Using Advice to Transfer Knowledge Acquired
in One Reinforcement Learning Task to Another

Lisa Torrey!, Trevor Walker!, Jude Shavlik!, and Richard Maclin?

L University of Wisconsin, Madison, WI 53706, USA
{1torrey, twalker, shavlik}@cs.wisc.edu
2 University of Minnesota, Duluth, MN 55812, USA
rmaclin@d.umn.edu

Abstract. We present a method for transferring knowledge learned in
one task to a related task. Our problem solvers employ reinforcement
learning to acquire a model for one task. We then transform that learned
model into advice for a new task. A human teacher provides a mapping
from the old task to the new task to guide this knowledge transfer. Ad-
vice is incorporated into our problem solver using a knowledge-based
support vector regression method that we previously developed. This
advice-taking approach allows the problem solver to refine or even dis-
card the transferred knowledge based on its subsequent experiences. We
empirically demonstrate the effectiveness of our approach with two games
from the RoboCup soccer simulator: KeepAway and BreakAway. Our
results demonstrate that a problem solver learning to play BreakAway
using advice extracted from KeepAway outperforms a problem solver
learning without the benefit of such advice.

1 Introduction

We propose a novel method to transfer the knowledge gained in one reinforce-
ment learning (RL) task to a related task. Complex RL domains, such as Robo-
Cup soccer [I1]], can often be divided into several related learnable tasks. Trans-
fer is the process of using the knowledge acquired in one task to improve the
learning of a related task. For example, the skill of keeping a soccer ball away
from opponents can be used to evade players who are defending a goal, making
it easier to learn the task of goal scoring.

In this work, we present a method for performing transfer using advice. Ad-
vice taking is a way to incorporate user guidance into RL and can significantly
improve performance in complex domains [6,[7,9]. In our previous work with
advice [9], the user observes the learner performing a task and then provides ad-
vice about which actions to prefer in certain situations. In contrast, our method
for transfer obtains action preferences automatically from a model learned on a
previous task. The user provides a mapping that connects the two tasks, allowing
this transfer advice to be applied in the new task.

We have several reasons for using advice to accomplish this knowledge trans-
fer. It supplies the learner with some prior knowledge of the relative merits of

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 412-424] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Advice to Transfer Knowledge Acquired in One RL Task to Another 413

actions in new situations where old skills might apply. It allows a user who is not
familiar with the learning algorithm to guide the knowledge transfer simply by
specifying the similarities between two tasks. Also, since advice can be refined
or discarded by the learner if it is contradicted by experience, transfer advice
should not be harmful in the long run even if the user’s guidance is imperfect.

In the RoboCup simulated soccer domain [I1], we extract transfer advice
from a task called KeepAway and apply it to another task called BreakAway.
The KeepAway game was originally introduced by Stone and Sutton [I6]. The
game we call BreakAway [9] is the subtask of shooting goals. Both of these games
are set on a field with two teams of players, and contain actions for controlling the
soccer ball. However, the two games use different field layouts and have different
objectives. We provide mapping advice that points out the similarities that do
exist, and our algorithm produces transfer advice that captures a reinforcement
learner’s knowledge about KeepAway. We then give this advice to a new problem
solver to allow it to use KeepAway skills wherever they also apply in BreakAway.

The next section describes the RoboCup domain from the RL perspective.
The following section gives more detail on our RL implementation and the way
that it incorporates advice. After that, we introduce our transfer advice algo-
rithm and demonstrate its potential with some initial results.

2 Reinforcement Learning in RoboCup

Reinforcement learning [I7] is a continual learning process in which an agent
navigates through an environment trying to earn rewards. The environment’s
state is usually represented by a set of features, and the agent executes actions
that cause the state to change. Typically an agent learns a @Q-function, which
estimates the best long-term sum of rewards it could receive starting with a spe-
cific action from the current state. The agent’s policy, or procedure for choosing
actions, is usually to take the action with the highest @-value in the current
state. After taking the action and receiving some reward, the agent updates its
estimate of that @-value to improve its Q-function.

