Comparing Interactive Scheduling in Linux
Lisa A. Tarey Joice Gleman BartonP. Miller

{Itorrey,coleman,bart}@cs.wisc.edu
Computer ScencesDeparment
University of Wisconsin
Madison WI 53706

Summary
We implemerted asimple multilevel feedback queue screduler in the Linux 2.6 lkernel
ard canparedits respose tointeractive tasks tdhat of thenew Linux 2.6 scheduler.
Our objectiveswereto evaluat whether Linux 2.6 acomplished its goal of improved
interactivty, and to seewhether our simpler model could do as wellwithout all the
special casesnd excetions hat thenew Linux 2.6 scheduler acaiired. We descrbe he
two algorithms in detail, report their average interactive respoagimesunder diffeent
kinds of badgroundworkloads, and compare heir methods d deciding whether a sk is
interacive. Our MLFQ scheduler peiforms conparaby to the Linux 2.6schealulerin all
resporse tine tests andlisgays sane inadvertert improvemens inturnaraindtime,
while awiding the canplex taskof exgicitly defining interactivity. We maintain an
inverserelationshp between priority ard time slice length, ard this seens o be he
primary reason tht the MLFQ renains smple, yet performs comparably to the Linux2.6
scheluler. These resilts may provide sme guidelinesfor desgners of new scheduling
systens. Key words: schedulim, interactivuty, Linux, multilevel feedtack quete.

Introductio n

Linux 2.6 containsa recently redeghel schedule, onegod of which wasto improveinteractivity. The
resuting algorithm most clcsely reserbles a nultilevel feedback queue, but its treament of feedack is more
complicatedthanthe usw@ model [12]. The core algdthm alsoendured a lang sequence ofoptimizations to hande
special casesyhich further added to its complexity.

Interacivity was adriving force in Linux 2.6 becaiseof several acknowledgedshortcomingsin the
previous aborithm. In Linux 24 and earler, the sekcion of the next process o run tooktime linear n the nunber
of processesgausing increasngly longer reponsetimes in buser systens. Furtherrrore, thealgorithm included a
periodic time slice recalculation loop thaias also lineain the nunber of processes The time quanim given to
eachprocesswvas alsodo longfor high-load systms, and lhe kernelwasnot preenptible. Bovet and Cesati [1] and
Kolivas [4 provide further information on the notivation to improve interactivity in Linux 2.6.

We ae focusing on severalquestons dout this newscheluler. First, how well does he dgorithm achieve
its goalof improved interacivity? And seond ocould asimpler algorithm doaswell? In paricular, since it is
similar in nature, cold a cawertionally structured multilevel feedtack queue accaonplish the sane goals without
resorting to similarly gcemeal optinization® We accepthe Linux 2.6 schdulerdesignas emphasis on
interactivity, but if a clearer basic scleduling algorithm would acomplish the sane improvenents, we would prefer
it over their conplex implemertation.

To carryout this aralysis,we have implemented abasic multilevel feedtack queue scheduler in the Linux

2.6kemel. The followingtwo secitonsdescibebath schedulers in detil. Thenext secton explains our methodsof

measting interactivty, andthen we presdrour experimental resuts. Finally, we ascribe same relatedwork ard

closewith our conclsions and suggestonsfor future work.

The Linux 2.6 Scheduler

In Decenber 2003the Linux 2.6 keral becane publicly available A major featurewasthe entirelynen

scheluling aborithm. Contributorsidentified the following anong te main goals of this nev scheduler [4,8]:

An O(1) bound onthe time to select tle rext process taun.

e Immedate respnse tointeractive pracesss, evenunder corsiderable load.
e Reasonhle prevenion o both starving ard hoggng.

e Symmetric multiprocessing scalalility and task affinity.

e Maintenanceof goodperformance n the conmon caseof 1-2 processs.

We are cacentratirg on the scleduler’'s respmse to irteracive praesseswhich is directy relatedto the
first threeof these goalsSeveral aspcts ofthe Linux2.6 kerrel impact irteractivity (such as tke I/O scheduler); in
this paper, we concertrateonly on the core sceduler. This algorithm is largely centered around the wncept of

interactivty, as are rany of the adlitional optimizations.

Description of the Linux 2.6 Scheduling Algorithm

The cantral data structure of the Linux 2.6 scheduler is the run queue which contains all the tasksthat are
ready o run. It keepshemin two arrays: onactive, corsisting of tasks that are auertly eligible to run, andone
expired, with temporarily ineligible tasls. In general, whena taskon the active array ses upits allowedtime slice,
it waits onthe expired array util all the aher active tasls have dore the same; at ib point the arrays are swited
and the rpired aray becones active.

The active argy holds a list oftasks foreach ofL40possile piiority levels. The top 100 leels are used
only for reattime piocessesyhich we do not address n this study, so this disaussonwill involve only the last 40
levels. Tasls erier a priority lew list atthe il and ae taken from the hea to berun. Whenthe scheluler clooses

the next task to run, it draws from the highes$ non-enpty priority level. Whenever a steduler clock tick or interrupt

occurs, if a Igher-priority taskhas become availalde, itwill preenpt the ruming task asdng as ttatone hdds no
kernel locks. A tasKs priority level is the sum of its static priority, which is basel directly on its nice value, andits
dynamic priority bonus, which the scleduler assigs as an estiate o its interactivty. Niceness, he value that the
userspecffies br the task’s priority, hasarangeof 40 values. Dynanic priority bonusesrangefrom—5to +5,
effectively aljusting theuse-specfied nicenessvalue ower one quarter of the potertial priority range.

A task runsfor a bbck of time caled a tmeslice. Thescheduler assgnstime slices basedn static
priority, giving higher-priority tasks larger time slices athlower-priarity tasks shaoter ones. A taskmight nat use all
of its time slice atonce,sinceit could blodk or be preenptedbefore it finishes,but eventally it consunes he entire
anmount. When that hppens, e ta is usually placedon the expied arraywith anew time slice and aecalculated
priority.

