
Relational Skill Transfer via Advice Taking

Lisa Torrey ltorrey@cs.wisc.edu

Jude Shavlik shavlik@cs.wisc.edu

Trevor Walker twalker@cs.wisc.edu

University of Wisconsin, Madison WI 53706, USA

Richard Maclin rmaclin@d.umn.edu

University of Minnesota, Duluth MN 55812, USA

Abstract

We describe a reinforcement learning system
that transfers relational skills from a previ-
ously learned source task to a related tar-
get task. The system uses inductive logic
programming to analyze experience in the
source task, and transfers rules about when
to take actions. The target-task learner ac-
cepts these rules through an advice-taking
algorithm. Our system also accepts human-
provided advice, which can guide the applica-
tion of transferred skills and provide instruc-
tion about new skills in the target task.

1. Introduction

Machine learning tasks are often addressed indepen-
dently, under the implicit assumption that each new
task has no relation to the tasks that came before.
In some domains, particularly reinforcement learning
(RL) ones, this assumption is false since tasks in the
same domain tend to have similarities. We view these
similarities as shared skills. Our goal is to transfer
shared skills from a source task in order to speed up
learning in a new but similar target task.

For example, suppose an RL soccer player has learned,
in a source task, to keep the ball away from its oppo-
nents by passing to its teammates. In the target task,
suppose it must keep the ball away from its opponents
in order to shoot goals. If this player started with
the passing skills from the source task, it might mas-
ter the target task more quickly. A human observer
might also be able to give tips on new aspects of the
problem, such as when to shoot at the goal.

We present a system for interacting with RL agents
in this manner, called AI2: Advice via Induction and

Appearing in the ICML-06 Workshop on Structural Knowl-
edge Transfer for Machine Learning, June 29, Pittsburgh,
PA. A longer version is UW ML Group Working Paper 06-2.

Instruction. Our system constructs relational transfer
advice by using inductive logic programming to ana-
lyze experience in the source task and learn skills in
first-order logic. The user can also add supplementary
user advice about new skills. The target task learner
receives the advice and can follow it, refine it, or ignore
it according to its value.

2. Reinforcement Learning in RoboCup

To demonstrate our approach, consider the RoboCup
simulated soccer domain (see Figure 1). In the task
of M -on-N KeepAway, the objective of the M rein-
forcement learners called keepers is to keep the ball
away from N hand-coded players called takers. The
learners receive a +1 reward for each time step their
team keeps the ball. In the original KeepAway task
of Stone and Sutton (2001), the keeper who has the
ball can choose only to hold it or pass to a teammate.
In our version, called Mobile KeepAway, they can also
move (inwards, outwards, clockwise and counterclock-
wise with respect to the field center). We developed
this version because we expect its more realistic move-
ment to generalize better to other RoboCup games.

In the KeepAway state representation, the keepers are
ordered by their distance to the learner k0, as are the
takers. The features include distances and angles be-
tween players, 19 of them for 4-on-3 KeepAway, such as
distBetween(k0, Player) and angleDefinedBy(Keeper,
k0, ClosestTaker). Note that for simplicity, we denote
variable types through their names.

A second task is M -on-N BreakAway (Torrey et al.,
2005), where the objective of the M reinforcement
learners called attackers is to score a goal against N−1
hand-coded defenders and a hand-coded goalie. The
learners receive a +1 reward for a goal and 0 reward
otherwise. The attacker who has the ball may choose
to move (ahead, away, left, or right with respect to the
goal), pass to a teammate, or shoot at a goal section.

Relational Skill Transfer via Advice Taking

4-on-3 KeepAway 3-on-2 BreakAway

Figure 1. Snapshots of KeepAway and BreakAway games.

In the BreakAway state representation, the attackers
are ordered by their distance to the learner a0, as are
the defenders. The features include distances and an-
gles between players and goal sections, 21 of them for
3-on-2 BreakAway, such as distBetween(a0, Player)
and angleDefinedBy(GoalPart, a0, goalie).

