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Abstract
Weighted model counting and integration
(WMC/WMI) are natural problems to which
we can reduce many probabilistic inference tasks,
e.g., in Bayesian networks, Markov networks,
and probabilistic programs. Typically, we are
given a first-order formula, where each satisfying
assignment is associated with a weight—e.g.,
a probability of occurrence—and our goal is
to compute the total weight of the formula. In
this paper, we target exact inference techniques
for WMI that leverage the power of satisfiability
modulo theories (SMT) solvers to decompose
a first-order formula in linear real arithmetic
into a set of hyperrectangular regions whose
weight is easy to compute. We demonstrate the
challenges of hyperrectangular decomposition and
present a novel technique that utilizes orthogonal
transformations to transform SMT formulas in
order to enable efficient inference. Our evaluation
demonstrates our technique’s ability to improve the
time required to achieve exact probability bounds.

1 Introduction
Motivation Weighted model counting (WMC) is a natural
problem to which we can reduce many probabilistic infer-
ence tasks, for instance, in Bayesian networks and proba-
bilistic programs [Chavira and Darwiche, 2008; Chistikov
et al., 2015; Fierens et al., 2015]. In WMC, we are given
a propositional formula, where each satisfying assignment
has a weight—e.g., a probability of occurrence—and our
goal is to compute the total weight of the formula. Re-
cently, there have been a number of works that leverage the
power of state-of-the-art satisfiability (SAT) solvers as ora-
cles for solving WMC problems [Chakraborty et al., 2014;
2013].

To handle richer domains, researchers from the artificial
intelligence, as well as the formal methods, community have
also started tackling the weighted model integration (WMI)
problem [Belle et al., 2015b; 2015a; 2016; Chistikov et al.,
2015; 2014], where formulas are over infinite domains, e.g.,
real arithmetic. The idea is that inference in, for instance, hy-
brid Markov networks and rich probabilistic programs, can

be reduced to WMI problems. Recent works tackling the WMI
problem have primarily targeted the first-order theory of lin-
ear real arithmetic (LRA), which is well supported in state-of-
the-art satisfiability modulo theories (SMT) solvers [Barrett et
al., 2009].
Problem setting In this paper, we continue the investigation
of WMI algorithms, with an emphasis on a versatile class of
techniques for formulas in LRA. Given a formula ϕ in real
arithmetic with k free variables, we view ϕ as a region inRn.
We assume the value of each free variable x in ϕ is drawn
independently from some probability distribution Dx. Our
goal is to compute the probability of satisfaction of ϕ.

A number of recent works [Albarghouthi et al., 2017a;
2016; Sankaranarayanan et al., 2013; Chistikov et al., 2015]
have attacked this problem by decomposing ϕ into a set of
hyperrectangles (rectangles in Rn). The idea is that com-
puting the weight of a hyperrectangular region is simple, as
all dimensions have constant bounds. Of course, there may
be infinitely many hyperrectangles in the decomposition of
ϕ. By considering more and more hyperrectangles in ϕ, we
approach the true weight of ϕ from below, and converge in
the limit. Similarly, we can approach the weight of the nega-
tion of ϕ (¬ϕ) from below, thus approaching the weight of
ϕ from above. A key feature of this class of techniques is
that we can terminate the process at any point and retrieve
exact lower and upper bounds on ϕ’s weight. This is often
desirable in verification of programs with uncertainty, where
we are interested in proving some upper/lower bound on the
probability of a bad event [Sankaranarayanan et al., 2013;
Bouissou et al., 2016; Sampson et al., 2014].
Challenges addressed The foremost
challenge in hyperrectangular decom-
position is that it is hard to fill a
slanted region with hyperrectangles;
that is, we might require a large num-
ber of hyperrectangles, making con-
vergence incredibly slow. (See illustration on the right where
gray rectangles are used to fill the region between the two
slanted faces.) To tackle this challenge, we apply a linear
transformation (e.g., a rotation) to the given formula ϕ in
order to make its faces axis-aligned. In doing so, we must
(i) understand how transforming ϕ affects its weight, and
(ii) ensure that hyperrectangular decomposition can still be
applied to the transformed formula. The problem is that, in
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Figure 1: (a) Example formula ϕ; joint distribution of x1, x2 is indi-
cated by shading. (b) WMI by hyperrectangular decomposition con-
verges slowly in this situation. (c) If a transformation were possible,
then WMI would converge faster by sampling larger hyperrectangles.

