
repairs and the learning techniques of using lazy VSA are di�erent
from these PBE systems.
Program repair Research in automated program repair focuses on
automatically changing incorrect programs to make them meet a
desired speci�cation [5]. �e main challenge is e�ciently searching
the space of all programs to �nd one that behaves correctly. �e
most prominent search techniques are enumerative or data-driven.
GenProg uses genetic programming in the hope of converging to a
correct version [14]. Data-driven approaches use the large amount
of code that is publicly available online to synthesize likely changes
to the input program [24, 29]. Prophet [17] is a patch generation
system that learns a probabilistic application-independent model of
correct code from a set of successful human patches. Unlike these

techniques that learn a global model of code repair across di�erent
applications, our technique learns command-speci�c repairs by
observing how expert users �x their buggy commands — i.e., from
both the incorrect command the user started with (together with
the error message) and the correct command she wrote as a �x.
Crowdsourced Repairs HelpMeOut is a social recommender sys-
tem that helps novice users facing programming errors by showing
examples of how other programmers have corrected similar er-
rors [9]. Unlike NoFAQ, HelpMeOut only shows related examples,
and cannot apply learned information to generate new repairs. Re-
fazer learns syntactic program transformations from examples [25].
MistakeBrowser uses Refazer to learn ways to �x incorrect pro-
grams in introductory programming assignments [10]. Transforma-
tions are learned from examples of students’ bug �xes and used to
help subsequent students who encounter mistakes that are similar
to those seen in the past. When compared to NoFAQ, Mistake-
Browser does not have strong theoretical guarantees and targets a
di�erent domain with di�erent of challenges. In particular, Refazer
cannot learn string manipulations, only AST transformations.

TheFxxx provides a Python interface for writing substitution
and repair rules, requiring skills not necessarily posessed by novice
CLI users, particularly if a correction requires non-trivial string
operations. Like FlashFill, we aim to emulate the work�ow of
non-technical users communicating with experts on web forums.
For a command line novice, Python string manipulations may be
challenging, and an incorrectly transformed command can be cata-
strophic. In a situation where a non-expert desires a new TheFxxx
rule, they may provide an example of several command/error pairs,
and the �x for each, from which an expert would write the desired
Python code. NoFAQ shortens this loop by moving the �x synthesis
into a polynomial time algorithm on the user’s machine.

8 CONCLUSION AND FUTURE DIRECTIONS

We presented a tool NoFAQ that suggests possible �xes to com-
mon error-triggering commands by learning from examples of how
experts �x such issues. Our language design walks a �ne line be-
tween expressiveness and performance: by careful choice of unary
operators over pre-de�ned variables, and exclusion of arbitrary
substring operations, we avoid exponential-time worst case per-
formance, while still maintaining a useful degree of functionality.
NoFAQ was able to instantly synthesize 85% of the rules appearing
in the popular repair tool TheFxxx and 16 other rules from online
help forums. Moreover, our web version of NoFAQ is constantly
receiving new queries and example repairs from users around the
world. Although NoFAQ is aimed towards repairing commands, we
believe our novel combination of synthesis and rule-based program
repair is quite general and is applicable in many other domains
as well. We plan to to apply this methodology to more complex
tasks, such as correcting syntax errors in source code, applying
code optimizations, and editing con�guration �les.

ACKNOWLEDGEMENTS

Loris D’Antoni and Michael Vaughn were supported by a Google
Faculty Research Award.

NoFAQ : Synthesizing Command Repairs from Examples ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES

[1] baltostar (h�ps://unix.stackexchange.com/users/42571/baltostar). How to create
nested directory in a single command [duplicate]. StackOver�ow. URL h�ps://
unix.stackexchange.com/q/84191. URL:h�ps://unix.stackexchange.com/q/84191
(version: 2014-11-07).

[2] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn. Flashrelate: Extracting relational
data from semi-structured spreadsheets using examples. In Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2015, pages 218–228, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3468-6. doi: 10.1145/2737924.2737952. URL h�p://doi.acm.org/10.1145/2737924.
2737952.

[3] c�nley (h�ps://stackover�ow.com/users/425683/c�nley). ��nd: paths must pre-
cede expression:� How do I specify a recursive search that also �nds �les in the
current directory? StackOver�ow. URL h�ps://stackover�ow.com/q/6495501.
URL:h�ps://stackover�ow.com/q/6495501 (version: 2011-06-27).

