
Multi-Byte Regular Expression Matching with
Speculation

Daniel Luchaup1 Randy Smith1 Cristian Estan2? Somesh Jha1

1 University of Wisconsin-Madison, {luchaup,smithr,jha}@cs.wisc.edu
2 NetLogic Microsystems, estan@netlogicmicro.com

Abstract. Intrusion prevention systems determine whether incoming
traffic matches a database of signatures, where each signature in the
database represents an attack or a vulnerability. IPSs need to keep up
with ever-increasing line speeds, which leads to the use of custom hard-
ware. A major bottleneck that IPSs face is that they scan incoming
packets one byte at a time, which limits their throughput and latency.
In this paper, we present a method for scanning multiple bytes in parallel
using speculation. We break the packet in several chunks, opportunisti-
cally scan them in parallel and if the speculation is wrong, correct it later.
We present algorithms that apply speculation in single-threaded software
running on commodity processors as well as algorithms for parallel hard-
ware. Experimental results show that speculation leads to improvements
in latency and throughput in both cases.

Key words: low latency, parallel pattern matching, regular expressions,
speculative pattern matching, multi-byte, multi-byte matching

1 Introduction

Intrusion Prevention Systems (IPSs) match incoming traffic against a database of
signatures, which are Regular Expressions (REs) that capture attacks or vulner-
abilities. IPSs are a very important component of the security suite. For instance,
most enterprises and organizations deploy an IPS. A significant challenge faced
by IPS designers is the need to keep up with ever-increasing line speeds, which
has forced IPSs to move to hardware. Most IPSs match incoming packets against
signatures one byte at a time, causing a major bottleneck. In this paper we ad-
dress this bottleneck by investigating the problem of multi-byte matching, or the
problem of IPS concurrently scanning multiple bytes of a packet. We present a
novel speculation-based method for multi-byte matching.

Deterministic Finite Automata (DFAs) are popular for signature matching
because multiple signatures can be merged into one large regular expression and
a single DFA can be used to match them simultaneously with a guaranteed
robust performance of O(1) time per byte. However, matching network traffic
against a DFA is inherently a serial activity. We break this inherent serializa-
tion imposed by the pointer chasing nature of DFA matching using speculation.
? Work done while at University of Wisconsin-Madison

2 D. Luchaup, R. Smith, C. Estan, S. Jha

Speculation has been used in several areas of computer science, especially com-
puter architecture. Our speculative method works by dividing the input into
multiple chunks and scanning each of them in parallel using traditional DFA
matching. The main idea behind our algorithm is to guess the initial state for
all but the first chunk, and then to make sure that this guess does not lead to
incorrect results. The insight that makes this work is that although the DFA for
IPS signatures can have numerous states, only a small fraction of these states
are visited often while parsing benign network traffic. This idea opens the door
for an entire new class of parallel multi-byte matching algorithms.

This paper makes the following contributions: We present Speculative Par-
allel Pattern Matching (SPPM), a novel method for DFA multi-byte matching
which can lead to significant speedups. We use a new kind of speculation where
gains are obtained not only in the case of correct guesses, but also in the most
common case of incorrect ones yet whose consequences quickly turn out to still
be valid. Section 3 presents an overview of SPPM, with details given in Sec-
tion 4. We present a single-threaded SPPM algorithm for commodity processors
which improves performance by issuing multiple independent memory accesses
in parallel, thus hiding part of the memory latency. Measurements show that
by breaking the input into two chunks, this algorithm can achieve an average of
24% improvement over the traditional matching procedure. We present SPPM
algorithms suitable for platforms where parallel processing units share a copy
of the DFA to be matched. Our models show that when using up to 100 pro-
cessing units our algorithm achieves significant reductions in latency. Increases
in throughput due to using multiple processing units are close to the maximum
increase afforded by the hardware.

2 Background

2.1 Regular Expression Matching – a Performance Problem

Signature matching is a performance-critical operation in which attack or vulner-
ability signatures are expressed as regular expressions and matched with DFAs.
For faster processing, DFAs for distinct signatures such as .*user.*root.* and
.*vulnerability.* are combined into a single DFA that simultaneously repre-
sents all the signatures. Given a DFA corresponding to a set of signatures, and
an input string representing the network traffic, an IPS needs to decide if the
DFA accepts the input string. Algorithm 1 gives the procedure for the traditional
matching algorithm.