Seveal speciakases lsange his procesdor interactive taks. An interactive tak receves the samtime
slice as othes at the samstatic prority, butthe sliceis divided into sraller pieces. When it finishesapiece, the
taskwill round rdbin with other tasks at #hsane priority level. This way execution will rotatemore frequently
among interacive tasls of he sane priority, but higher-priority tasks will still run for longerbefore expring.
Furthernore, a interactive tak tatfinishes its entire timslice still doesotexpire. Itreceives aew time slice
ard renains on the active array, utess tke scleduler has detecied that he expired array iither staning or hdding
a taskwith higher priority trenthe curremone. (The expired aray is sad to be saving when an anount of time
proportional to the number of tasks in the run queue hes passedsince tre arrays last switaal.)

Interacivity is a oolean claséficaion in the Linux 2.6 sheduler. At eat niceneswvalue, a sk neals
have a certairdynamic priority bonus to qualify as irteractive. It is difficult for low-priority processesa qualify,
anddiffi cult for high-priority processesiot to quaify. The schaluler cakulates a tskK's dynanic priority bonus by
keepng tradk of asleep average: in general, it adds credt for the time the taskspends sleeg andsultracts

pendlties for the time it spends running (more details fdlow in the next sectia).

Complexitiesand Specal Cases h the Linux 2.6 Schediling Algorithm
The Linux 2.6scheluler has ome characgristics of a multil evel feedbadk quaue (MLFQ). Its aray of
priority listsis a comventional structure, ard the amncept of awarding resources basaon task behavior isa key

elemen of MLFQ scteduling. Using two arrays is arinnovative appoach to prevening stawation, andis

reasmably straightforward. However, the detail s of the implementtion—ard there ae meny—include seeral
complicatedmechansms ard special casesotoptimize interactive respoge. The tree mainissies thatwe will
disciss are tle labeling of tasls as ieractive, the caldation of sle@ average, ar the distribution of time slices.

The two-arrayapproach is noideal fa interactivity, since if aninteractive taskwere b expre, trere caild
be a longperiod of urresporsiveness whle the rest ofthe ative array cleared outThedesignes aldresed his
problem by making an excepton for interacive tasks, & we mentionedbefore; they do nat expire unlessthe
scheluler has detecied strvation and is éou to force an array switch anyway. It is difficult to find reasonable
situations in which interactive task are mactive for longunder this pdicy, but of couse it oly works if interactive
tasls are alwaylabeled correctly.

Since users do not specify whetteeks areinteractie or nat, the orly way to classify aask is to look at
its behaior. The devebpesdefine asiiteractive thase tasks that sleepfor long periods waiting for use input ard
thenrun for short periods before blocking again. They reduce tis behavior to a single number, the sleg averagge,
and use it to daulate thedynamic priority bonwsfor a task To allow the Linux 2.6 stheduler to classfy a poces
as interactiveor non-interactive, hey hase set a threbold on thedynanic priority bonusat each sttic priority level,
basel on enpirical obsevations of what producel a useful classfication.

Thebasic ideaf the slep averageis straightforwed: they credt a task fo its sleegtime andpenalize it
for its rurtime. Hower, there are searal cases thtrequre special treamert to make the interactivity
classification #ective. Onecase is that Bte proceses ca chargebehaior quickly, it is possble for a task © be
treatedinappopriately keforeits lakel charges toreflectits newbehavior. For exanple, a noderagly CPU-
intersive taskcould suddenly become more interactive but take a longtime tobe reclassified passbly even
expiring, leadng topoor interactive respose. Tomake this prodem occur lessoften the scleduler weights bah
sleeptime ard run time sothat tasls on the exreme erds of the dynamic priority bonus ramge lose tteir currert label
slowly, while tasls in the middle can skt more quckly between lalels. Another case inolves taskshat Hock for
disk I/0, which would gain large dynaric bonwsesunde the general policy, butare not usualy interadive with the
user. Thesleep serage of such a tak is setat a threkold: high enough b classify asnteractive, but low enowgh to
lose irteractiwe stats quickly if the taskstarts tause up its time slices. Cher special trédanents deal wh taks that
arewoken by interrupts, which get the time they sndwaiting on the run queaue aedited to their sleepaverages

because theyra likely tobe nteractive, andchild processeswvhich get heir sleep aerages deeased to prevat

themfrom hogging in casehty are nore computationaly intensive than their parents. The needfor many of these
special cases @ue to thavaythat time slices are asigned.

Time slices ina corventional MLFQ scheduler are asgined inversely topriority, so that higher-priority
tasks ae chosa more often but run for less tme. An interesting apectof the cae Linux2.6 sheduling algorithm
is that this relationship is reversed higher-priority tasks adually get larger time slces. We believe that this reversal
causes nstalilities in the agorithm, and that mary of the special casesath to be developed to canpensat for these
instablities.

Eachof the excepions aml optimizations seens reasoalde onits own, but tagether they add camplexity to
the orighal concept.When the desgners encountered al of these sales should they have oncludel that their
model wasotsuitable for ther goal® Or are special cas@sevitable with a cortept as canplex as irteractivity ?
Thenext secton presats awel-known modelthat addreses nany of thesesituations naturally. The following

sectians evaluate the relative effectivenessof the twomodels.

The Multilevel Feedback Queue Scheduler

An MLFQ [11] has maltiple (usually raind-robn) queses,with a priority and a tine slice associated i each
gueue. The time slice legth is inversely rebtedto the priority level. A taskmoves © a lower priority if it usesup
its ertire time dice, ard rurs for a longer interval next time; it moves to ahigher priority if it blocks before using its
ertire time slice, andruns for a shater interval rext time. The sbeduler alvays toosesa proces fromthe highest-

priority non-enpty queue to run, andanariving higher-priority processpreenpts a unning lower-priority one.