[4] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data structure transformations
from input-output examples. In Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation, Portland, OR, USA, June

15-17, 2015, pages 229–239, 2015. doi: 10.1145/2737924.2737977. URL h�p:
//doi.acm.org/10.1145/2737924.2737977.

[5] C. Goues, S. Forrest, and W. Weimer. Current challenges in automatic so�ware re-
pair. So�ware�ality Journal, 21(3):421–443, Sept. 2013. ISSN 0963-9314. doi: 10.
1007/s11219-013-9208-0. URL h�p://dx.doi.org/10.1007/s11219-013-9208-0.

[6] S. Gulwani. Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’11, pages 317–330, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0490-0. doi: 10.1145/1926385.1926423.
URL h�p://doi.acm.org/10.1145/1926385.1926423.

[7] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using
examples. Commun. ACM, 55(8):97–105, Aug. 2012. ISSN 0001-0782. doi: 10.
1145/2240236.2240260. URL h�p://doi.acm.org/10.1145/2240236.2240260.

[8] W. R. Harris and S. Gulwani. Spreadsheet table transformations from examples.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages
317–328, 2011. doi: 10.1145/1993498.1993536. URL h�p://doi.acm.org/10.1145/
1993498.1993536.

[9] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What would other
programmers do: Suggesting solutions to error messages. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pages
1019–1028, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-929-9. doi: 10.
1145/1753326.1753478. URL h�p://doi.acm.org/10.1145/1753326.1753478.

[10] A. Head, E. Glassman, G. Soares, R. Suzuki, L. D’Antoni, and B. Hartmann. Writ-
ing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis.
In L@S’17: 4th ACM Conference on Learning at Scale, 2017.

[11] S. C. (h�ps://stackover�ow.com/users/139985/stephen c). What does �Could not
�nd or load main class� mean? StackOver�ow. URL h�ps://stackover�ow.com/
q/18093928. URL:h�ps://stackover�ow.com/q/18093928 (version: 2014-5-18).

[12] T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld. Programming by demon-
stration using version space algebra. Mach. Learn., 53(1-2):111–156, Oct. 2003.
ISSN 0885-6125. doi: 10.1023/A:1025671410623. URL h�p://dx.doi.org/10.1023/A:
1025671410623.

[13] V. Le and S. Gulwani. Flashextract: A framework for data extraction by examples.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’14, pages 542–553, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.2594333. URL h�p://doi.
acm.org/10.1145/2594291.2594333.

[14] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In Proceedings

of the 34th International Conference on So�ware Engineering, ICSE ’12, pages
3–13, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1067-3. URL
h�p://dl.acm.org/citation.cfm?id=2337223.2337225.

[15] A. Leung, J. Sarracino, and S. Lerner. Interactive parser synthesis by example.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 565–574,
2015. doi: 10.1145/2737924.2738002. URL h�p://doi.acm.org/10.1145/2737924.
2738002.

[16] H. Lieberman. Your wish is my command: Programming by example. Morgan
Kaufmann, 2001.

[17] F. Long and M. Rinard. Automatic patch generation by learning correct code. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2016, pages 298–312, 2016.
[18] T. M. Mitchell. Generalization as search. Artif. Intell., 18(2), 1982.
[19] Oracle. Common Problems (and �eir Solutions). Oracle Java Tutorials. URL

h�ps://docs.oracle.com/javase/tutorial/getStarted/problems/.
[20] P. Osera and S. Zdancewic. Type-and-example-directed program synthesis. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 619–630,
2015. doi: 10.1145/2737924.2738007. URL h�p://doi.acm.org/10.1145/2737924.
2738007.

[21] G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,
1970.

[22] G. D. Plotkin. A further note on inductive generalization. Machine Intelligence,
6:101–124, 1979.

[23] V. Raychev, M. Schäfer, M. Sridharan, and M. T. Vechev. Refactoring with
synthesis. In Proceedings of the 2013 ACM SIGPLAN International Conference on

Object Oriented Programming Systems Languages & Applications, OOPSLA 2013,

part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, pages 339–354,
2013. doi: 10.1145/2509136.2509544. URL h�p://doi.acm.org/10.1145/2509136.
2509544.

[24] V. Raychev, M. Vechev, and E. Yahav. Code completion with statistical language
models. In Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, pages 419–428, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.2594321. URL
h�p://doi.acm.org/10.1145/2594291.2594321.