In both tasks, following the approach of Stone and
Sutton (2001) the features are discretized into 32 in-
tervals called tiles, each of which is associated with a
Boolean feature. For example, the tile distBetween(a0,
a1)[10,20] takes the value 1 when a1 is bewteen 10 and
20 units away from a0 and 0 otherwise.

AI2 uses the SARSA and TD(λ) algorithms for RL.
It approximates the Q-function and incorporates ad-
vice using a linear optimization method called KBKR
(Maclin et al., 2005). Our player code was developed
from the University of Amsterdam Trilearn code base.

3. AI
2: Transferring Skills

We propose a transfer method that does not assume
the two tasks have similarly structured Q-functions. It
transfers relational skills by analyzing games played in
the source task. Games are collections of state-action
pairs, where the action can be viewed as the classi-
fication of the state. AI2 uses these pairs as training
examples to learn to classify states. For example, from
KeepAway games, AI2 can learn the concept “states
in which passing to a teammate is a good action.”

To use AI2, the user identifies which skills should be
transferred, provides a mapping that relates objects
in the source task to those in the target task, and
optionally gives advice to guide transferred skills or
provide new skills.

Given this information, AI2 performs transfer auto-
matically. From existing game traces in the source
task, the system learns skill concepts and translates
them into advice for the target task. It then applies
both the transfer advice and the user advice to learning
in the target task. Table 1 summarizes this AI2 algo-
rithm in high-level pseudocode. Figure 2 illustrates
the transfer part of the algorithm.

ILP

Mapping

State 1:

distBetween(k0,k1) = 15

distBetween(k0,k2) = 10

distBetween(k0,t0) = 6

...

action = pass(k1)

outcome = caught(k1)

Training examples

pass(Teammate) :-

distBetween(k0,Teammate) > 14,

distBetween(k0,t0) < 7.

Skill concept

IF distBetween(a0,a1) > 14

distBetween(a0,d0) < 7

THEN prefer pass(a1)

Advice

Figure 2. Example showing how AI
2 transfers skills.

Each advice item is a conjunction of conditions and
a constraint to be applied if they are met, such as
“prefer pass(a1) over move actions.” Advice need not
be followed exactly; it can be refined or even ignored
if it disagrees with the learner’s experience, using the
advice-taking algorithm of Maclin et al. (2005). This
provides some protection against imperfect transfer.

We anticipate that AI2 would be used when a new task
arises in a domain and data from an old task already
exists. In the target task BreakAway, we assume the
objective is to maximize the probability of scoring a
goal after playing a given number of training games.

3.1. Learning Skills

AI2 uses inductive logic programming (ILP) to learn
skill concepts as first-order rules, which we believe gen-
eralize well. For example, the rule pass(Teammate)
may capture the essential elements of the passing skill
better than rules for passing to individual teammates.

Using the Prolog-based Aleph software package (Srini-
vasan, 2001), AI2 conducts a random search in the
hypothesis space. It selects the rule it finds with the
highest F(β) score (a generalization of the more famil-
iar F(1) metric; we use β2 = 0.1). To produce datasets
for this search, it selects positive and negative exam-
ples from source task games.

To be a positive example, a state must meet several
conditions: the skill was performed, the desired out-
come occurred, the expected Q-value (using the most
recent Q-function) is above a minimum score minQpos

Table 1. The AI
2 algorithm.

given

Game traces from source task
Skills to be transferred
Object mapping between tasks
User advice (optional)

do

for each skill:
Collect training examples
Learn rules with Aleph
Select rule with highest F (β) score
Translate rule into transfer advice

Learn target task with all advice

Relational Skill Transfer via Advice Taking

action = pass(Teammate) ?

outcome = caught(Teammate) ?

pass(Teammate) good?

pass(Teammate)
clearly best?

some action good?

pass(Teammate)
clearly bad?