general, transforming a formula may change its weight; may
produce irrational coefficients (preventing the use of SMT
solvers); or may produce stochastic dependence between its
free variables (undermining a key premise of hyperrectangu-
lar decomposition).
Contributions We make the following key contributions:
– We argue that hyperrectangular decomposition on LRA for-

mulas can benefit from linear transformations, but show
that this is only true for formulas with Gaussian free vari-
ables. Additionally, we show the desirable properties of
orthogonal transformations in this setting. (Section 3)

– We show how to construct orthogonal transformation ma-
trices with rational entries, using Givens rotations and
Pythagorean triples. We also provide a method to obtain
suitable transformations for formulas. (Section 4)

– We implement and evaluate our approach using the Z3 SMT
solver; on representative benchmarks, our approach often
dramatically improves performance of weighted model in-
tegration tasks. (Section 5)

2 Motivation and Illustration
As a motivating example, suppose we have the independent
random variables x1 ∼ N (0, 1) and x2 ∼ N (0, 1). Let ϕ
be a first-order formula in the theory of linear real arithmetic
(LRA) over variables x1 and x2:

ϕ ≡ (3x1 + 4x2 6 5) ∧ (x1 6 3)

∧ (3x1 + 4x2 > −5) ∧ (x1 > −3)

Intuitively, the satisfying assignments of ϕ can be viewed as
a region in R2, as illustrated in Figure 1(a), where ϕ is the
region inside the parallelogram. (For simplicity, we illustrate
our approach on a convex polyhedron; however, the class of
formulas we consider, LRA, admits formulas with disjunc-
tions, i.e., unions of polyhedra.)
Hyperrectangular decomposition Our goal is to compute the
probability that ϕ is satisfied. Formally, we want to evaluate
the following integral:

∫
ϕ
p(x1, x2)dx1dx2, where p(x1, x2)

is the joint probability density function (PDF) of x1 and x2.
A number of recent techniques use SMT solvers to de-

compose the region ϕ into an infinite set of non-overlapping
rectangles H1, H2, . . ., such that

∨∞
i=1Hi ≡ ϕ. The idea

is that computing the weight of a hyperrectangular region
is easy, as all dimensions have constant upper and lower
bounds. Intuitively, the weight of ϕ is the sum of weights

of all Hi:
∑∞

i=1

(∫
Hi
p(x1, x2)dx1dx2

)
. Thus, recent tech-

niques [Sankaranarayanan et al., 2013; Albarghouthi et al.,
2017a] iteratively compute the weight of more and more hy-
perrectangles Hi, converging to the weight of ϕ in the limit.

For the purposes of our work here, we are primarily con-
cerned with the quality of the hyperrectangles that the algo-
rithm considers. Intuitively, the larger the hyperrectangles,
the faster the convergence. In the case of our formula ϕ, the
largest possible hyperrectangle in terms of weight is shown in
Figure 1(b). It is easy to see that this rectangle covers a rela-
tively small subset of ϕ. This is due to the two slanted faces
of ϕ, which force us to find hyperrectangles that only touch
the faces with two of their corners.
Applying linear transformations Ideally, we would decom-
pose ϕ into a series of hyperrectangles where most of the
weight is concentrated in a small number of rectangles, thus
accelerating convergence to the true weight of ϕ. To do so,
we observe that we can apply a linear transformation T to
the region ϕ, resulting in a new region Tϕ that admits a
better hyperrectangular decomposition. In our example, we
might choose T to be a rotation ϕ that aligns the two slanted
faces with an axis. The resulting formula Tϕ is shown in
Figure 1(c). The red region is the rectangle with the largest
weight that fits in Tϕ. Observe how this rectangle covers the
densest region—around the origin.

In this illustrative example, we assumed that we can ro-
tate the formula such that some of its faces are axis-aligned.
This is not always possible. It may be that the “best” trans-
formation matrix contains irrational entries, leading to irra-
tional constants in the transformed formula. Meanwhile, SMT
solvers expect formulas to have rational constants. Later, we
will show how to construct transformation matrices that make
formulas better-conditioned for hyperrectangular decomposi-
tion, without introducing irrational constants.