In the learning task of M-on-N KeepAway (see Figure[Il), the objective of the
M reinforcement learners called keepers is to keep the ball away from N (usually
M —1) hand-coded players called takers. The game ends when an opponent takes
the ball or when the ball goes out of bounds. A keeper needs to make an action
choice only when it has possession of the ball; it may choose to hold the ball,
pass to its closest teammate, or pass to its furthest teammate. It does not have
movement options.

Our KeepAway state representation is the one designed by Stone and Sutton
[16], which consists of features that capture simple geometric properties of the
learner’s field perspective, such as distances to other players and angles formed
by trios of players. They describe relative distances from the learner rather than
absolute locations. In our implementation, the three learners share a single Q-
function learned from the combination of their experiences, and they all receive
a +1 reward for each time step their team keeps the ball.

414 L. Torrey et al.

© (€]
o e
L
G o °
€]
©
KeepAway BreakAway

Fig. 1. Samples of 3-on-2 KeepAway and BreakAway games. The ball is the white
circle, and is held by a keeper on the left (a light circle with a dark border) and an
attacker on the right. The two opponents (dark circles with light borders) are both
takers on the left, but on the right, one is a defender and the other a goalie.

In M-on-N BreakAway (see Figure[I]), the objective of the M reinforcement
learners called attackers is to score a goal against N —1 hand-coded defenders and
a hand-coded goalie. The game ends when they succeed, when an opponent takes
the ball, when the ball goes out of bounds, or after a time limit of 10 seconds.
When an attacker has possession of the ball, it has a learnable action choice: to
move with the ball, to pass the ball to its closest or furthest teammate, or to
shoot the ball at the goal. We limit movement to four choices: forward towards
the center of the goal, away from the goal, and clockwise or counterclockwise
along a circle centered at the goal. The shoot action directs the ball at the
center, right side, or left side of the goal, whichever is least blocked by the
goalie.

Our BreakAway state representation also consists of features measuring im-
portant distances and angles, many of which are similar to KeepAway features.
The new features include distances and angles involving the goal, and the time
left in the game. The learners share a single model, and they all receive a +2
reward for a goal, 0 for a failed shot, and -1 for the other game endings.

In our RL method, the learners approximate the @Q-function by solving a
linear optimization problem. Following Stone and Sutton’s approach [16], we use
tile coding to include some non-linear features in this problem, which allows the
model to express more complex functions. Tile coding discretizes each numeric
feature into several overlapping tilings, each containing a set of discrete tiles.
Each tile is represented by a Boolean feature that is true when the numeric
value falls into the tile interval and false otherwise. Through this process, we
add 64 Boolean features to the state space for every numeric feature. We have
found, as did Stone and Sutton, that this addition to the state space significantly
improves learning for RoboCup.

Neither of these games is trivial, especially since the soccer simulator incor-
porates noise into players’ sensors and actions. BreakAway is the more difficult
of the two, because it contains only one positive reward that is rarely received
by chance (the goalie can easily block random shots). Learners in BreakAway
also have more actions to choose from and a larger state space to navigate.

Using Advice to Transfer Knowledge Acquired in One RL Task to Another 415

3 Background: Support Vector Regression

Our learners employ a type of RL called SARSA with a one-step look-ahead
to estimate @-values [I7]. Our implementation uses support vector regression
(SVR). We use a linear optimization method proposed by Mangasarian et al.
[10] and extended in Maclin et al. [8.[9] to compute a model that approximates
the @-function. We train the learner in batches: it uses the most recent model to
play 100 games, and then updates the model using these new training examples
to get a better @-function approximation.

The main structure in a learned model is a weight vector w, which has one
weight for each feature in the feature vector z. Each action has its own weight
vector and offset term b, and the expected @-value of taking that action from
the state described by x is wx + b. Our learners take the action that scores the
highest with probability (1 — €), and take a sub-optimal exploratory action with
probability €, where € typically is a small number between 0.01 and 0.05.

To compute the weight vector for an action, we find the subset of training
examples in which that action was taken and place those feature vectors into rows
of a data matrix A. Using the previous model and the actual rewards received
during those training steps, we compute new @-value estimates and place them
into an output vector y. The optimal weight vector is then described by

Aw+be =y (1)

where e denotes a vector of ones (we omit this for simplicity from now on).