MLFQ Design Decisions

We decded to despgn an algorithm that wasvery simple andconvenitional, without any special features
ard that had parameters similar to thase of the Linw 2.6 scleduler wheneer passble. For instarce, he time slices
in the Linux 2.6 sheduler range from 10ns to200ms, sowe usel the sane range Increasing time slices by
intervals of 10ms, as he Linux 2.6 stheduler does,gaveusa total of 20 queues. (MLFQ algorithms often use
exponentially increang timeslices but wedecidel not © do so becauséwould forceus to tiangeeither the
timeslice range orthe number of queues nore diastically.) We move tasks upard down the queue levels in the

traditional mannerdescibed above; every time a sk becomes ready to rume checkwhether it used upits

previous tine slice anglace t either dove or bebw thequeueit wasin last time. Tokeep theprocesconpletely
simple, wedecided not to provide corditions under which a taskwould remainin the same geue.

Same additional decisiors relate toprocess creatio. When ore taskforksto create a ew task the parent’s
remaining time slice is spt in half between tle parert ard the child, so that forking divides a task’sesouces. The
child starts orthe highest-piority queue, and if it has a tine slice too largdor thatquele we return he extra anount
backto the paent. If the dhild isnow on ahighe queaue han te paent, or if the paent hasno time left, the child
will runnext. Otherwise,the parert will continue. Most ofthis pdicy is idertical to process creatioin the Linux
2.6 sheduler, exceptthat there the child always beginson the sane quaue aghe parent. We decded that it would
be better to start a CPUntensiwe chld too high andlet it sink quickly to the lewel its behavior merits, ratter than
start aninteractive child too low andwait for it torise throgh the queue levels.

The MLFQ scheduler doesnat differeniate beiveen tasks basel on their nice valies,nor doesit have a
starvaion policy. Our tests use anly nice 0 usertasks and we havetried to point out any differences hat our ladk of
starvaion handing mghtcatwse. Sihcewe ae oncened with testing interacivity, nicenes anl servation were not

important isaues for our study. Howeve, we havesuggesed possble schanes for hardling both in the last sectons

Comparison of the Algorithms

Onesignificantdiff erence betveenthe Linux 2.6 sheduler ard the MLFQ scheduler is that MLFQ makes
no attempt to estimate a classify irteractivity. It decideswhat reourcesto give © a task base on a smple
heuristic: whéheror not thetaskused up itsnost recehtime slice. Itholdsno long-terminformation about the
tasKs behavior andnever decides whetter the taskis interadive. It is basedon the idea hat a tasks behavior will
leadit to a gqlewe thathas a suitake time slice, andalsothat tasls tat tale up less tine before they block should
always run first. Another major difference is the oppaosite relatimship thatthe scledulersgive to priority andtime
slice.

Becausef these twodifferences, th MLFQ schelulerperforims well in many inportantsituationswithout
treating hemas special casesManyof thespecial caseé the Linux2.6 sheduler arenecessarypecaus a task
that is lakeled as irteractive might actually use upits long time slice aml thereforehog the CPU, sice it is alschigh-
priority. This type of hoggng is nd adanger in MLFQ becaise he high-priority taskshave the srallest tirre slices,

and MLFQ canot label a tak inappropriagly since it desnot label tasksat all.

Therearesorme potential problems that MLFQ doesnot address For example, the Linux 2.6 stheduler
limits the sleep avagesof tasks hat block for disk 1/0, becauseotheawise they would be treaed Ike highly
interactiveprocesses,rd in most caseshey arenot. INMLFQ, thee is lessof aproblam becauseve evaluatdasks
basedonly on how longthey run andnat atall on how long they sleep soprocesses dag dsk /O will only look
interactiwe if they alsaunfor very shat intervals. However, the general isste renains: MLFQ has noinnate wayto
differertiate betweentasls that just run for shat periods and tasls that are really iteractive with the user. We
would pointout, though, thatinlessuser-interactive taks actually sufier because dhislackof distinction, thee is
no neal to differentate betveen them

The onceptal sinplicity of MLFQ is an aset for seeral reasos. Sinple cockis, of couse, easier to
mairtain andadapt. Excluding caode that is canmon to bath, the Linux 2.6 scheduler tales abait 750 lines whle
MLFQ tekes doou 450 lines. It also hasfewer paameters to set, whch mears thatit requires less xperimental
tuning; in fact, we did na perform ary tuning to aclieve the resits below. Perfaps most importartly, it is likely to

perform reasonaly well evenin situatiors that its desigrers dd na articipate.

Interactivity Tests
We alded three smple systemcals to the Linux 2.6kernel that allov us to trace tke scheduler’s treamert
of a single tads. These callgprovideaccessrnito the intenal workingsof the kenelwithout significantly changing

its behaior.

Sygem Calls for Scheduler Tracing

Thefirst systemcdl we addd istrace _pid . It takes aprocesdD asan argument ard sbresit. The
scheluler cantten reord the time wherever theprocesswith thatID getsplacedon the run quée, record it again
whenthe process is actally about to run andprint the intervening time—which we call he response time—to the
kernel log. Toturn off this tracing, we can passace _pid a valeof —1.

We nodifi ed both the Linux 2.6 scheduler and our MLFQ scheduler to perform fine-gained iming using
the Peium rdtsc instruction, which reads tle value of a clak cycle counte Recordig the tine involvesa
couple of asserhly language instructions to readard storethe counteralue. We execute theseristructionsin the

functontry _to wake_up, which iswhere a sk is added backonto the run queue afer having slept blocked or

waited on arother queue. In the function sc hedule , where one téspasgs control oftie CPU b another,we read
the valie ggain and abtract to find bhe numberof clock cydes that hee occurred in e meantine.

