Appears in the Proceedings of the Twenty-Second Conference on Attificial Intelligence (AAAI 2007), Vancouver, British Columbia.

Refining Rules Incorporated into Knowledge-Based Support Vector Learners
Via Successive Linear Programming

Richard Maclin', Edward Wild*, Jude Shavlik*, Lisa Torrey*, Trevor Walker*

Computer Science Department”
University of Minnesota Duluth
1114 Kirby Drive
Duluth, MN 55812
rmaclin@d.umn.edu

Abstract

Knowledge-based classification and regression methods
are especially powerful forms of learning. They allow
a system to take advantage of prior domain knowledge
supplied either by a human user or another algorithm,
combining that knowledge with data to produce accu-
rate models. A limitation of the use of prior knowledge
occurs when the provided knowledge is incorrect. Such
knowledge likely still contains useful information, but
knowledge-based learners might not be able to fully ex-
ploit such information. In fact, incorrect knowledge can
lead to poorer models than result from knowledge-free
learners. We present a support-vector method for incor-
porating and refining domain knowledge that not only
allows the learner to make use of that knowledge, but
also suggests changes to the provided knowledge. Our
approach is built on the knowledge-based classification
and regression methods presented by Fung, Mangasar-
ian, & Shavlik (2002; 2003) and by Mangasarian, Shav-
lik, & Wild (2004). Experiments on artificial data sets
with known properties, as well as on a real-world data
set, demonstrate that our method learns more accurate
models while also adjusting the provided rules in intu-
itive ways. Our new algorithm provides an appealing
extension to knowledge-based, support-vector learning
that is not only able to combine knowledge from rules
with data, but is also able to use the data to modify and
change those rules to better fit the data.

Introduction

Support-vector methods that incorporate prior knowledge in
the form of rules have become increasingly popular (Fung,
Mangasarian, & Shavlik 2002; 2003; Mangasarian, Shavlik,
& Wild 2004; Maclin et al. 2005; 2006; Le, Smola, & Gaert-
ner 2006). One general assumption of these methods is that
the advice provided is mostly accurate. This leaves open the
question of whether advice that is significantly less accurate
can be used effectively. Most of the knowledge-based sup-
port vector methods provide a mechanism based on slack
variables to allow the data to overcome poor advice. But in
general, this means that the learner does not adjust the rule,
but rather uses the data to overcome the poor rule and de-
velop a model comparable to one learned without using the

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Computer Sciences Department?
University of Wisconsin Madison

1210 West Dayton Street
Madison, W1 53706

{wildt,shavlik,ltorrey,twalker} @cs.wisc.edu

prior knowledge. In this work we develop a method that can
not only overcome poor rules, but can alter the rule to pro-
duce a more effective model when the rule does have some
useful structure. As a result, our models can often repair a
poor rule to allow the learner to outperform a learner that
discards the rule. In addition, our method provides a mech-
anism for examining what changes were made to the rule,
which can be made available to a user as method of analyz-
ing what is wrong with the original rule.

Our method makes use of the Knowledge-Based Sup-
port Vector Machines (KBSVMs) presented by Fung et
al. 2002; 2003 and Mangasarian et al. (Mangasarian, Shav-
lik, & Wild 2004). In our method, Rule-Refining Support
Vector Machines (RRsvM), the learner corrects antecedents
in provided rules as part of a numeric optimization problem.
Our formulation cannot be solved by linear programming
because the feasible region is nonlinear, due to the factors
that we use to correct a rule. However, our mathematical
program is bilinear in these factors, which allows for a so-
lution via successive linear programming. The correction
factors resulting from this process not only increase the ac-
curacy of the model, but can be supplied to the human user
as useful refinements of the rules.

Knowledge-Based Support Vector Methods
KBSVMs generally capture rules in the form I1F Antecedents
THEN Consequent. For example, in the promoter domain,
which we examine later, we might say a gene sequence is a
promoter if at least two or more DNA characters at positions
(before the start of the gene) 36 (shortened to p36), 35 (p35),
and 34 (p34) are ’t’, ’t’ and "g’. This rule is:

IF countOf(p36=t, p35=t, p34=g) > 2

THEN Promoter=true.