In practice, we prefer to have non-zero weights for only a few important
features in order to keep the model simple and avoid overfitting the training
examples. We therefore introduce slack variables s that allow inaccuracies on
each example, and a penalty parameter C for trading off these inaccuracies with
the complexity of the solution. The resulting minimization problem is

min - ||wlfy +v[b| + C|ls|[x

(w,b,s) (2)
st. —s<Aw+b—y <s.

where |-| denotes an absolute value, ||-||1 denotes a sum of absolute values, and v

is a penalty on the offset term. By solving this problem, we can produce a weight

vector w for each action that compromises between accuracy and simplicity.

In Mangasarian et al.’s [10] Knowledge Based Kernel Regression (KBKR)
method, advice can be given in the form of a rule about a single action. This rule
creates new constraints on the problem solution, in addition to the constraints
from the training data. Recently, we introduced an extension to KBKR called
Preference-KBKR [9], which allows advice about pairs of actions in the form

Br < d = Qp(z) — Qn(z) > B, (3)
which can be read as:

If the current state satisfies (Bx < d), the @-value of the preferred action
p should exceed that of the non-preferred action n by at least .

416 L. Torrey et al.

For example, consider giving the advice that shooting is better than moving
ahead when the distance to the goal is at most 10. The vector B would have
one row with a 1 in the column for the “distance to goal” feature and zeros
elsewhere. The vector d would contain only the value 10, and § could be set to
any small positive number.

Just as we allowed some inaccuracy on the training examples, we allow advice
to be followed only partially. To do so, we introduce slack variables z and ¢ and
penalty parameters u; and ps for trading off the impact of the advice on the
solution with the impact of the training examples.

The new minimization problem addresses all the actions together so that it
can apply constraints to their relative values. Multiple pieces of preference advice
can be incorporated, each with its own B, d, p, n, and 3. We use the CPLEX
commercial software program to solve the resulting linear program:

min
(wa,ba,sa7zz‘74¢20,ui20)

m k (4)
> lwall + v[bal + Cllsallt) + Y (a2l l1 + p26:)
a=1 i=1

s.t. for each action a € {1,...,m}:

— 80 < AqWa +ba — Ya < Sa

for each piece of advice i € {1,...,k}:
—zigwp—wn—i—BiTuigzi
—d"u; + G > Bi — by + by,

4 Transfer Advice

In order to transfer knowledge gained on one task to a related task, we auto-
matically extract advice that tells the learner to prefer some actions over others
in new situations based on its experience in the old task. This transfer advice
is incorporated into the learning procedure for the new task as explained in the
previous section. Figure 2l summarizes the overall process.

Learned Transferred Advice about Learned .
Q Functions :‘/,\ Q Functions :‘/,\ Task B: when :l/'\ Q Functions [<=p iztt;r?l,ciéin];
for Task A for Task B Action X is for Task B
preferred to
Action Y /
User-provided advice
relating the features and Advice about solving
actions of Task A to Task B (optional)

those of Task B

Fig. 2. Transferring knowledge using advice. Advice may also have been given when
learning Task A.

Using Advice to Transfer Knowledge Acquired in One RL Task to Another 417

As an example, suppose we learned in KeepAway that when a taker was
near, passing to the nearest teammate was better than any other action. Our
algorithm might transfer this knowledge to BreakAway by generating advice
that when a defender is near, passing to the nearest teammate is better than
any other action.

This kind of advice is not the only way, or the most obvious way, to transfer
knowledge. One alternative would be to translate the actions and features of the
old task into actions and features of the new task, and then apply the old Q-
function directly to the new task, hoping that it would provide a good starting
point for learning. However, if the new task has a different reward structure,
these estimates might be uninformative. Simply transferring the Q-function from
KeepAway would give a BreakAway learner inaccurate initial estimates.

Instead of transferring @-values, our method transfers a partial policy that
covers some regions of the feature space. By telling the learner to prefer some
actions over others in those regions, we give relative constraints on (-values
instead of specifying them absolutely. This approach is more robust to differences
in the tasks’ reward structures.