3 Problem Definition
We now formalize our weighted model integration problem.
Formulas We consider formulas in the quantified linear real
arithmetic (LRA) fragment of first-order logic. LRA is sup-
ported by state-of-the-art SMT solvers like Z3 [De Moura and
Bjørner, 2008].

A formula ϕ is constructed using the following grammar:
ϕ := c1x1 + . . .+ cnxn 6 c | ϕ ∧ ϕ

| ϕ ∨ ϕ | ¬ϕ | ∃x. ϕ | ∀x. ϕ
where ci, c ∈ R. We use the column vector x to denote the
variables that are free in ϕ (i.e., not bound by a ∃ or ∀ quan-
tifier). Note that LRA is closed under quantifier elimination:
for every formula ϕ, there is an equivalent LRA formula ϕ′
that is quantifier free.

We will use ϕ[x 7→ x′] to denote ϕ with occurrences of
variables x replaced by respective elements of x′.
Weighted model integration Given a formula ϕ with k free
variables xT = [x1, . . . , xk], we assume x is a vector of in-
dependently distributed random variables.

We can view the formula ϕ as a region in Rk. We define
the weight of ϕ as follows: WMI(ϕ) =

∫
ϕ
p(x)dx1 . . . dxk,

where p(x) is the joint probability density function of x.



Hyperrectangular decomposition We describe the algorithm
we shall use for weighted model integration. The details of
the algorithm are not important for our exposition—only the
high-level idea. We refer the reader to past works for details
[Sankaranarayanan et al., 2013; Albarghouthi et al., 2017a;
2016].

We will use H for an LRA formula defining a hyperrectan-
gular region in Rk; i.e., H is of the form

∧k
i=1 li 6 xi 6 ui,

where li, ui ∈ R. A key point is that WMI(H) is eas-
ily computed using the cumulative density functions (CDFs)
F1, . . . , Fk of x1, . . . , xk, since the upper and lower bounds
of each dimension are constant, and the xi are independent:
WMI(H) =

∏
i(Fi(ui)− Fi(li)).

A hyperrectangular decomposition of a formula ϕ is an
infinite sequence of hyperrectangles H1, H2, . . . such that
(i)
∨

iHi ≡ ϕ and (ii) Hi ∧Hj ≡ false for any i 6= j.
Recent approaches [Albarghouthi et al., 2017a; Sankara-

narayanan et al., 2013] use hyperrectangular decomposition
to compute the weight of ϕ, by summing the hyperrectangles’
individual weights.

At any point during this summation, the sum is a lower
bound on WMI(ϕ), and convergence to the actual weight is
guaranteed in the limit.1 In order to additionally compute
an upper bound on WMI(ϕ), one could simply invoke this
process on ¬ϕ, since we know that WMI(ϕ)+ WMI(¬ϕ) = 1.
Permissible distributions Note that hyperrectangular decom-
position requires the formula’s free variables to be indepen-
dently distributed. The following theorem, credited to Ski-
tovitch and Darmois, characterizes the class of distributions
that remain independent under linear transformation [Ski-
tovitch, 1953; Darmois, 1953].

Theorem 1. Let L1 =
∑

i αixi and L2 =
∑

i βixi, with xi
independent real random variables and αi, βi ∈ R. If L1 and
L2 are independent, then all xj with nonzero αj , βj must be
Gaussian.

In short: nontrivial linear combinations of independent
random variables are independent only if those random vari-
ables are Gaussian. It follows that only formulas with Gaus-
sian free variables can be subjected to a linear transformation,
and then integrated via hyperrectangular decomposition.
Canonical forms Without further loss of generality, we as-
sume that all of our weighted model integration problems are
over formulas ϕ where x ∼ Nk(0, I), where I is the identity
matrix.

Note that we can transform any formula ϕ with variables
x ∼ Nk(µ,Σ) into a canonical form ϕ′ with variables x′ ∼
Nk(0, I), such that WMI(ϕ) = WMI(ϕ′).