Rules in KBSVMs are generally represented in the form:
Bx<d = xw+b>xh+p. (1)

In this representation, the matrices B and d capture the an-
tecedents of the rule. For example, if in our representation
there is a 1 for feature 59 if p36=t (and O otherwise) and
similarly a 1 at feature 63 for p35=t and a 1 at feature 66
for p34=g, then we could capture the rule above by having
a row of B with zeros for all of the features except 59, 63,
and 66. As the rule requires the count be > 2 (while Equa-
tion 1 uses <) we would use negated antecedents for each of

these features, in this case we would set the row of B to have
-1s for the features 59, 63, and 66. Then the corresponding
value of d would be -2 to capture the threshold 2. This rule
is met if at least two of the features have the value 1.

The right-hand side of the rule (x'w-+b > x’h -+ 3) captures
what we want to say about the consequent using the terms
h and B (the x represents the input features, and the w and
b are the weights and threshold of the model to be learned).
For a classification problem, if we want to say that under the
conditions indicated by the B and d matrix the data point is a
promoter (a positive example) we would simply say that we
want xX'w +b > 1 setting hto 0 and 3 to 1.

KBSVMs provide methods for incorporating rules into
SVM formulations. One formulation of an optimization
problem for a linear SVM (without domain knowledge) for
classification is:

min_ |lw||1+v|b|+Ce’s
w,b,s>0

bsz)

st Y(Aw+eb)+s>e.
Here, e denotes a vector of ones of appropriate dimension,
and a prime symbol ’ denotes the transpose of a vector or
matrix. Thus for a vector s, €’s denotes the sum of the com-
ponents of s. The absolute value of a scalar b is denoted |b].
The 1-norm of a vector x, denoted ||x||1, is defined as the
sum of the absolute values of the components of x. That is

n
if x has n components, ||x||1 = ¥ [xi|. The matrix A is the
=

set of data, one row for each data point and one column for
each feature. Y is a matrix whose diagonal elements are the
class labels (1 or -1) corresponding to the points in A; all
off-diagonal elements are 0. Parameters w and b represent
the feature weights and threshold, s are the slack variables
(terms used to allow the solution to deal with noisy data),
and C and v are penalties associated with the the slacks s
and the threshold b. Note that although we are focusing on
classification here and are using a linear rather than kernel
model, our results also apply to regression and kernel meth-
ods as well.

In KBSVM the domain knowledge of Equation 1 is added
as extra constraints to the optimization problem, causing the
system to pick a model that takes into account the rules. So,
the optimization problem in Equation 2 is extended to:

min lW||1 +v|b| 4+ Ce’s + p1€'z 4 pal
w,b,s>0,u>0,2,(>0
st. Y(Aw+eb)+s>e ©)
—z<Bu+w-h<z
—d'u+>p-h.

As part of this process of adding the rules as constraints, the
rules are softened by adding slack variables (in the above
representation z and ¢) that allow the system to partially or
completely discard a rule if it is contradicted by the data.

Knowledge Refinement

The slacks introduced for knowledge in KBSVMs allow for
the refinement of the implication of a rule:

Bx<d=xXw+b>xh+p

e D ®
(S © (S (S
(S] =) (S] (S] =) © (S] =) \U

CY (b) ©

Figure 1: Surfaces that might be learned (a) without knowI-
edge, (b) when knowledge (shown as a green (gray) box)
cannot be refined, and (c) when knowledge (shown as
smaller green (gray) box with the outer box showing the
original rule) can be refined.

by in some sense allowing the system to alter the h and 3
terms. But it can be desirable to refine the term d in the left-
hand side or antecedent of this implication, which changes
the region {x|Bx < d} over which the inequality in the right-
hand side of the implication is enforced.

Consider the simple problem shown in Figure 1. In Fig-
ure 1(a) we show a simple linear surface that might be pro-
duced based on that two-dimensional data. In Figure 1(b)
we show the data and a region defining a rule in light green
(gray) where the rule indicates that in that region the user
thinks data should be positive (but the data seems to contra-
dict some of this rule). If we assume that the learner wants to
closely fit the rule we might get the decision surface shown
in Figure 1(b). Finally, in Figure 1(c) we show what might
happen using our approach. In it the learner shrinks the ad-
vice region to better fit the data, and then fits its learned
surface to that region and the data. Note that although we
get more training errors than from the surface learned from
just the training data, we hope that the adjusted rule is useful
and the resulting surface may be more accurate for the test
data. Note also that our adjusted rule can be returned to the
user to analyze changes. To do this we need to refine the d
term of our rule.!