The seond sysem call we added ifrace _queue . Italso Bkes aprocess D asanargument andstores
it, but insteadof making measuremerts, it prirts the corerts of the run queuejust after the tracal process ratrns o
the queue. Furthernore, i keeps tad of any scheluling eventsthat occur befor¢he tracedprocessuns,and
records temto the log

The last systengdl is trace _status . It also t&es aprocesdD and prints infornation each tira that
processuns. Inboth shedulers, t prints the rumber o the task’s currentqueue In the Linux 2.6 scheduler, it also

prints whether or nat the taskis curertly labeled interactive.

Test Descriptions

We pefformed a vaiety of tests an both sthedulers. Some corfirmed properties that we expeced both
algorithms to have, and some investgated situations that highlight diff erencesbetveen the wo schelulers. Serveral
also attermpted to neasure theiperformance wnder realisticworkloads.

Thefirsttestwe conducted was 10 evaluate whetherthe Linux 2.6 scheduler et a bast goal—to respnd
immedately tointeractive processes egardlessof the CPUload—andwhetter our scteduler did as well. We
controlled abackgroundworkload of tasks that idl floating-point operations, aml increasedhe nunber of these
taslks while taking respnse timemeasuements for the bashshel. To provoke regporseswe simply hed down a
key for severalminutes, caising the shdl to ecto a longstring of characters.While not stunningly sophisticated
this method alowed us D collectenaighdat to exanine a charaetistic rangeof regporse imes. We expectd that
the aerage respnse time (from whenthe interactive taskwas pacedon the run queue towhenit actually ran)
would remain corstant regardiess d the badkgroundload in both shedulers.

The secod test allaved us teexanmine situations where the interactive process we wereiing wasnat the
only interactive taskn the systen, ard alsoto evaluate scheduling performance diringa conmon ard reaistic
workload. We usal compilationsof the Linux 2.6 kemel, of which, converiently enaigh, we happenedto have
sewral copes. Again, we were iterestedn the respose tmes d the bashshell. We had little idea ofwhat ©

expectfrom this test, but suspecied tatthe Linux 2.6 stheduler might give the interacive task beter responsetimes

because it trieto lowe the priority of tasksthat peform disk1/O, giving the dhell an advantagever theconpile
tasks.

Thenext two tests adiresedsone differences n the ways that the agorithms treat ineractive pracesses.
In one testyve traced he status of a taghat alternaésbetween slggand burstsof floating-pointdivision over
reguar intervals, aml triedto characterie what it taks tobe classifiedas interactie inthe Linux 2.6 schedler. By
varying the proportion of sleepto woik, we were alle to shav roughly how a tasks behavior correspong © its
treatnent. In he othe test,we traced thaetatusof atask thatmade a sddenbehaior change eithe from CPU-
intensive to interactve or vice versa. By recording its progressthroughqueuesard classficaions,we evabaied
how quickly the wo schedulers muld edaptto processeshat behae differenty ove their lifeimes.

We alsoperformedone test that wasnrelatedto interactivity. Usig a mixture of three tygs of tasks in
batch workloads—CPU-ntersive, irteractive, and copil ation—we neasued the tdal turnarcundtime ofvarying
combinations. The purposeof this test wasd assesshiagerera serse, how the wo schedlers performin aspects
other thaninteractivity. It seemedmportart to verify that remodeling the scheduling algorithm with afocuson

interactvity did nothave drasic effecs onotherimportant pefformancecharacgristics.

Uniprocessr Results

Thehamdwarethat weusedto peiform the tests amtaineda425MHz Pentium Il processr with 128MB of
memory. We usal a Gentoo Linux distribution with the 26.3 kemel. The followingresults areall bagd onthat

systen. The nex sectionpresers further resuts ona nulti processo system

CPU-intensive Wakload

We haveddined response e as the intzal betveen when a t&ss placedon therun queueandwhen it
actaly runs. Varying the number of CPU-intensive processes irthe backgroundhad the expected effd on the
interactive task’s respae time: noe. Aswerepeatdly doubled the number of CPU-intensive tasksaveraye
response timsremained congant inboth sthedules, becaise the CPUH+itensivetasks wee placed at aolver
priority level than tre interactie task

The arerage responsdimes were slightly lower by consént anountfor the MLFQ sdedule becaus it

did lesswork to reschéule atask than the Linux 2.6 sheduler, but this differenceis minorin terms of peformance.

10

Unde both schedules, kenel daemns occasnally shaed the priority level of thernterective task. Sometimes
they wauld run whle the interactive taskwaited on the run queaue, catsing a much longer regporsetime thanusual,
thoughnever long enoughto benoticedle the user. The dakin Tables land 2below reports theseocairrence

seprately,rather tlanincluding themin the overall average, to give a clearepictureof the distribution.

Table 1: Shdl responsetimeswith a CPU-intensiveworkload in the Linux 2.6 sdeduler

Number of CPU-intensi/tasks 1 2 4 8 16 32 64 128
Daemon intdierence freqancy 0.4% 0.4% | 0.4% 0.4% 0.3% 0.5% 0.3Y 0.6%0
Average response time wittaemonsy(s) 22.3 22.1 22.2 22.2 2. 25.0 22.2 22.2
Average response time withiodaemons |{s) 4.0 4.0 4.0 4.0 3.9 4.0 4.0 4.1
Minimum response time evall (us) 3.8 3.8 3.8 3.8 3.8 3.8 3.7 3.4
Maximum response time evall (us) 80.5 23.6 81.8 23.5 | 23.8 1029 | 85.6 235
Number of respase timesollected 5703 5705 5703 5714 5714 5714 5714 5709