The only input our method requires from a human teacher is a mapping that
translates features and actions in the old task to features and actions in the
new task. For example, we might map KeepAway features involving the nearest
taker to BreakAway features involving the nearest defender, and the KeepAway
action HoldBall to the BreakAway action MoveAhead.

Using this mapping, our algorithm evaluates a state from the perspective of
the old task. If one old action would have been better than all the others in this
situation, it gives transfer advice that recommends taking the corresponding
action in the new task. Table [I] gives the general form of the transfer advice
algorithm, and Table [2 gives a simple but concrete example. Note that this
direct translation of a learned model into advice is possible because we represent
both models and advice as linear expressions of features.

There are a few complications to this basic procedure. For example, some-
times an old feature has no logical analogue in the new task. In these cases, the
user may map the old feature f to a constant value instead of a new feature f’.
For example, the takers in 3-on-2 KeepAway do not have corresponding defend-
ers in 2-on-1 BreakAway, since the goalie behaves differently from a defender.
The user could set the features describing distances to takers to their maximum

Table 1. The basic algorithm to create transfer advice. We set the constant A to 1 in
our experiments. See Table 2] for more details.

GIVEN
A learned model of Task A AND
A mapping from Task A to Task B
DO
for each a € Actions(TaskA) generate advice:
1F for each b € Actions(TaskA),b#a: Q,— Q> A
THEN PREFER a’ TO ALL b’ in Task B

418 L. Torrey et al.

Table 2. A simple demonstration of extracting transfer advice. The actions in the old
task are a, b, and ¢, and the corresponding actions in the new task are a’, b’, and c'.
The learned model for the old task is a set of linear Q-value expressions with weights
w and features f, and these are translated into advice that uses the corresponding new
task features f'.

OLD TASK MODEL: ADVICE FORMAT:
Qa:wal*f1+wa2*f2+wa0 IFQ;_Q;)ZA
Qb = we1 * f1 + wro AND Q, — Q. > A
Qc = We2 * f2 + Weo THEN prefer a’ to b’ and ¢
USER-PROVIDED MAPPING: FULL ADVICE EXPRESSION:
(a,b,¢) — (a',V,) IF (a1 — wp1) * f1 + Waz * f2 + Wao — weo > A
(f1, f2) — (fi, f2) AND Wa1 * f1 + (Wa2 — we2) * f3 + Wao — weo > A
TRANSLATED EXPRESSIONS: THEN prefer a’ to b’ and ¢

Q;:wal*f{+wa2*fé+wa0
Qb = we1 * f1 + wyo
Q’c:w(ﬁ*fé+wc0

value, implying that the nonexistent defenders are too far away to affect the
learner’s actions. Another example is the feature describing a player’s distance
to the center of the KeepAway field. The user could set that feature to the av-
erage value of its range. We use these constant mappings in the experiments
reported later. To handle a feature in the new task that has no logical analogue
in the old task, we simply leave the new feature out of the mapping.

We create one advice rule for each old action that has an analogue, indicating
when the analogue looks like the best choice based on experience in the old task.
The other new actions (such as MoveLeft in BreakAway) must be learned
independently by the agent. To handle old actions that have no analogues, we
also simply leave the old action out of the mapping.

Since we added tile features from the tile encoding of numeric features, we
also need to map the tiles of each KeepAway feature to tiles of a BreakAway
feature. We automatically map tiles to maximize the amount of the BreakAway
feature range that they share. This method does not require mapped features to
have identical ranges, since that would severely restrict the mapping.

Remapping is a further capability that allows the learner to apply old knowl-
edge in multiple ways. For example, an attacker can clearly use KeepAway skills
to evade defenders on the BreakAway field; with a little cleverness, it might be
able to use those same skills to shoot. Suppose the learner imagines a teammate
is standing inside the goal. Then, a decision on whether to pass to that teammate
corresponds to a decision on whether to shoot. We could do this by mapping
all the features involving the teammate to features involving the goal. However,
if this were the only mapping, it would prevent the learner from considering
actually passing to the real teammate. To let the learner consider both actions,
we create two sets of advice, using first one mapping and then the other. We
included such a remapping in our experiments.