[25] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and
B. Hartmann. Learning syntactic program transformations from examples. In
Proceedings of ICSE. IEEE Press, 2017.

[26] R. Singh and S. Gulwani. Synthesizing number transformations from input-
output examples. In Proceedings of the 24th International Conference on Computer

Aided Veri�cation, CAV’12, pages 634–651, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 978-3-642-31423-0. doi: 10.1007/978-3-642-31424-7 44. URL h�p:
//dx.doi.org/10.1007/978-3-642-31424-7 44.

[27] R. Singh and S. Gulwani. Learning semantic string transformations from
examples. Proc. VLDB Endow., 5(8):740–751, Apr. 2012. ISSN 2150-8097.
doi: 10.14778/2212351.2212356. URL h�p://dx.doi.org/10.14778/2212351.2212356.

[28] R. Singh and A. Solar-Lezama. Synthesizing data structure manipulations from
storyboards. In SIGSOFT FSE, pages 289–299, 2011.

[29] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas. Guided data
repair. Proc. VLDB Endow., 4(5):279–289, Feb. 2011. ISSN 2150-8097. doi: 10.
14778/1952376.1952378. URL h�p://dx.doi.org/10.14778/1952376.1952378.

[30] Y. Yuan, R. Alur, and B. T. Loo. Netegg: Programming network policies by
examples. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks,

HotNets-XIII, Los Angeles, CA, USA, October 27-28, 2014, pages 20:1–20:7, 2014.
doi: 10.1145/2670518.2673879. URL h�p://doi.acm.org/10.1145/2670518.2673879.

https://unix.stackexchange.com/q/84191
https://unix.stackexchange.com/q/84191
http://dx.doi.org/10.1145/2737924.2737952
http://doi.acm.org/10.1145/2737924.2737952
http://doi.acm.org/10.1145/2737924.2737952
https://stackoverflow.com/q/6495501
http://dx.doi.org/10.1145/2737924.2737977
http://doi.acm.org/10.1145/2737924.2737977
http://doi.acm.org/10.1145/2737924.2737977
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1926385.1926423
http://dx.doi.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/2240236.2240260
http://doi.acm.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/1993498.1993536
http://doi.acm.org/10.1145/1993498.1993536
http://doi.acm.org/10.1145/1993498.1993536
http://dx.doi.org/10.1145/1753326.1753478
http://dx.doi.org/10.1145/1753326.1753478
http://doi.acm.org/10.1145/1753326.1753478
https://stackoverflow.com/q/18093928
https://stackoverflow.com/q/18093928
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1023/A:1025671410623
http://dx.doi.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333
http://dl.acm.org/citation.cfm?id=2337223.2337225
http://dx.doi.org/10.1145/2737924.2738002
http://doi.acm.org/10.1145/2737924.2738002
http://doi.acm.org/10.1145/2737924.2738002
https://docs.oracle.com/javase/tutorial/getStarted/problems/
http://dx.doi.org/10.1145/2737924.2738007
http://doi.acm.org/10.1145/2737924.2738007
http://doi.acm.org/10.1145/2737924.2738007
http://dx.doi.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2509136.2509544
http://dx.doi.org/10.1145/2594291.2594321
http://doi.acm.org/10.1145/2594291.2594321
http://dx.doi.org/10.1007/978-3-642-31424-7_44
http://dx.doi.org/10.1007/978-3-642-31424-7_44
http://dx.doi.org/10.1007/978-3-642-31424-7_44
http://dx.doi.org/10.14778/2212351.2212356
http://dx.doi.org/10.14778/2212351.2212356
http://dx.doi.org/10.14778/1952376.1952378
http://dx.doi.org/10.14778/1952376.1952378
http://dx.doi.org/10.14778/1952376.1952378
http://dx.doi.org/10.1145/2670518.2673879
http://doi.acm.org/10.1145/2670518.2673879

	Abstract
	1 Introduction
	2 Motivating examples
	2.1 Adding Missing File Extension
	2.2 Extracting Complex Substrings

	3 The NoFAQ system
	4 Synthesising rules in NoFAQ
	4.1 The Fixit Language
	4.2 Synthesizing Rules from Examples
	4.3 Concrete Outputs
	4.4 Synthesizing Multiple Rules

	5 Formal properties
	6 Implementation and evaluation
	6.1 Implementation
	6.2 Controlled Evaluation
	6.3 Live Deployment
	6.4 Threats to Validity

	7 Related work
	8 Conclusion and Future Directions
	References