In our new approach we refine the given value of d by
learning a vector & such that

Bx < (d—98) = xXw+b>xh+p. (4)

To learn o, we add this implication to our optimization for-
mulation in the same way as the original implication was
added to Formulation 2 to produce Formulation 3. We also
add a penalty on the 1-norm of 3 to the objective, which al-
lows us to trade off among reducing the complexity of the
solution, fitting the data, making changes to the consequent
of the rule represented by z and ¢, and making changes to
the antecedent of the rule represented by .

We construct a new formulation for our method RRsvm
by extending the formulation in Equation 3:

lw|]1 +v|b| 4+ Ce's+
1€’z + P2l + p|0|1

st. Y(Aw+eb)+s>e 5)

—z<Bu+w-h<z

(8—d)u+>p—b.

min
w,b,s>0,u>0,2(>0,5

INote that one might also wish to refine the B term. We leave
that to future work, as this would only apply in complex rules con-
taining individual antecedents that involve more than one feature.

Observe that this problem has nonlinear constraints because
the term &'u appears, both of which are free variables.
However, the constraints are bilinear in d and u, suggesting
the method of solution shown in Algorithm 1. First, fix the
value of o and solve the optimization problem in (5) to set
the value of u. Then, fix that value of u and solve for a new
value of &. This process is then iterated.

Algorithm 1 RRsvM via successive linear programming
3t—0
forr=1,...do
if Bx < (d —&") has no solution x then
return failure
end if
Let (w",b",u") solve

min lwl||1 4 v|b| +Ce's+ u1e'z+ pal
w,b,s>0,u>0,2,(>0

st. Y(Aw+eb)+s>e
—z<Bu+w-h<z
(@ —d)u+{>B-b

(6)
Let 81 solve
min lw]|1 4+ Vv|b] +Ce's+
wbs>028>08 e’z + 10 + p||8))1
st. Y(Aw+eb)+s>e O

—z<BU +w—-h<z
(0—d)u"+{>B-b

if |&" — & 1| < ethen

return (w',b"u" ")
end if
end for

Proposition 1. For € = 0, the sequence of objective val-
ues converges to the value ||W||1 + v|b| + Ce’s + 1€’z +
U2 + p||3||1 where S, z, and { are computed from any
accumulation point (w,b,u,8) of the sequence of iterates
{(w",b",u",8")}}> ; generated by Algorithm 1. Such an
accumulation point satisfies the following local minimum
property:

(W,b) € argmin lw||1 +Vv|b] +Ce's+
w,b,s>0,u>0,2,(>0
H1€Z + U2l g
s.t. Y(Aw+eb)+s>e C)

—z<Bu+w-h<z
(d—d)u+{>p—b.

Proof. The sequence of objective values is bounded below
by 0, and the solution of each linear program generates a
feasible point for the succeeding linear program. The se-
quence is therefore bounded and nonincreasing, and hence
converges. That each accumulation point of the sequence
satisfies the local minimum property (8) can be seen by not-
ing that each point of the sequence (w",b",u",8") satisfies
(8) with (w,b,u,d) replaced by (w",b",u",8") due to the first
linear program (6) in Algorithm 1. Hence, any accumulation
point (w",b",u", ") of the sequence {(w",b",u",8")}> ; sat-
isfies the local minimum property (8). O

We can use (6) from Algorithm 1 in conjunction with
Mangasarian, Shavlik, & Wild (2004)[Proposition 2.1] to
immediately prove the following result, which shows the re-
fined prior knowledge imposed as a result of Algorithm 1.

Proposition 2. Let (W,b, q, ES) be the result of Algorithm 1,

with associated slack variables (z,{). Then the function
f(x) = x'w+ b satisfies:

Bx < (d—8) = XW+b> (h—2)/x+B—-C (9)
with —z <7 <ZzsuchthatB'u+w—(h—2) =0.

Note our method necessitates an additional parameter (p)
for the optimization problem, which must be learned as well
as parameter(s) for controlling the termination of the bilin-
ear process (in terms of a maximum steps and the tolerance
to use in measuring whether or not the process should be
terminated). We will discuss this aspect in our experiments.

Note also that our bilinear process returns the learned &
terms, making it possible for the user to examine the result-
ing value to see how the optimization altered the rules.