Using Advice to Transfer Knowledge Acquired in One RL Task to Another 419

Situation-dependent mappings allow old knowledge to be used differently in
different areas of the new feature space. For example, we might only want to
map a KeepAway action to the BreakAway action shoot when the learner is
close to the goal, because we know that soccer players should only shoot over
short distances. We could do this by providing one mapping that applies when
the learner is near the goal and a different one that applies when the learner is
far from the goal. We did not use this situation-dependent mapping in our ex-
periments; we expected that the KeepAway passing skills would already prevent
attackers from shooting from too far away.

5 RoboCup Transfer Advice

The two RoboCup tasks we explore have significant differences that make trans-
fer a non-trivial problem. In KeepAway, learners should make the game last as
long as possible, but in BreakAway, they should end the game quickly by scoring
a goal. Learners in KeepAway cannot choose to move, but learners in BreakAway
can. KeepAway takers will always move towards the ball, but the BreakAway
goalie will not. There are also different numbers of players.

However, there are also some useful similarities between the tasks. Many of
the features map directly, and some of the actions are identical. On a conceptual
level, the BreakAway attackers must play KeepAway while trying to score.

We designed the default mappings shown in Table [3] to take advantage of
these similarities for transfer from 3-on-2 KeepAway to 2-on-1 BreakAway. The
BreakAway features and actions that have no KeepAway analogues do not ap-
pear in these tables. The KeepAway features that have no BreakAway analogues
are mapped to constants within their ranges.

We then used the remapping capability to apply KeepAway skills to shooting.
The two remappings in Table 4] advise the learner to imagine that its nearest
teammate is standing first in the left side of the goal, and then in the right side.
If a pass to that teammate would have been the best action, the advice will
recommend shooting. There was no BreakAway feature to describe the distance
from the goalie to a goal section, so we used a constant value in its place.

Using a high-performing 3-on-2 KeepAway model that was trained without
any advice [§], we applied these mappings and our transfer advice algorithm to
create advice for 2-on-1 BreakAway. The process produced five advice items,
each capturing one of the five KeepAway “skills”: the three original actions and
the two remapped pass actions. For example, this is the form of the advice that
shows how to apply the KeepAway “hold ball” skill to BreakAway:

/ /
IF Quoapan — Qrasskar > A AND
/ /
QHoldBall - QPassNear_remapl > A AND
/ /
QuotdBait — @PassNear > A AND

/ /
QHoldBall - QPGSSN@(IT‘_TE’/TLGP2 2 A
THEN PREFER MoveAhead TO PassNear AND Shoot

420 L. Torrey et al.

Table 3. Default action and feature mappings from KeepAway to BreakAway. Near
and Far refer to teammates’ distances from the learner. The learner is L, the keepers
are K’s, the takers are T’s, and the attackers are A’s.

KeepAway BreakAway
PassNear PassNear

HoldBall MoveAhead

dist(L, near K) distance(L, near A)
other player distances MAX_RANGE

min angle(near K, L, any T) | MID_RANGE

min angle(near K, L, any T) | MID_RANGE
distances to field center MID_RANGE

Table 4. Action and feature remappings that apply KeepAway skills to shooting

Remapping 1: PassNear to Shoot

KeepAway BreakAway
dist(L, near K) dist(L, goal left)
min dist(near K, any T) MID_RANGE

min angle(near K, L, any T) | angle(goal left, L, goalie)

Remapping 2: PassNear to Shoot

KeepAway BreakAway
dist(L, near K) dist(L, goal right)
min dist(near K, any T) MID_RANGE

min angle(near K, L, any T) | angle(goal right, L, goalie)

Essentially, this advice says that if holding the ball would be safer than
passing towards a teammate or towards the goal, then moving forward with the
ball is probably safer than passing or shooting.