Table 2: Shell response timeswith a CPU-intensive workload in the MLFQ scheduler

Number of CPU-intens& tasks 1 2 4 8 16 32 64 128
Daemon intdierence freqancy 0.4% 0.4% | 0.4% | 0.4% 0.3% 0.4% 0.3% 0.59
Average response time wittaemonsy(s) 21.2 21.1 21.2 21.2 | 21.3 20.4 21.1 21.1
Average response time w/aehons (1s) 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
Minimum response time evall (us) 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
Maximum response time evall (us) 22.1 22.0 22.0 216 | 23.4 21.9 215 21.9
Number of respase timescollected 5698 5701 5697 5705 5715 5714 5714 5710

Compilation Workl oad

Timing the interactive response \ith abackgoundof compile tasks produced sinilar resuts. The awerage
respnse tme forthe Linux 2.6 sheduler remained castant whether there wasone mmpil e task or two. Sometimes
compile tasls sharedthe priority level of the interactive task, runing while the interactive taskwaitedon the run
gueue, andthenthe respaosetime of the interactive taskincreased bygeveal ordes of magnitude. Tese times are
all still too snall to benoticeable tdhe use, though. Data for the Linux 2.6 sheduler is summarized ifable3
below.

The MLFQ sheduler data,isnmarized inTable4, alo displays a conant aveage reponsetime that is
comparale tothat ofthe Linux 2.6 scleduler (with the sane snall decrease due smaller scheuling overhead). It
shows more frequent interferencefrom conmil e tasks han the Linux 2.6 scheduler does. However, when the
interferencedid occur, both thewaerage and meximum resuting respnse times were sraller than thase inthe
original versbn.

The Linux 2.6 scheluler apears b kegp compil e tasks fom competing with the maximally interacive

shell more often because it directly limits the interactivty of tasls that perform disk 1/0, but whenit fails todo so

11

these tasks rufor relatively long periods. The MLFQ scheduler doesnothing to prevent comnpil e tasksfrom

interfering with the stell, bu whenthey dq their runtimesare nore limited. Again, thoudp, both schedulers

succeded in hat noneof the delayswere lage enough® bencticeale to theuser.

Table 3: Shdl responsetimes during compilation in the Linux 2.6 steduler

Number of compile tasks imackground 1 2
Daemon interferencfirequency avg.response time ins) 1.6% / 947 20%/ 878
Compile task interferexe (freqercy / avg.respmsetime inus) 0.5 % / 5695 0.7 % / 6462
Average response time withioary interfeience (1s) 7.0 7.0
Minimum response time evall (us) 3.9 3.9
Maximum response time evall (us) 20610 28890
Number of respase timesollected 6502 7478

Table 4: Shdl responsetimes during compilation in the MLF Q scheduler
Number of compile tasks imackground 1 2
Daemon interferenc@requency avg.response time ins) 1.3%/ 277 3.7%/ 151
Compile task interferexe (freqlercy / avg.respmsetime inus) 1.5%/ 1670 2.4%/ 1268
Average response time withtoary interfelence (1s) 6.5 6.4
Minimum response time evall (us) 3.2 3.3
Maximum response time evall (us) 9414 10000
Number of respase timesollected 6607 7544

Boundaries ofInteractivity

We tracled the interactivity classification of a taskthat alternatedbetwesn work and sleep, andepeated e
test withdifferert lenghs ofwork ard sleep itervals. Figure 1 shovs how the ratio of work to sleepdetemines a
tasKs interactvity in the Linux 2.6 scleduler. Below the bottom line the taskwas laleled interactive, and aboe the
top line it waslabeled non-interactive. Betweenthe lines, its lalel switched back andorth, soit must have been in
the certer of the irteractivity range where a ¢assification bangecan ocur easily.

In the MLFQ scleduler, ths test isunnecssary. There isno inteactivity classification, s¢he only wg to
measurdow the sheduler tread a procss b to trak its queue levebver time. Doing 0 is alsounnecesary,
though becawse MLFQ behaves dterministically basedonthe lengh of the wak interval. A taskthatworks for
less tlan 10ns at a tme will always ke in the tgp queue, and a task #iworks for 25ms at a tine will move back
ard forth betweenthe secad and third queue, rgardlesf how long theysleep.

We havedenonstated here an ideological differencebetveen he two sthedulers’ definitionsof
interactivty. The MLFQ scleduler orly takes into accounthe anount of time a task works, while the Linux 2.6

scheluler alsouses lhe anount of time it sleeps. The data alsoprovide an interesing characerizaion of how work

12

time and sleeptime combine into aninteractivity classificaton inLinux 2.6 a taskiends to be labeled interactive if

its sleep tine is at least onguarter of itavork time, accordhg to our resilts so far.

Figure 1: Interactivity by deep and workimenalsin Linux

100 1 —a— Interactive below

—m— Mondinteractive abowe

Work interval length {ms)
8

0 5 10 15 20 25 30

Sleep intenal length (ms)

Thenext figures shovhow the twoschealulersreact to adden bbavior changes In Figures2 and3, atask
estallishes itself ashighly interactive by sleepng for several secads and then begins to do floaing-point
opeations. In Figures4 and 5, atask starts by doing floaing-point operatonsard then begins sleepng for 10ns at
a time. Bath scredulers have the taskin ore queue tefore the change, and afterwarslthey move it towards a nore
appropriate level. (Note thalower queuenumber @rreponds © ahigher priority, and tke numbers start at 100
because redlme processeoccupylevels 0-99.)

Eachdata paint tells what queue the task was om cerain number of time slices after itbehavior change.
The MLFQ sheduler novesthe task acrssits ertire range, bu the Linux2.6 scheduler orly allows it to nove 10
levels,becaus thedynamic priority range is—5 to5. Thefigures al® showhow the Linux 2.6 sbedukr delays
changes ininteractivty.