Experiments

We tested our method RRsvm on artificial data sets with
known properties. This testing allowed us to determine that
RRsvM works as suggested under a variety of conditions.
We also performed experiments on the promoters-106 data
set (Towell, Shavlik, & Noordewier 1990), an early domain
theory that has become outdated (knowledge of promoters
has significantly advanced), but nevertheless has been the
subject of significant experimentation in theory refinement.
Our results demonstrate that RRsvM works well, especially
when the user provides rules that are not correct, but which
have structure that can be exploited.

Methodology

One critical aspect of our work that must be addressed is
the selection of parameter values. In the original (no knowl-
edge) representation of the SVM formulation, there are two
parameters C and v that penalize the size of the slacks (the
misfit for each data point) and the threshold, respectively.
The weights w are implicitly penalized with value 1. The
KBSVM approach, another of our experimental controls, is
from Fung, Mangasarian, and Shavlik (2002; 2003) and is
captured in Formulation 3; this approach has C and v and in
addition the parameters iy and |, that are used to slack the
knowledge terms as described previously. Finally, our ap-
proach RRsvM includes the terms C, v, {1, and o as well
as a fifth term p which is used to penalize the & terms.

In order to set these parameters we supply each system
with a range of possible values and let it select, for each data
set, which combination of parameters to use. The set of pos-
sible values we tried are: C € {10,100,10%}, v € {1,100},
W € {0,10%,10°}, and p € {100,10%,10°}. In addition p,
values were set to either [= 3 or Pz = 10p3. Our ranges of
values were based on suggestions from previously KBSVM
papers and we believe they represent a reasonable range of
values. Note, in some experiments we restricted i3 values to
only {103, 108}, which we discuss in those experiments.

Table 1: Methodology for our artificial data set experiment.

TrainingSet = 200 random data points
TestSet = 1000 random data points
for TrainSetSize = 10, 25, 50, 75, 100, 125, 150, 200 do
TrainSet = first TrainSetSize points of TrainingSet
BestScore=inf
for Each Set of Parameters P do
Score = 10-fold cross-val. err. on TrainSet using P
if Score < BestScore then
BestScore=Score, BestParams=P
end if
end for
Using BestParams train model on TrainSet
Score that model on TestSet
end for

In order to determine which set of parameters to use each
learner performs a ten-fold cross validation on just its train-
ing set with each set of parameter values to estimate the ef-
fectiveness of that set. The learner picks the parameters that
produced the best results across the ten folds of the training
set, and uses those parameters to learn a model for the entire
training set. The learned model is then tested on data not
seen during parameter selection or subsequent training.

Note that one effect of this approach is that our advice
methods have a larger variety of parameters to try and there-
fore might find a better model, but as will be seen in our
experiments below, we concentrate on cases where the over-
all amount of data is small (since knowledge should most
affect those cases). When the amount of data is small, over-
fitting becomes a significant possibility so the larger variety
of parameters is likely balanced by this potential problem.

Artificial Data

To test RRsv M in a controlled situation where the true func-
tion is known, we generated data with the rule:

IF (3f1 - 4f, + 0.5) > 0 THEN class=pos EL SE class=neg.

For these experiments we did not include noise, though the
results with Gaussian noise are similar (with slower con-
vergence) in other experiments we performed on artificial
data. The data sets were generated with 10 input features
(2 meaningful and 8 distractor features) with values chosen
randomly between 0 and 1 and labeled using the above rule.

Using the above rule we performed 20 repeats using the
methodology shown in Table 1. Using this method we per-
formed experiments using two different rules as knowledge,
one rule based on the correct domain theory:

IF (3fy - 4f, + 0.5) > 0 THEN class=pos

which we will call “Good” advice and one where we altered
the threshold by the value -1.0 to get

IF (3fy - 4f, + 0.5) > -1 THEN class=pos

which we call “Bad” advice, though it has useful structure.
We tested as learners the system without advice, the KB-
SVM method using first Good and then Bad advice and
RRsvM using Good and Bad advice. In addition, we tested
the KBSVM method where we supplied the set of param-
eters indicated in the previous section, but where we elim-
inated the possibility of p; = 0. Setting pp = 0 basically

0.30

——SVM
—&— SVM - Only Relevant Features —
—-4--KBSVM - Good Advice (w/o p1=0)

\\ —A— KBSVM - Good Advice (W/ p1=0) | |
\
\
\

0.25

0.20 \
0.15

\&
0.10 <

0.05 -

—#—RRSVM - Good Advice
-<--KBSVM - Bad Advice (w/o p1=0)
—— KBSVM - Bad Advice (w/ p1=0)
——RRSVM - Bad Advice

Error

0.00

Training Set Size

Figure 2: Results for the artificial data set and rule using the
methodology in the text. Results are averaged over 20 runs
with each method receiving the same set of data in each run.

allows the learner to ignore the advice. We wanted to see
results in cases where the learner has to make use of the ad-
vice as a test. We also include as a baseline a learner without
advice that is given only the relevant features (another form
of advice). These results are presented in Figure 2.