Modern memories have large throughput and large latencies: one memory
access takes many cycles to return a result, but one or more requests can be
issued every cycle. Suppose that reading DFA[state][input char] results in a
memory access3 that takes M cycles4. Ideally the processor would schedule other
operations while waiting for the result of the read from memory, but in Algorithm
3 Assuming that the two indexes are combined in a single offset in a linear array
4 On average. Caching may reduce the average, but our analysis still holds

Multi-Byte Regular Expression Matching with Speculation 3

Input: DFA = the transition table
Input: I = the input string, |I| = length of I
Output: Does the input match the DFA?
state← start state;1

for i = 0 to |I| do2

input char← I[i];3

state← DFA[state][input char];4

if accepting(state) then5

return MatchFound ;6

end7

end8

return NoMatch ;9

Algorithm 1: Traditional DFA matching.

1 each iteration is data-dependent on the previous one: the algorithm cannot
proceed with the next iteration before completing the memory access of the
current step because it needs the new value for the state variable (in compiler
terms, M is the Recurrence Minimum Initiation Interval). Thus the performance
of the system is limited due to the pointer chasing nature of the algorithm.

If |I| is the number of bytes in the input and if the entire input is scanned,
then the duration of the algorithm is at least M ∗ |I| cycles, regardless of how
fast the CPU is. This algorithm is purely sequential and can not be parallelized.

Multi-byte matching methods attempt to consume more than one byte at a
time, possibly issuing multiple overlapping memory reads in each iteration. An
ideal multi-byte matching algorithm based on the traditional DFA method and
consuming B bytes could approach a running time of M ∗ |I|/B cycles, a factor
of B improvement over the traditional algorithm.

2.2 Signature Types

Suffix-closed Regular Expressions over an alphabet Σ are Regular Expressions
with the property that if they match a string, then they match that string
followed by any suffix. Formally, their language L has the property that x ∈ L ⇔
∀w ∈ (Σ)∗ : xw ∈ L. All signatures used by IPSs are suffix-closed. Algorithm 1
uses this fact by checking for accepting states after each input character instead
of checking only after the last one. This is not a change we introduced, but a
widely accepted practice for IPSs.

Prefix-closed Regular Expressions (PREs) over an alphabet Σ are regular
expressions whose language L has the property that x ∈ L ⇔ ∀w ∈ (Σ)∗ : wx ∈
L. For instance, .*ok.*stuff.*|.*other.* is a PRE, but .*ok.*|bad.* is not,
because the bad.* part can only match at the beginning and is not prefix-closed.
In the literature, non-PRE signatures such as bad.* are also called anchored
signatures. A large fraction of signatures found in IPSs are prefix-closed.

4 D. Luchaup, R. Smith, C. Estan, S. Jha

3 Overview

The core idea behind the Speculative Parallel Pattern Matching (SPPM) method
is to divide the input into two or more chunks of the same size and process them
in parallel. We assume that the common case is not finding a match, although
speedup gains are possible even in the presence of matches. As is customary in
IPSs, all our regular expressions are suffix closed. Additionally, at this point we
only match REs that are also prefix closed, a restriction that will be lifted in
Sec. 4.4. In the rest of this section we informally present the method by example,
we give statistical evidence explaining why speculation is often successful, and
we discuss ways of measuring and modeling the effects of speculation on latency
and throughput.

3.1 Example of Using Speculation

As an example, consider matching the input I=AVOIDS VIRULENCE against the
DFA recognizing the regular expression .*VIRUS shown in Fig. 1. We break
the input into two chunks, I1=AVOIDS V and I2=IRULENCE, and perform two
traditional DFA scans in parallel. A Primary process scans I1 and a Secondary
process scans I2. Both use the same DFA, shown in Fig. 1. To simplify the
discussion, we assume for now that the Primary and the Secondary are separate
processors operating in lockstep. At each step they consume one character from
each chunk, for a total of two characters in parallel.

To ensure correctness, the start state of the Secondary should be the final
state of the Primary, but that state is initially unknown. We speculate by using
the DFA’s start state, State 0 in this case, as a start state for the Secondary and
rely on a subsequent validation stage to ensure that this speculation does not
lead to incorrect results. In preparation for this validation stage the Secondary
also records its state after each input character in a History buffer.

Figure 2 shows a trace of the two stages of the speculative matching algo-
rithm. During the parallel processing stage, each step i entry shows for both
the Primary and the Secondary the new state after parsing the i -th input char-
acter in the corresponding chunk, as well as the history buffer being written by
the Secondary. At the end of step 8, the parallel processing stage ends and the
Secondary finishes parsing without finding a match. At this point the History
buffer contains 8 saved states. During the validation stage, steps 9-12, the Pri-
mary keeps processing the input and compares its current state with the state
corresponding to the same input character that was saved by the Secondary in
the History buffer. At step 9 the Primary transitions on input ’I’ from state 1 to
state 2 which is different from 0, the state recorded for that position. Since the
Primary and the Secondary disagree on the state after the 9-th, 10-th and 11-
th characters, the Primary continues until step 12 when they agree by reaching
state 0. Once this coupling between the Primary and Secondary happens, it is not
necessary for the Primary to continue processing because it would go through
the same states and make the same acceptance decisions as the Secondary. We
use the term validation region to refer to the portion of the input processed by

Multi-Byte Regular Expression Matching with Speculation 5

0

1

2

3

4

V

I

R

U

S

5
V

V

V

V

Fig. 1. DFA for
.*VIRUS; dotted lines
show transitions
taken when no other
transitions apply.