To perform this transformation, we exploit the following
well-known property of multivariate Gaussians: There exists
a matrix C ∈ Rk×k such that if z = C−1(x − µ), then z ∼
Nk(0, I). The following theorem characterizes correctness
of this transformation. The idea is that we can replace the
variables x of ϕ with the new variables z, creating a new
formula ϕ′ whose free variables are z.

1In the case ϕ is decomposable into finitely many hyperrectan-
gles, then the algorithm can converge in finitely many steps.

Theorem 2. Let ϕ have free variables x ∼ Nk(µ,Σ). Let C
be a matrix such that z = C−1(x − µ) and z ∼ Nk(0, I),
where z is a vector of fresh (unused) variables. Let
ϕ′ ≡ ∃x. ϕ ∧ z = C−1(x− µ). Then, WMI(ϕ′) = WMI(ϕ).

Henceforth, we shall assume that all weighted model inte-
gration problems are over formulas in canonical form.
Example 1. Consider the simple formula ϕ ≡ x > 0, where
x ∼ N (10, 20). We can construct the canonical form ϕ′ ≡
∃x. z = (x− 10)/20 ∧ x > 0, where z ∼ N (0, 1). We have
WMI(ϕ) = WMI(ϕ′). �

Orthogonal transformations While theorem 1 shows that
only Gaussian distributions can retain independence un-
der linear transformations, it does not characterize the lin-
ear transformations which make that possible. We show
that orthogonal transformations—rotations and reflections—
preserve independence in our setting.

Suppose we have a formula ϕ in canonical form. Let
p(x) denote the joint PDF of its free variables, and let T
be a linear transformation. Then we know the joint density
p(x) ∝ exp

(
−xTx

2

)
, and therefore the transformed density

p(Tx) ∝ exp
(
−xTT TTx

2

)
. If the matrix T is orthogonal,

then T TT = I , and p(Tx) = p(x); hence, the free variables
will remain independent.

Orthogonal transformations also have the convenient prop-
erty of preserving weight. If T is an orthogonal matrix, then
|detT | = 1. It follows from integration by substitution of
variables that WMI(ϕ) = WMI(Tϕ).

4 WMI with Orthogonal Transformations
As suggested previously, orthogonal transformations can
make formulas better-conditioned for WMI. However, this
strategy comes with challenges. First, SMT solvers expect
formulas with rational coefficients, but orthogonal matrices
will generally have irrational entries. A naïve approximation
of irrational entries with rationals would generally produce
a non-orthogonal transformation that preserves neither inde-
pendence nor weight. Second, choosing a transformation that
maximizes the efficiency of WMI for a formula entails a diffi-
cult optimization problem.

In this section, we present (i) a technique for constructing
orthogonal matrices with rational entries and (ii) a technique
for choosing a favorable matrix.

4.1 Orthogonal Matrices with Rational Entries
Our method for constructing orthogonal matrices with ratio-
nal entries relies on Givens rotations. A Givens rotation is an
(orthogonal) matrix of the form



where c =
√
a2 + b2. This matrix rotates vectors in Rk, but

only acts on their ith and jth components. Its entries a
c and b

c
can be interpreted as cos θ and sin θ, respectively, where θ is
the angle swept by the rotation.

Any orthogonal matrix Q can be constructed as a product
of Givens rotations (with an additional trivial reflection in the
case that Q is a reflection); in this sense, the Givens rotations
are primitives of the orthogonal transformations.

Notice that the entries of Gij are rational whenever a, b,
and c are integers; i.e., whenever (a, b, c) form a Pythagorean
triple. The Pythagorean triples (a, b, c) generate a set of
unit vectors [ac ,

b
c ]T ∈ Q2 that is dense on the unit cir-

cle in R2 [Shiu, 1983]; see Figure 2(c). In consequence,
any angle θ can be approximated to arbitrary precision by
arccos a

c = arcsin b
c , where (a, b, c) is a Pythagorean triple.

We use Shiu’s method (1983) for obtaining (a, b, c), given θ
and a precision requirement. In practice, we limit our preci-
sion in terms of the lengths of integers a, b, and c—formulas
with large integers impose higher computational cost on the
SMT solver during hyperrectangular decomposition.