A first thing to note from the results is that both KBSVM
and RRsvM, with Good advice, perform very well at a fairly
small amount of data (50 data points) and statistically signif-
icantly (paired t-test, p < 0.05) outperform the learner with-
out advice all along the learning curve. Note that the learn-
ers with Good advice sometimes achieve lower error than a
learner given just the relevant features, though the difference
is not statistically significant.

A second observation from these results is that RRsv M,
with its ability to refine advice, quickly performs as well us-
ing Bad advice as the other KBSVM systems (and our sys-
tem) when using Good advice. We have observed in our
other experiments that how quickly this occurs generally de-
pends on how noisy the data is (as one would expect). This
indicates RRsvM is able to make use of advice that is bad
as long as it still has some useful structure.

A third thing to note is that KBSVM with Bad advice
and the ability to ignore advice performs only as well as
the learner without advice, and KBSVM when forced to use
advice (u1 = 0 is not allowed) perform worse than even the
learner without advice. And this difference is statistically
significant from 100 training examples on.

Note also that RRsvM is able to recover how the rules
have been altered as part of the learning process. In our ex-
periments we altered d by 1.0 and would expect the learner
would recover a similar value. Figure 3 shows the resulting
learned d values which quickly become close to 1 with little
deviation as the number of examples grows.

Overall, our experiments on artificial data seem to indi-
cate that our method for refining advice, under certain con-
ditions, makes use of advice that is not accurate, but that
has useful structure. In our next experiments we look at a
real-world data set that has been used for theory refinement.

=
3

Average Delta
o [
13 o
"
KH

o
o

E;O 1[;0 lLi?O 2(;0
Training Set Size

Figure 3: values averaged over the 20 runs for refining the

“Bad” advice discussed in the text, with the standard devia-

tion shown for each value.

Promoters

The promoters-106 data set is a set of DNA sequences orig-
inally presented by Towell, Shavlik, & Noordewier (1990)
that has been used extensively in theory refinement. The
data set consists of a set of 53 examples of DNA sequences
that contain gene promoters and 53 examples that do not.
Each strand consists of 57 DNA characters starting from 50
before the promoter is expected to start to 7 after the pro-
moter starts on the chromosome. In our representation we
use a simple 1,0 representation for each feature for each of
the four possible DNA characters: a, g, t, and c. Basically
each feature represents one Boolean test of whether a char-
acter occurs at a position (such as p37=g which is 1 if the
character at position 37 before the start is g and 0 otherwise).
The domain theory for promoters-106 has two major
parts, one of which, the conformation portion of the the-
ory has been repeatedly rejected by other researchers. In
the other part of the theory there are four rules for each of
two regions of the DNA sequence corresponding to sets of
characters that would occur in these regions. This would
lead to 16 rules (four combinations for each of the two re-
gions), which would make the learning process fairly un-
wieldly and make the issue of “Bad” rules more complex.
Instead, following the observations of Ortega (1995), we
combined the four rules for each of the two regions into a
single antecedent. The four rules for the first region (called
minus35) of the promoter tested the following conditions

minus35 :- p37=c, p36=t, p35=t, p34=g, p33=a, p32=c.
minus35 :- p36=t, p35=t, p34=g, p32=c, p31=a.
minus35 :- p36=t, p35=t, p34=g, p33=a, p32=c, p3l=a.
minus35 :- p36=t, p35=t, p34=g, p33=a, p32=c.

o

Note that there is significant shared structure to these rules
(all ask that p36=t, p35=t, etc.). Similarly the second (mi-
nus10) region was defined as follows:

minus10 :- pl4=t, p13=a, p12=t, pll=a, pl0=a, p9=t.

minus10 :- p13=t, p12=a, p10=a, p8=t.

minus10 :- p13=t, p12=a, p11=t, p10=a, p9=a, p8=t.

minus10 :- p12=t, p11=a, p7=t.