6 Empirical Results

The linear program presented in Equation [4] contains parameters v, C, u1, and
p2. The first two we set by tuning on KeepAway games without using any advice.
This led to C being set to 2500 (0.14-0.9(1 — e#GamesPlayed/10,000)) /4 feoqtyres
and v to 100. We exponentially increase C' because as RL progresses the esti-
mates of @ (which are infinite sums) become more accurate. We next chose g
and pe by running some tuning games using transfer advice, selecting pq = 0.01
and g = 1.0. We decay these initial p values by e(~#GamesPlayed/2,500) gice
we expect that transfer advice will be less valuable as the amount of expe-

Using Advice to Transfer Knowledge Acquired in One RL Task to Another 421

rience in the new domain increases. We only tried a small number of possi-
ble settings for each parameter, and after choosing our parameter values, we
trained on a fresh set of games — we report the results on this final set of
games.

Figure Bl shows the results of our transfer experiments. Training runs with
and without transfer advice are compared. The curves were generated by batch
training after every 100 games and averaging over 10 different runs; each data
point shown is smoothed over the previous 1000 games (the results from the first
100 games are not included in these averages except at the first point on the x
axis, where Games Played = 100, since no learning took place until after the
first 100 games).

The curve on the left shows the average reinforcement per game that learners
earn as they train, since that is the quantity that the learners attempt to max-
imize. The curve on the right shows a more intuitive measure of performance:
the probability that the learners will score a goal as a function of the number of
games played.

-
(3,
o
©

L

-
o
o
o

— Transfer Advice

o
nNo
|

No Advice

Reinforcement Per Game
o
(&)]
Probability (Score Goal)
o
~

o
o
—

T T T 0 T T T
0 2500 5000 7500 10000 0 2500 5000 7500 10000

Games Played Games Played

o
o

Fig. 3. Performance as a function of BreakAway games played by two different metrics,
with a learner using transfer advice compared against a learner using no advice

These results show that the transfer advice gives a reinforcement learner
a modest advantage in learning to score goals. Advice was slightly detrimen-
tal at first as the learners refined it, but after about 2,500 games it began to
improve performance, and in the end it led to a higher asymptotic result. We
have obtained qualitively similar results when transferring to 3-on-2 BreakAway,
although in this task the probability of scoring a goal is above 0.5.

422 L. Torrey et al.

7 Related Work

A number of researchers have explored methods for providing advice to learn-
ing algorithms. Clouse and Utgoff [2] allow a human observer to step in and
advise the learner to take a specific action. Lin [6] “replays” teacher sequences
to bias a learner towards a teacher’s performance. Gordon and Subramanian
[B] accept advice in the form IF condition THEN achieve goals and then use ge-
netic algorithms to adjust it with respect to the data. Maclin and Shavlik [7]
also developed an IF-THEN advice language, but incorporated the rules into a
neural network for later adjustment. Price and Boutilier [12] designed a method
for reinforcement learners to imitate expert agents in the same domain. Andre
and Russell [I] describe a language for creating learning agents whose policies
are constrained by user commands. Laud and DeJong [5] use reinforcements to
shape the learner. Kuhlmann et al. [4] developed a rule-based advice system
that increases @-values by a fixed amount. In recent work [9], we developed the
Preference-KBKR method, which allows advice to be specified in the form of
action preferences. Our current work differs from these previous advice-taking
methods because it extracts advice from a model learned in another task, instead
of employing user-designed advice.

Other related work deals with knowledge transfer in machine learning. Some
early research focuses on learning a simpler version of a task and applying that
knowledge to a more difficult version of the same task. Selfridge et al. [I3] call
this “directed training” and use it in robotics. Singh [I5] addresses transfer of
knowledge between sequential decision tasks, where an agent keeps track of useful
action subsequences for use in later tasks. Thrun and Mitchell [19] study transfer
between problems in a “lifelong learning” framework of many related Boolean
classification tasks. Taylor and Stone [18] have investigated copying @-functions
to transfer between KeepAway games of different team sizes. Sherstov and Stone
[14] have investigated “action transfer” in RL, which uses transfer to improve
learning on tasks with large action spaces.

8 Conclusions and Future Work

We have presented a novel technique of extracting knowledge gained on one
task and automatically transferring it to a related task to improve learning.
Our experiments demonstrate that the difficult BreakAway task in RoboCup
soccer can be learned more effectively using advice transferred from the related
KeepAway task.