The alvantge of the Linux 2.6 goproachis that aninteractive tak thathasa tenporary @PU burstbefore
returning to its normal behavor doesnat fall in priority and neel to climb backup again. Thedisadvantage & that
while it stays at hgh priority and usesup itstime slice, itmay ke hoggng the CPU because the time slices at ilgh
priorities are log. Neither appoach handes e\ery sitwationideally. Likewise, here areadvantages toallowing
tasks b moveacros the enire rangeof queues(they are not limited to asmall range of time slices), andhere are
disadantages (itignoresthe wsers’ rice \alues). To decide athoritatively which approachis better, we wald need

to invesigate user behavior and weigh the common senaios thatwould beaffected by these choices.

13

Figure Z Task priority after switching from Figure 3: Task priority after switching from
interactive to non-interactive in Linux interactive to non-interactive in MLFQ
Ly 120
125 AR RS S S o s s 125
120 -"/ o 120 k
o
g "A«-Q-O-O“f El At
z 115 & 15
=1 =
? 1o < 110 A"i‘“
105 105 f"ﬂ‘
100 100 T T T T T
1 8 11 18 7 0 1 8 11 16 b=y 26
Number of time dices completed Number of time dices completed
Figure 4 Task priority after switching from Figure 5: Task priority after switching from
non-interactive to interactive in Linux non-interactive to interactive in MLFQ
130 120
e 125
120 "’_"“u 120
o
% e m‘—’—ﬁ—'—b—'—h\‘ @ 115 I
- 3
a 110) 110 ,“-‘\...
105 105 _‘\
100 i i i i 100 . . . :
1 8 1 18 ey 1 8 1 18 21
Humber of time slices completed Humber of time slices com pleted

Side Effects
Using the testprograns we hadalreaq creategdwe measued the tdal turraround timesof several

workloads. The individual run times of thes progrars are listedn Tale 7, averaged over three trials.

Table 7: Test programrun tim es

Program tpe MLFQ Linux 2.6
CPU-intensive 8.36sec 8.41sec
interacive 0.41sec 0.41sec
compilation 103.07 sec| 101.86 sed

Table8 reports the turnaroundrié for conbinations of theséasks, each ab averagedver three trials.
Heretherearesone differences: the MIFQ schealuler finishes albf theseworkloads noticeably fasterian the
Linux 2.6 sheduler does The snallest test takes35% of the aiginal time, he seondtakes 8%, ard the largest

takes 93%

14

Table 8: Turnaround times of combined wor kloads

CPU-intensive tasks | # interactietasks | # compilations | MLFQ Linux 2.6

16 16 1 19381 sec| 22857 sec
32 32 2 41212 sec| 46795 sec
128 128 2 1188.8%c | 1283.41sec

Althoughthis peiformance mprovenent did notdirecty relate tointeractivty, we investigatedpossble
reasos for it. By eliminating ore type of taskfrom the workloal at a tine, we disoverea that tie discrepancy
occurredonly whenboth CPU-intersive andcompilation tasks ran concurrertly; the interactive tasls did not
contribute tothe dfference. We thenfound that the GPU-intersive taskdinished eatier under the Linux 2.6
scheluler than they did underthe MLFQ scheduler. There are at least two possibleusss: the Lihux2.6
scheluler's starvaton prevention mechansm, ard its specia treatrrent of tasks hat do disk I/O. We renoved the
special caserni the Linux2.6 scheduling algorithm that limits the priority of these dsk 1/O tasks, andfound that the
turnaround times caenclosetto thoseof the MLFQ sdieduler, but that the gapdid not close atogeter. Table 9

shows these reslis for aworkloadwith 16 CPU-intensive tasks ad 2 conpile tasks.

Table 9: Turnaround times and task ompletion

Scheduletesed Total time to complete worklad | Time to conplete CPU-intensie tasks
MLFQ 274.50 sec 223.13 sec
Linux 2.6 355.58 sec 158.81 sec
Linux 2.6 withaut special case | 336.82 sec 182.94 sec

Thereallts indicate that pauf the reasm the MLFQ scleduler had better turraroundtimes was tht it did
nat artificially limit the canpile tasks to lowerqueues. Therestof the differencemay be atributedto the Linux 2.6
scheluler's starvaton handling. Sincethe MLFQ scheluler doesnat havestarvaton handing atall, the cormparison
is not altogeter fair. If the Linux 2.6 sheduler’s servation limits were redxed, we would expect its tirnarownd
times toimprove. This issieis really alout the balance between eficiency ard fairness,which is beyondour scope
here. Wewill only point out that the MLFQ scheduler may achieve same performance inprovements simply
because it doasot diferentide betwea catgoriesof tasks. Switchig tothesimpler model notonly maintains

goodinteractivity, hut may improve other aspectsof scteduling aswell.

Multipro cessor Results

Another goal of the Linux 2.6 scleduler wasto improve SMP scalablity, so its cale cortains many

changes specific to multiprocesso systens. Weran sane of our testson amultiprocesso systen, both to ersure

15

that our chages hd not affectedthe SMP-related featureand to ompare the wo schelulers in arother
ervironmernt. The hardware fa this sectionwas a 4processo 200 MHz Pertium Pro systen with 512MB of
memory. We usel a Red Hat Linux distribution thatwe upgraded to include the 2.6.3 kernel.

Resmnse times duing CPU-intersive backgound loads againremained constart, as sbhwn in Tale 10.

The dfectsof daenon interfeencevaried more thanthey did in the uniprocessor systenout the delaysall remeined

unnoticeable to thaser.