Our combined rule takes the following form:
IF countOf(p37=c, p36=t,p35=t, p34=g,
p33=a, p32=c, p31=a) > T35 AND
countOf(pl4=t, p13=(a or t), p12=(t or a), pl1=(a or t),
pl0=a, p9=(t or a), p8=t, p7=t) > T10
THEN Promoter=true.

The question then becomes how to set the thresholds T35
and T10. Based on our examination of the rules we set T35

to 5and T10 to 4 for our useful advice, which comes close to
capturing the domain theory. We will call this our Original

SVM

KBSVM - Original Advice
RRSVM - Original Advice
KBSVM - Poor Advice (w/o p1=0)
KBSVM - Poor Advice (w/ p1=0)

RRSVM - Poor Advice

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Average Error

Figure 4: Average error rates for 20 ten-fold cross-validation
experiments run on the promoters-106 data set with the rule
discussed in the text used for advice.

advice. To make the advice work less well we significantly
lowered the thresholds to 2 and 2 for each, which made the
rules match far too often. We will call this our Poor advice.

We then tested this by running 20 repeats of ten-fold cross
validation on the promoters-106 data set using the method-
ology described above to select parameters. Figure 4 shows
the results of these experiments.

First, note that our linear model with no knowledge per-
formed about as well as other models have on this data.
Next, note that our advice models perform well compared
to other learners, though not as well as KBANN (Towell &
Shavlik 1994), which used ensembles of neural networks.

In terms of performance with the advice, note when KB-
SVM is not able to ignore the Poor advice, it performs very
poorly (as expected), while the KBSVM system that is able
to ignore the advice performs as well as the learner without
advice. Finally note that learners with the Original advice
perform very well, and that RRsvm that refined the Poor
advice performs best of all (though the difference between
RRsvM and learners with the Original advice is not statis-
tically significant). These results indicate that RRsvm can,
on a real-world data set, make useful changes to a piece of
advice even if that advice is not particularly accurate.

In terms of how the advice was adjusted, for the Poor Ad-
vice in about 60% of the cases both of the thresholds T35 and
T10 were adjusted upwards between 2 and 3. In the remain-
ing cases the advice threshold was adjusted so that it only
applied to a small number of cases while the other thresh-
old was left alone (generally T35 would be shifted to 5 or 6
or T10 would be shifted to 6 or 7). This suggests that good
rules might be made by strongly focusing on one region and
then allowing a much looser fit for the other region.

Overall, the promoter results suggest RRsvM can refine
advice for a real-world problem and give some insight into
our data. Our method’s ability to compile advice into a com-
plex learning method and to indicate how the advice has
changed makes it a novel knowledge refinement method.

The two main drawbacks of our approach are that the it-
erative procedure of RRsvM takes more time than standard
KBSVM approaches and that there are more parameters to
be set. In our experiments we found that the time taken by
RRsvm did grow linearly in the number of iterations with
respect to KBSVM, but our algorithm did not take advantage
of the fact that a good solution had been found on the previ-

ous iteration. It may be possible to use the previous solution
as a “hot start” for the optimization to significantly reduce
the time. Regarding the issue of setting parameters, we be-
lieve that approaches such as those presented by Bennett et
al. (2006) or Zhu et al. (2003) could be used to automati-
cally determine effective parameter values.

Related Work

Our work relates most closely to Knowledge-Based Support
Vector methods (Fung, Mangasarian, & Shavlik 2002; 2003;
Mangasarian, Shavlik, & Wild 2004; Maclin et al. 2005;
2006; Le, Smola, & Gaertner 2006). Our approach differs
from these methods in that we able to refine the antecedents
of the knowledge and to examine the resulting changes to
the knowledge. KBANN (Towell & Shavlik 1994) is another
example of a system that in a sense “compiles” symbolic
knowledge to bias a numeric learner, and there has been
significant work in attempting to extract learned knowledge
from such networks (Fu 1991; Fung, Sandilya, & Rao 2005;
Thrun 1995; Towell & Shavlik 1993). Our work differs from
most of these methods in that we are inserting our rules into
SVMs rather than neural networks (though the method of
Fung, Sandilya, & Rao 2005 does apply to linear support
vector methods as well), and our process of determining how
the rules have been changed is much simpler, and does not
require complex processes to extract the refined rule.