Our key idea is that we can view the models learned in an old task as a
source of advice for a new task. Since we represent both our learned models and
advice as linear expressions of features, all the user needs to do is match the
features and actions of the old task to the new one. Since advice-taking systems
are robust to imperfections in the advice they receive, the user’s guidance need
only be approximate.

In future work, we plan to evaluate the sensitivity of our algorithm to errors
and omissions in the user’s mapping advice. We may also investigate ways to

Using Advice to Transfer Knowledge Acquired in One RL Task to Another 423

further automate the process by helping the user design a mapping. We have
already begun to adapt the transfer advice process to work with non-linear
models.

When a new learning task arises in a domain, it is likely that human experts
will be able to provide information about how the new task relates to known
tasks. Learning algorithms should be able to exploit this information to extract
knowledge from these known tasks. Transfer advice shows potential as an ef-
fective and intuitive way to do this. It can increase human ability to interact
productively with reinforcement learners, and we believe that such interaction
will be important for scaling RL to large problems.

Acknowledgements

The research is partially supported by DARPA grant HR0011-04-1-0007 and United
States Naval Research Laboratory grant N00173-04-1-G026. The BreakAway code is
available at ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/robocup/breakaway.
We would also like to thank Michael Ferris for his assistance in improving the efficiency
of our linear programs.

References

1. D. Andre and S. Russell. Programmable reinforcement learning agents. In NIPS,
2001.

2. J. Clouse and P. Utgoff. A teaching method for reinforcement learning. In Proc.
ICML 92, 1992.

3. D. Gordon and D. Subramanian. A multistrategy learning scheme for agent knowl-
edge acquisition. Informatica, 17:331-346, 1994.

4. G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik. Guiding a reinforcement
learner with natural language advice: Initial results in RoboCup soccer. In AAAT
Workshop on Supervisory Control of Learning and Adaptive Systems, 2004.

5. A. Laud and G. DeJong. Reinforcement learning and shaping: Encouraging in-
tended behaviors. In ICML, 2002.

6. L. Lin. Self-improving reactive agents based on reinforcement learning, planning,
and teaching. Machine Learning, 8:293-321, 1992.

7. R. Maclin and J. Shavlik. Creating advice-taking reinforcement learners. Machine
Learning, 22:251-281, 1996.

8. R. Maclin, J. Shavlik, L. Torrey, and T. Walker. Knowledge-based support vector
regression for reinforcement learning. In IJCAI Workshop on Reasoning, Repre-
sentation, and Learning in Computer Games, 2005.

9. R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving advice about
preferred actions to reinforcement learners via knowledge-based kernel regression.
In AAAI 2005.

10. O. Mangasarian, J. Shavlik, and E. Wild. Knowledge-based kernel approximation.
JMLR, 5:1127-1141, 2004.

11. I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12:233-250, 1998.

42

12

13.

14.

15.

16.

17.

18.

19

4 L. Torrey et al.

. B. Price and C. Boutilier. Implicit imitation in multiagent reinforcement learning.
In ICML, 1999.

O. Selfridge, R. Sutton, and A. Barto. Training and tracking in robotics. In IJCAI,
1985.

A. Sherstov and P. Stone. Improving action selection in MDP’s via knowledge
transfer. In AAAI 2005.

S. Singh. Transfer of learning by composing solutions of elemental sequential tasks.
Machine Learning, 8(3-4):323-339, 1992.

P. Stone and R. Sutton. Scaling reinforcement learning toward RoboCup soccer.
In ICML, 2001.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

M. Taylor and P. Stone. Behavior transfer for value-function-based reinforcement
learning. In 4th Int. Joint Conf. on Autonomous Agents and Multiagent Sys., 2005.
. S. Thrun and T. Mitchell. Learning one more thing. In IJCAI, 1995.

	Introduction
	Reinforcement Learning in RoboCup
	Background: Support Vector Regression
	Transfer Advice
	RoboCup Transfer Advice
	Empirical Results
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