Positive example for
pass(Teammate)

Negative example
for pass(Teammate)

yes

no

yes

yes

yes

yes

yes

Reject
example

no

no

no

no

no

Figure 3. Example of how AI
2 selects training examples.

and is at least ratiopos times the expected Q-values of
other actions. In a negative example, some other ac-
tion was performed, the highest Q-value is above a
minimum score minQ′

neg, and the expected Q-value of
the skill being learned is at most rationeg times the
highest and is below a maximum score maxQneg. The
standard ratio values in AI2 are ratiopos = 1.10 and
rationeg = 0.90, and the other parameters are set so
that there are at least 100 positive and 100 negative
examples. Figure 3 illustrates this sorting process with
an example from RoboCup.

3.2. Mapping Skills

To produce advice for the new task, the system trans-
lates source-task objects into target-task objects based
on the user-provided mapping. (Learning this map-
ping automatically is an interesting topic that we have
not yet addressed.) Next it instantiates skills like
pass(Teammate) into specific rules like pass(a1). Fi-
nally, it propositionalizes any conditions that contain
variables. For example, a rule for 3-on-2 BreakAway
might contain this condition:

distBetween(a0, Attacker) < 20

This is effectively a disjunction of conditions: either
the distance to a1 or the distance to a2 is less than
20. Although disjunctions are not part of the advice
language, AI2 does have a way to represent them. Re-
call that each feature range is divided into Boolean
tiles that take value 1 when the feature value falls into
their interval and 0 otherwise. The system can express
the disjunction by requiring at least one of two tiles to
be active:

distBetween(a0, a1)[0,20] + distBetween(a0, a2)[0,20] ≥ 1

If these tile boundaries do not exist in the target task,
AI2 adds new tile boundaries to the feature space.
This way advice from the source task can be expressed
exactly without knowing the target-task feature space
when learning the source task.

3.3. User Advice

As part of the mapping from one task to another, users
can optionally provide additional advice. This advice
can guide the application of transferred skills. For ex-
ample, the passing skills transferred from KeepAway
to BreakAway make no distinction between passing
towards the goal and away from the goal. Since the
new objective is to score goals, players should clearly
prefer passing towards the goal. A user could provide
this guidance by instructing the system to add the fol-
lowing condition to the pass(Teammate) skill:

distBetween(Teammate, goal) < distBetween(a0, goal)

Users may also provide advice on entirely new skills
that are not being transferred from the source task.
For example, users could provide simple rules for the
shoot actions in BreakAway. User advice is not nec-
essary for AI2 to perform transfer, but it provides a
natural and powerful way for users to interact with the
transfer process.

4. Empirical Results

We present results for transferring the skill
pass(Teammate) from 4-on-3 Mobile KeepAway
to 3-on-2 BreakAway. AI2 learned the following skill
(in Prolog notation):

pass(Teammate) :-
distBetween(k0, Teammate) > 14,
angleDefinedBy(Teammate, k0, ClosestTaker) ∈ [30, 150],
distBetween(k0, Taker) < 7,
distBetween(k0, Player) < 11.

This skill produces one item of transfer advice for each
teammate. To encourage passing towards the goal, we
assume the user adds the extra constraint described
in Section 3.3. Finally, we assume the user provides
approximations of new skills in BreakAway as follows:

if distBetween(a0, goalLeft) < 10 and

angleDefinedBy(goalLeft, a0, goalie) > 40
then prefer shoot(goalLeft) over all actions

if distBetween(a0, goalRight) < 10 and

angleDefinedBy(goalRight, a0, goalie) > 40
then prefer shoot(goalRight) over all actions

if distBetween(a0, goalCenter) > 10
then prefer moveAhead over shoot actions

We compare learning in BreakAway with and with-
out this advice to evaluate its effects. To analyze the
individual contributions of transfer advice and user ad-
vice, we also compare learning with each advice type
separately. Each curve in Figure 4 is an average of
10 independent runs, and each data point is smoothed
over 500 games.