There has also been significant work on directly manipu-
lating rules in their symbolic form rather than “compiling”
them into another learner. Pazzani and Kibler (1992) devel-
oped mechanisms for refining rules represented in first order
logic using inductive logic programming methods. Ourston
and Mooney (1994) created a method for analyzing first or-
der logical proofs generated from sets of rules and used data
to correct and complete the proofs to learn new knowledge.
Our work differs from these and related methods in that we
are focusing on extending support vector methods, which
have proven very effective in a wide range of problems, to
be able to handle additional sources of training information,
namely general rules in addition to labeled examples, while
allowing both types of information to be noisy.

Conclusions and Future Work

We have presented a novel method for incorporating domain
knowledge provided by a user into a support vector learn-
ing method, and we have shown how that domain knowl-
edge can be refined by the learning process. Our method,
Rule-Refining Support Vector Machines (RRsvm) allows
a learner to make use of domain knowledge, even if it is
not very accurate, as long as it has some useful structure.
RRsvM also reports the refinements to the rules so that they
can be examined and perhaps analyzed by the human user.
RRsvM extends previous work in knowledge-based support
vector methods. Experiments with RRsvM demonstrate that
we can effectively refine knowledge provided by a human
user, which we demonstrate on both artificial data sets and
on the real-world promoters-106 data set.

For future work, we plan to apply RRsvM to larger prob-
lems and to test on real-world regression problems in addi-

tion to classification. We plan to look at RoboCup advice as
in Maclin et al. (2006). We also plan to examine methods to
allow RRsvM to expand on advice. We will examine meth-
ods to add new variables to rules that were not previously
mentioned. We also plan to look at ways to extend methods
for extracting rules from SVMs similar to Fung, Sandilya
& Rao (2005) to allow for additional adjustment of rules.
Finally, we would like to look at methods for refining non-
linear knowledge rules and develop methods for extracting
useful changes to such rules.

References

Bennett, K.; Hu, J.; Kunapuli, G.; and Pang, J.-S. 2006.
Model selection via bilevel optimization. In IJCNN.

Fu, L. 1991. Rule learning by searching on adapted nets.
In AAAL

Fung, G.; Mangasarian, O.; and Shavlik, J. 2002.
Knowledge-based support vector machine classifiers. In
NIPS.

Fung, G.; Mangasarian, O.; and Shavlik, J. 2003.
Knowledge-based nonlinear kernel classifiers. In COLT.
Fung, G.; Sandilya, S.; and Rao, R. 2005. Rule extraction
from linear support vector machines. In KDD.

Le, Q.; Smola, A.; and Gaertner, T. 2006. Simpler
knowledge-based support vector machines. In ICML.
Maclin, R.; Shavlik, J.; Torrey, L.; Walker, T.; and Wild, E.
2005. Giving advice about preferred actions to reinforce-
ment learners via knowledge-based kernel regression. In
AAAL

Maclin, R.; Shavlik, J.; Walker, T.; and Torrey, L. 2006. A
simple and effective method for incorporating advice into
kernel methods. In AAAL

Mangasarian, O.; Shavlik, J.; and Wild, E. 2004.
Knowledge-based kernel approximation. JMLR 5:1127-
1141,

Ortega, J. 1995. On the informativeness of the DNA Pro-
moter sequences domain theory. JAIR 2:361-367.
Ourston, D., and Mooney, R. 1994. Theory refinement
combining analytical and empirical methods. Artificial In-
telligence 66:273-3009.

Pazzani, M., and Kibler, D. 1992. The utility of knowledge
in inductive learning. Machine Learning 9:57-94.

Thrun, S. 1995. Extracting rules from artificial neural net-
works with distributed representations. In NIPS.

Towell, G., and Shavlik, J. 1993. Extracting refined rules
from knowledge-based neural networks. Machine Learn-
ing 13:71-101.

Towell, G., and Shavlik, J. 1994. Knowledge-based artifi-
cial neural networks. Artificial Intelligence 70:119-165.
Towell, G.; Shavlik, J.; and Noordewier, M. 1990. Refine-
ment of approximate domain theories by knowledge-based
ne ural networks. In AAAI, 861-866.

Zhu, J.; Rosset, S.; Hastie, T.; and Tibshirani, R. 2003.
1-norm support vector machines. In NIPS.