Since a Pythagorean triple (a, b, c) can be generated to ap-
proximate any angle θ ' arccos(a

c ) = arcsin( b
c ) to arbitrary

precision, it follows that we can approximate any Givens rota-
tionGij ∈ Rk×k to arbitrary precision with a rational Givens
rotation Gq;ij ∈ Qk×k. Since any orthogonal transforma-
tion can be constructed from Givens rotations, we can ap-
proximate any orthogonal transformation with a rational one.
The next section describes our method for choosing a useful
transformation and building its approximation from rational
Givens rotations.

4.2 Composing a Suitable Transformation
Throughout this section, the following example will guide our
discussion:

ϕex ≡ (x1 + x2 6 0) ∧ (x1 + 2x2 6 1),

with x1, x2 ∼ N (0, 1) iid (see Figure 2(a)). Note that in its
current form, ϕex would be poorly suited for hyperrectangu-
lar decomposition: most of its weight is near its boundary
(around the origin), and would be reachable only by the cor-
ners of sampled rectangles. It seems possible that an orthogo-
nal transformation would make ϕex better suited for WMI. In
this subsection, we outline a methodology for choosing that
transformation.

Aligning one of the faces of the boundary of ϕex with one
of the axes would allow the weight near that face to be effi-
ciently captured. However, note that the faces have differing
amounts of weight in their proximity; one could say that the
face passing through the origin (x1+x2 6 0) has more weight
than the other (x1 + 2x2 6 1), which passes through regions
of lower density.

From these observations, we derive the following method-
ology for choosing an orthogonal transformation, which we
exemplify below for ϕex:

1. On each face of ϕex, numerically integrate the joint PDF
of x1, x2; this surface integral will be called the weight
of a face. Let the normal vectors of the faces of ϕex be
called a1 = [1, 1]T,a2 = [1, 2]T; numerically, we find
their weights to be w1 ≈ 0.37 and w2 ≈ 0.18.

2. Since w1 > w2, we construct an orthogonal matrix that
aligns a1 with one of the axes. The result is T =

1√
2

[
1 -1
1 1

]
.

3. Since T contains irrational entries, we cannot use it to
transform ϕex. Instead, we approximate T with rational
Tq . Our example is in two dimensions, so it suffices for Tq
to be a single rational Givens rotation:

Tq =
1

169

[
119 -120
120 119

]
.

4. Transform ϕex with Tq to yield

Tqϕex ≡ (239x1 − x2 6 0) ∧
(

359

169
x1 +

118

169
x2 6 1

)
,

illustrated in Figure 2(b).
In two dimensions it suffices to choose one face of the for-
mula and rotate it into alignment with an axis; this fully de-
fines the rotation. In higher dimensions, orthogonal transfor-
mations have more degrees of freedom and it becomes more
challenging to fully specify them.

We generalize steps 1–3 in the above procedure to higher
dimensions in the following way:
– Construct matrixA, whose columns a1, . . . ,an are normal

unit vectors for the faces of the formula, ordered by their
faces’ weights.

– Compute a rational approximation of A’s QR-
factorization; A = QR where Q is orthogonal and
R is upper-triangular. Specifically, we use a variant
of QR-factorization by Givens rotations, a well-known
method that composes Q from Givens rotations. Our
variant is modified to use only rational Givens rotations,
and results in a rational approximation Qq of Q.

– Let Tq = Qq .
We give a brief description of QR-factorization, and some

rationale for using it in this fashion. Every matrix A has
a QR-factorization; i.e. A = QR where the columns
q1, . . . , qn of Q are orthonormal and R is upper-triangular.
This factorization is unique, and the columns qi have the fol-
lowing property:

q1 = a1,

q2 = a2 − proj q1
(a2),

...
qn = an − proj q1,...,qn−1

(an)

(where normalization is implicit on the RHS).
In effect, Q is orthogonal and transforms faces into align-

ment with axes, prioritized by the faces’ weights. Specifi-
cally, QTa1 is aligned perfectly with the first axis, QTa2 is
aligned approximately with the second axis, and so on. The
rational Qq approximates this property, while preserving the
formula’s rationality.