With transfer advice alone (this does not include the
constraint for passing forward) the scoring probability

Relational Skill Transfer via Advice Taking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1000 2000 3000 4000 5000

P
ro

ba
bi

lit
y

of
 G

oa
l

Games Played

All advice
Transfer advice

User advice
No advice

Figure 4. Learning curves for 3-on-2 BreakAway with com-

binations of transfer and user advice.

is higher at the 90% confidence level, based on un-
paired t-tests, between 200 and 2500 games played.
With the full set of advice, scoring is more probable
at the 95% confidence level at nearly every point. The
full AI2 system also performs significantly better than
user or transfer advice alone at the 95% confidence
level. Transfer and user guidance together produce
synergy, performing better than the sum of their parts.

5. Related Work

Our approach builds on methods for providing advice
to RL agents. Driessens and Dzeroski (2002) use hu-
man guidance to create a partial initial Q-function in
relational RL. Kuhlmann et al. (2004) propose rule-
based advice to increase Q-values by a fixed amount.

Another aspect of our work is extracting explana-
tory rules from complex functions. Sun (2002) studies
rule learning from neural-network based reinforcement
learners. Fung et al. (2005) investigate extracting
rules from support vector machines.

We also address knowledge transfer in RL. Singh
(1992) studies transfer of knowledge between sequen-
tial decision tasks. Taylor and Stone (2005) copy ini-
tial Q-functions to transfer between KeepAway games
of different sizes. Torrey et al. (2005) introduce trans-
fer from KeepAway to BreakAway using advice con-
structed from the Q-function.

6. Conclusions and Future Work

Reinforcement learners can benefit significantly from
the user-guided transfer of skills from a previous task.
We have presented the AI2 system, which transfers
structured skills by learning first-order rules from
agent behavior and allowing user guidance. This

system does not assume a similar reward structure
between the source and target tasks and provides
some robustness to imperfect transfer through advice-
taking. Our experimental results demonstrate the ef-
fectiveness of this approach in a complex RL domain.

A challenge that we have encountered in RL transfer
learning is that differences in action sets and reward
structures between the source and target task make
it difficult to transfer even shared actions. Changing
the game objective or adding a new action changes
the meaning of a shared skill. We have addressed
this problem with user guidance, using human domain
knowledge to help apply transferred skills. However,
we would prefer to minimize the user’s role in transfer.

We believe that the underlying issue is the separation
of general from specific knowledge. In RL transfer
learning we want to transfer only general aspects of
skills in a domain, filtering out task-specific aspects.
Our use of ILP to learn general, first-order skill con-
cepts is a step towards this goal. A future step we
are considering is learning skills from multiple games
in a domain, which we believe may lead to even more
general rules and therefore better transfer.

7. Acknowledgements

This research is partially supported by DARPA grant

HR0011-04-1-0007 and United States Naval Research Lab-

oratory grant N00173-06-1-G002.

References

Driessens, K., & Dzeroski, S. (2002). Integrating experimentation
and guidance in relational reinforcement learning. Proc. ICML
’02.

Fung, G., Sandilya, S., & Rao, B. (2005). Rule extraction from
linear support vector machines. Proc. KDD ’05.

Kuhlmann, G., Stone, P., Mooney, R., & Shavlik, J. (2004). Guid-
ing a reinforcement learner with natural language advice. AAAI
Workshop on Supervisory Control of Learning and Adaptive
Systems.

Maclin, R., Shavlik, J., Torrey, L., Walker, T., & Wild, E. (2005).
Giving advice about preferred actions to reinforcement learners
via knowledge-based kernel regression. Proc. AAAI ’05.

Singh, S. (1992). Transfer of learning by composing solutions of
elemental sequential tasks. Machine Learning 8 (3-4), 323–339.

Srinivasan, A. (2001). The Aleph manual.

Stone, P., & Sutton, R. (2001). Scaling reinforcement learning to-
ward RoboCup soccer. Proc. ICML ’01.

Sun, R. (2002). Knowledge extraction from reinforcement learning.
New learning paradigms in soft computing, 170–180.

Taylor, M., & Stone, P. (2005). Behavior transfer for value-function-
based reinforcement learning. Proc. AAMAS ’05.

Torrey, L., Walker, T., Shavlik, J., & Maclin, R. (2005). Using ad-
vice to transfer knowledge acquired in one reinforcement learning
task to another. Proc. ECML ’05.