Table 10: Shell response timeswith a CPU-intensive workload on a multip rocesor system

Number of CPU-intensi/ tasks 4 16 64 256
Linux 2.6 avelage responséme without daemons |fs) 7.8 7.8 7.8 7.6
MLFQ averag responsdime without daemongu§) 5.8 5.8 5.8 5.8
Linux 2.6 avelge respons timewith daemonsy(s) 11.9 11.9 12.7 13.6
MLFQ averag responsdime with daemonsus) 14.0 19.4 9.0 17.9

In turnarourd tests fo loadsof CPU-irtersive andcompile tasks, wedound again thate CPU-intensve
taslsfinishedlater in MLFQ while the erire warkloadfinished earlier. However, whenwe scaledip the sizeof the
workload, the pefformance gins of the MLFQ sheduler neaty disappeged. The differencestiat caus MLFQ to

finish workloads nore quickly seento decrease with th&orkload size. Tablel1l simmarizes theseesults.

Table 11: Turnaround times and task ompletion on a multipr ocessor system

CPU-intensiveasks | # conpilations Total time to complete worklad | Time to conplete CPU-intensie tasks
MLFQ Linux 26 MLFQ Linux 2.6

16 2 13%9 sec 148.23sec 86.2kec 79.45ec

64 8 46M4 sec 463.80sec 349.96ec 320.55%sec

Related Work

Scheluler interacivity has ben adesgnissle since te begginning of timeshareschediling. An ealy
multilevel feedlack queuve appoach that dealt with the topic was CTSS [2], wich used priority queuvesard
exponenially increasig time slices n anatempt to provide goodinteracivity withoutforcing o many conext
switches. e designers triedn gproachthat took userbehavior into acount: when auser typed a cariage retirn
at a ternmal, that terrmal’s processvas pranoted to the highestpriority. Since the user was ieractirg with it,
that pracesswas likely tobe interactive. Of course,on a muti-user systemthis policy waswidely abusedonce
usersdisoverdl it [14].

The FreeBD opeating system, which is based m the Unix kemel, usesamultil evel feedba& queue

scheluler [6, 11]. e Solais operatiig systan [9] alsouses on€or its timesharing clas ofprocessesBoth of

16

these systesimairtain the tradtional inverse relatiostip betweenpriorities andime slices. Sdaris 2.4introduced
an “inteactivé’ scheluling class thatises a MLFQ schedulerbut addtionally boosts the priarity of the taskin the
active window[12]. This gproadt tekesboth user and tdsbehavior intoaccount.

The Windows 2000 0operating systen [13] cortains a scleduler that stares he multilevel queue structure,
but like the Linux 2.6 scleduler, it has sane interestimg differerces. Taskpriorities get boosted only whenthe task
perforns certain actions, likanl/O operationor conpleting await on akernelobject. A boostel taskdecays bac
to its base priority me level at a tme. There areonly two different time slices:oneof default length for baclkground
processesand a longer onefor the process that ownshe adve window.

Duda and Cheriton [3] havepropaosedborrowed-virtual-time scheduling, which is desgnedto handle a
diverseprocesdoad contaimg inteadive tasks. Itallowsreal-time andinteractive taslsto “borrow” time from
their future CPU allgationto reduce latery, while batch tasks corsume their tme slices reglarly. Theauhors
show that ths palicy maintains fairnesswhile improving response time. Their appgoach shares with MLFQ the goal
of balancing interactive andbatchtaslks withaut incurring ahigh level of scheduler canplexity.

There tas been ogoing work in the Linux community to evalwate the interactivty of the Linux 2.6
scheduler. Molnar postedthe original amourcenent and berchmark evaluationsof the new screduler [10]. White
denpnstatedimprovenents in resmpnse tmes fomthe 24 to the 2.6 kernel [15]. Linuxdevebpea ConKolivas has
recently deeloped astaircase process scheduler [5], which canes very close © a multi-level feedtack queue by
eliminating the expred arrayand moving processes uprhenthey sleepard down wlenthey run. Williams, also
despning for Linux, developed asingle priority array [16] that also eliminates ¢hexpired aray and replaces the
interactivty computations with asimpler aralysis d a tasks scheduling sttistics. Tkese receindevelopmernts shav

that the Linux community has reognizedthe unnecasarycomplexity of thefirst Linux 2.6 sdeduling algorithm.

Conclusions

Ourfirst objectve wes to dedilewhether theLinux 2.6 sheduler succeedd in meeting its interactivity
goak. The tests wepeformed indicak tatit did resppnd well to interactiwe tasls regrdlessof the background
load Purely conputational loadshad noeffect a interactivity, andon averageneitherdid more diverse loads like
conmpilation. BEven theoccasonal bnge delays causkby compile tasks werainnoticeale to auser. Therdore, we

concldethatthe Linux 2.6 schediler did adiieve ts goals regading interacivity.

17

Anothe objectve was to dealewhether thesimpler model of the MIFQ sheduler could succdeaswdll,
handling the mportart situations without treatirg themas spcial casesAgain, the tess wepeformed indicate that
it would. Its average resmpnse times were casistertly comparable tothe Linw 2.6 scleduler’s response tirres, toth
on auniprocesorard on afour-proceser SMP. Bven in the case of ampilation, wherethe MLFQ scheduler had
more frequent interferenceof conpile taskswith theinterative shell, he response timsremained accptably snall.
We ould decease sutinterferaceby treding tasks thatblodk on disk I/O specially, as he Linux 2.6 scheluler
does, but since we did na find that these task cawsed ary substarial neglect d more tradtionally interactive tasls,
we see ngeasa na to leae themat their natual queue levels. Finaly, our turnarowund tests idicate hat the
MLFQ sdeduler may perform favoraly to the Linux2.6 scheduler in ways dher thaninteractivity. Sofar, our
Occams razor hypothesis sa® to havebean confirmed.