The computational cost of QR-factorization by Givens ro-
tations is O(n3). In the context of weighted model integra-
tion, this polynomial cost is dwarfed by the worst-case expo-
nential cost incurred by the SMT solver.
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Figure 2: (a) Running example ϕex. (b) Transformed ϕex: Tqϕex.
(c) 2,122 rational unit vectors can be constructed in the first quad-
rant, using integers with 6 4 digits.

5 Implementation and Evaluation
Implementation We implemented our orthogonal transfor-
mations technique atop an implementation of the algorithm
proposed in [Albarghouthi et al., 2017a], which uses the Z3
SMT solver [De Moura and Bjørner, 2008] to perform hyper-
rectangular decomposition. Constructing a single hyperrect-
angle involves making a Z3 query. We use the approach pre-
sented in Section 4 to construct an orthogonal transformation,
after using Redlog 2 to eliminate quantifiers from the formula.
Evaluation Our primary goal in evaluation is to understand
the effect of applying orthogonal transformations on SMT for-
mulas prior to performing weighted model integration. To
this end, we considered two classes of benchmarks: (i) First,
we generated random benchmarks of quantifier-free formulas
of increasing size, where the task is to compute the weight
of the formula, where variables are independently and identi-
cally distributed. Our primary finding is that transformations
can dramatically speed up convergence, particularly as we in-
crease the number of dimensions. (ii) Second, we adapted
random-walk benchmarks from the programming languages
literature [Chatterjee et al., 2016]. Given a probabilistic pro-
gram simulating a random walk inRn, the goal is to compute
the probability of landing in a specific region of Rn after k
steps. We encoded these probabilistic programs as SMT for-
mulas, using the methods of Chistikov et al. [2015].
Results on synthetic problems For the synthetic bench-
marks, we randomly generated formulas using two parame-
ters: (i) the number of free variables (3, 5, or 7), and (ii) the
number of conjuncts in the formula (1, 2, or 3). For each
combination of number of free variables and conjuncts, we
generated 40 benchmarks. The benchmarks were conjunc-
tions of linear inequalities. The coefficients of each inequal-
ity were generated as uniformly distributed unit vectors in 3-,
5-, or 7-dimensional space; the formulas can be understood
as conjunctions of randomly oriented halfspaces. We let each
formula ϕ run for 100 seconds, where we, in parallel, ran
WMI(ϕ) and WMI(¬ϕ). This is with the exception of the 7-
variable/3-conjunct benchmarks, which tended to be too large
for the hyperrectangular decomposition method.

Figure 4 shows our results on the synthetic benchmarks.
The x-axes represent the sum of WMI(ϕ) + WMI(¬ϕ) after
100 seconds for the case without orthogonal transformations;
the y-axes represent results with orthogonal transformations.
Recall that the longer our WMI algorithm runs, the closer it
arrives to the actual volume. The closer the value is to 1 the

2http://www.redlog.eu/

better. We observe that for lower dimensions (3), orthogonal
transformations do not provide a significant improvement in
computed volume; on benchmarks with 3 free variables and
1 conjunct, an orthogonal transformation gave only a 17% in-
crease to the weight on average. However, as we consider
larger dimensions, the effect of orthogonal transformations
becomes more pronounced; on average, orthogonal transfor-
mations gave a 130% increase in weighted volume for the
5-variable/2-conjunct benchmarks and a 1500% increase for
the 7-variable/1-conjunct benchmarks. This dependence on
dimension results from the corners of hyperrectangles becom-
ing increasingly prominent in higher dimensions.

For a closer picture of the difference in performance with
and without orthogonal transformations, consider Figure 5.
Here, we pick two representative benchmarks and plot the
value of 1−(WMI(ϕ)+ WMI(¬ϕ)), as computed by the algo-
rithm over the course of 100 seconds (lower value is better).
Our results show that WMI with transformations consistently
provides better bounds for the duration of execution. Thus,
at any point in execution, we can halt weighted model in-
tegration and derive better exact bounds in the presence of
orthogonal transformations.
Results on random-walk problems For the random walk
problems, we generated a set of benchmarks named
nd-ks-t, where n is the spaceRn in which the random walk
takes place; k is the number of steps considered; and t is the
type of walk: simp is a program without conditionals, while
b and b2 are more complex walks involving branching.