We wauld alsoarguethatthe MLFQ scheduler has oher desirable pioperties. In paticular, we békeve that
its definition of interactvity is more appopriate. Urder the Linux 2.6 scleduler, aprocess can écome nore a less
interactive deperding onhow long it slees, as well aon how long it runs, while in MLFQ interactivty depends
solely on run tire. If twoprocessg eat dothe sare anount ofwork befare requestinginput, and onereceives a
respoise sooer, is either process nore or less iteractie thanthe aher? If there is ag differertiation, then it
actually sems nore naturako categorize thenethatreceves a faterrespone as nore interactive, beause he
faster reponsecould suggest thdhe useccaresaboutit more. TheLinux 2.6 stheduler, however, treas the task
that waits longeras nore interactive. The MLFQ scheduler treats hem equally.

In fact,rathe than saying thathedefinitions of interactvity in the Linux 2.6 scheduler ard in the MLFQ
scheluler aredifferent, it would bemore accirate saythat oneof themdefines nteracivity and ore doesnot. The
Linux 2.6 sheduler measuresnd decdesthe interacive status of ead task, while MLFQ makes smple-minded
local cecisiors with little information. This may ke one reasm why the Linux 2.6 scheduler regiires sgcial cases
and conplex mechanismathat contol specific situatiors, while the MLFQ scleduler does nb The aher reasonas
we have discussed is that theLinux 2.6 scheduler needs to compensate fo the instalilitie s created Y assiging time
slices poportionaly to priority.

Oneissuethatwe haveignoral in this stidy is starvation, becausevitasnot directly relevantd
interactivty. Howewer, the MLFQ algorithm caneasily ircomporae sarvation hardling. A naural goproac would

be b move &sks up to highe levels if they havespenttoo much ime waiting. The Solaris stheduler, for exanple,

18

increases tag’s priority when aonese®nd starvation timer expires[9]. A task moved in thisway would getto
run, but only for the shat time slice assoatedwith that higher level.

The practicaluse of tlis stud is the guidance itmay provide o devebpers of newscheluling aborithms.
One lessonis that nmeintaining aninverserelationship betweentime sliceand priority is inportart for the stabity
androbushessof a stieduler. Another is that a smple algorithm that avoids defining complex concets like

interactivty is likely to be more achptable andmore easily tmed than a comli catedalgorithm.

Future Work

Alongwith starvation handling, the MLFQ scheduler could handle niceness valies ® that uses can affect
the scleduling of their tasls. One passhility is tolimit ataskto a certaimange of queles tasedon its niceress.
Tasks with nore ard more extrene values cailld be limitedto snaller ard snaller rangeson the appopriate em of
the un queue. (This potential schene influencedour deciion to avoid deaeashg the number ofqueues further han
we did, becaise rangescauld be nore distinct this way than they could with fewer levels.)

The MLFQ algaithm has several tugble parameters, sehas thenunber of quaeles, he difference in their
time slices, ad the dstarcea taskmoves when it corsumes its time sliceor blocks. We were irterested in
conparing the Linux 2.6 sheduler to anMLFQ sdeduler with similar paraneter setings, ® we did nat investgate
the effects of tharging thase setings. It would beinformative todo sq thoudh, ard epecially to compar¢he
performance d MLFQ using exporertially increasingtime dices toits performance wsing linearly ircreasing time
slices.

We abko haveseveral suggestionsfor furtherinvestgation of the properties d both sthedulers. One isto
explorethe dfect of allowing or preventing quick changes in interactivity, to seewhich is preferalte under
common situations. Another is to investigate the effecs of stanation handling, to determire which pdliicies are
likely todousers the nost good Finally, while aur multiprocessor eperimerts slow thatour new scheduler is

effecive on up to four CPUs, more expe&iments arenealed on larger mnfiguratons.

References
1. Bovet, D. ard M. Cesati,Understanding the Linux Ker nel, O'Reilly, 2003
2. Corbato, F.J.,.B. Saltzerard CT. Clingen “An Experimental Time-Sharhg Systent’, AFIPS Spring
Joint Computer Conference, pp. 571583 1972
3. Duda,K. and D. Cheriton, “Borrowedvirtual-time (BVT) scleduling: suppating latency-sestive treads
in ageneral-purpose sclduler’, Symposium on Operating Systems Principles, pp. 261-:276, 1999

19

RBOoNo O

= o

13.

14.
15.

16.

Kolivas, C., “Ineractivty in the Linux 2.6 Scheduler”, transcrip of interview psted8/25/2003 to
http://kerreltrap.org/node/view/78).

Kolivas, C., “Lirux: Staircase PiessScheduler”, posted 325/04 to http://kerreltrap.orgnode/274/7844.
Lehey, Greg, The Compldae FreeBSD Walnut Creek, 1998

Linux 2.6.3 souce coa: seehttp://www.kernelhg.cc/ .

Love, R, Linux Ker nel Development, Sans Publishing, 2004.

McDougall, R. ard J Mauro, Solaris Internals, SunMicrosystens Press,2000.

Molnar, I. “ultra-scaséble O(1) SMP and UPscheluler”, posted 18/02to Google group milist.linux kernel.
Ritchie, Dennis M. and Ken Thompson,“The UNIX time-sharng systent’, Communications of the ACM
17(7), pp. 365-375, 1974.

Silbersclatz, A., P.B. Galin, ard G. Gagm, Operating Sygem Concepts, Sixth Ed. JohnWiley & Sons,
2003

Solomon, David A. and Mark E. Russhovich, Inside Microsoft Windows 2000, Third E dition, Microsoft
Press, 200.

Tanebaum, A.S,Modern Operating Systans, Seond Ed, Prentice Hdl 1992.

White, B. “Linux 2.6: A Bre&throughfor EmbeddedSystens”, posed 9/9/03 to
http://www.linuxdevices.con/articles/AT77513657@.html.

Williams, P. “Sirgle Priority Array (SPA)O(1) CPU Schkduler”, posted 923/04 to
http://kerreltrap.org/node/3870.

20