The goal is to compute the probability of an event ϕ encod-
ing the position of the walk after k steps. Using the technique
of Chistikov et al., we encoded programs as quantified LRA
formulas. The sizes of the generated formulas are shown in
the table in Figure 3. The largest formula we considered has
90 atomic predicates of the form

∑
i cixi 6 c, 15 free vari-

ables, and 67 existentially quantified variables.
The bar chart in Figure 3 shows the lower bound on the

probability after 100s of execution. We notice that orthogonal
transformations yielded consistently better results, with the
exception of 2 benchmarks. Our results here display a similar
pattern to the synthetic benchmarks: the effects of orthogonal
transformations are more pronounced for larger dimensions.

6 Related Work
We now compare our work with existing WMI techniques.
Exact weighted model integration Our work is closely re-
lated to exact model integration for formulas in SMT theories.
To our knowledge, the first such technique is due to [Ma et
al., 2009], where the goal was to compute the volume of a
formula ϕ in LRA. There, the authors iteratively made calls
to an off-the-shelf tool—LattE [De Loera et al., 2012]—for
computing the volume of a polytope. This technique decom-
poses the formula into the set of polytopes (effectively, its
DNF form). Recent work by Belle et al. [Belle et al., 2015a;
2016] also utilizes LattE as a backend tool, but generalizes
the problem to piecewise-polynomial weight specifications.
In their setting, weights defined by Gaussian distributions are
approximated using piecewise-polynomial functions.

In comparison with the aforementioned works, our ap-



Benchmark 1d-2s-simp 1d-2s-b2 1d-3s-simp 1d-3s-b2 2d-2s-simp 2d-2s-b 2d-2s-b2 2d-3s-simp 3d-2s-simp 3d-2s-b 3d-2s-b2 3d-3s-simp
# Predicates 14 36 18 50 25 61 55 31 36 90 76 45
# Free Vars 3 5 4 7 6 10 8 8 9 15 11 8

# Quant. Vars 12 27 16 36 23 46 43 29 34 67 61 43

Figure 3: Random walk problems.

Figure 4: Results of tests on synthetic formulas. Each scatter plot
compares the probability accumulated by transformed and original
WMI tasks for a class of formulas.

proach is not restricted to volume computation or piecewise-
polynomial weights. Hyperrectangular decomposition can in-
tegrate arbitrary weight functions, although the orthogonal
transformation technique described in this paper must be re-
stricted to a formula’s Gaussian variables.

Recent work introduced probabilistic inference modulo
theories [Braz et al., 2016]. The instantiations of their DPLL-
like algorithm have only been over discrete bounded domains.
In contrast, our work targets weighted model integration over
the unbounded, dense domain of real arithmetic.
Approximate weighted model integration Weighted model
counting is a #P-complete problem. Recently, there has
been interest in providing (ε, δ)-guarantees in model count-
ing using polynomially many calls to an NP oracle—a SAT
or SMT solver. A number of works have studied the proposi-
tional counting setting, e.g., [Chakraborty et al., 2014; 2013;
Ermon et al., 2014; 2013].

Figure 5: Plots of WMI’s progress over representative benchmarks;
the plots show remaining volume (less is better).

In the weighted model integration setting, recent work has
shown how to use SMT solvers to approximate volumes of
LRA formulas [Belle et al., 2015b; Chistikov et al., 2015]. In
comparison to these works, our goal is to provide an exact
(non-probabilistic) guarantee. Specifically, we provide exact
upper and lower bounds on the desired probability by decom-
posing an LRA formula into hyperrectangles. The hyperrect-
angular decomposition idea is also exploited by Chistikov et
al. in the approximate setting.

7 Conclusion
We addressed weighted model integration (WMI) algorithms
that decompose a linear arithmetic formula into a set of dis-
joint hyperrectangular regions. We argued that the hyper-
rectangular decomposition approach benefits from applying
transformations on formulas, and showed how to to construct
orthogonal transformations over rationals, preserving the in-
dependence of Gaussian variables without introducing irra-
tional coefficients. We implemented and evaluated our ap-
proach, demonstrating the substantial improvements avail-
able through orthogonal transformations. As a result, down-
stream applications such as repair and synthesis [Albargh-
outhi et al., 2017b] are improved.
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