Input A V O I D S V I R U L E N C E

step 1 0 0
step 2 1 0 0
step 3 0 0 0 0
step 4 0 0 0 0 0
step 5 0 0 0 0 0 0
step 6 0 0 0 0 0 0 0
step 7 0 0 0 0 0 0 0 0
step 8 1 0 0 0 0 0 0 0 0

step 9 2 6=0, 0 0 0 0 0 0 0
step 10 3 6=0, 0 0 0 0 0 0
step 11 4 6=0, 0 0 0 0 0
step 12 0=0, 0 0 0 0

Fig. 2. Trace for the speculative parallel matching of
P=.*VIRUS in I=AVOIDS VIRULENCE. During the parallel
stage, steps 1-8, the Primary scans the first chunk. The
Secondary scans the second chunk and updates the history
buffer. The Primary uses the history during validation stage,
steps 9-12, while re-scanning part of the input scanned by
the Secondary till agreement happens at step 12.

both the Primary and the Secondary (the string IRUL in this example). Coupling
is the event when the validation succeeds in finding a common state.

In our case, the input is 16 bytes long but the speculative algorithm ends after
only 12 iterations. Note that for different inputs, such as SOMETHING ELSE..,
the speculative method would stop after only 9 steps, since both halves will see
only state 0. The performance gain from speculative matching occurs only if
the Primary does not need to process the whole input. Although we guess the
starting state for the Secondary, performance improvements do not depend on
this guess being right, but rather on validation succeeding quickly, i.e. having a
validation region much smaller than the second chunk.

3.2 Statistical Support for Speculative Matching

In this section we provide an intuitive explanation behind our approach. We
define a default transition to be a transition on an input character that does not
advance towards an accepting state, such as the transitions shown with dotted
lines in Fig. 1. If we look at Fig. 1, we see that the automaton for .*VIRUS.*
will likely spend most of its time in state 0 because of the default transitions
leading to state 0. Figure 2 shows that indeed 0 is the most frequent state. In
general, it is very likely that there are just a few hot states in the DFA, which are
the target states for most of the transitions. This is particularly true for PREs
because they start with .* and this usually corresponds to an initial state with
default transitions to itself.

For instance, we constructed the DFA composed from 768 PREs from Snort
and measured the state frequencies when scanning a sample of real world HTTP
traffic. Fig. 3 displays the resulting Cumulative Distribution Function (CDF)

6 D. Luchaup, R. Smith, C. Estan, S. Jha

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

c
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y

States ordered by frequency

Fig. 3. The state frequency CDF graph for a PRE composed of 768 Snort signatures.
Most of the scanning time is spent in a few hot states. The most frequent state accounts
for 33.8% of the time and the first 6 most frequent states account for half the time.

graph when the states are ordered in decreasing order of frequency. Most time is
spend in a relatively small number of states. The most frequent state occurs in
33.8% of all transitions, and the first 6 states account for 50% of the transitions.

The key point is that there is a state that occurs with a relatively high
frequency, 33.8% in our case. A back-of-the-envelope calculation shows that it
is quite likely that both halves will soon reach that state. Indeed, assume a
pure probabilistic model where a state S occurs with a 33.8% probability at
any position. The chances for coupling due to state S at a given position are
0.3382 = 0.114. Equivalently, the chances that such coupling doesn’t happen
are 1 − 0.3382 = 0.886. However, the chances that disagreement happens on
each of h consecutive positions are 0.886h, which diminishes quickly with h. The
probability for coupling in one of 20 different positions is 1 − 0.88620 = 0.912.
Even if the frequency of a state S was 5% instead of 33.8%, it would take 45
steps to have a probability greater than 90% for two halves to reach state S.
While 45 steps may seem high, it is only a tiny fraction, 3%, compared to the
typical maximum TCP packet length of 1500 bytes. In other words, we contend
that the length of the validation region will be small.

Note that the high probability of coupling in a small number of steps is based
on a heavily biased distribution of frequencies among the N states of the DFA. If
all states were equally probable, then the expected number of steps to coupling
would be O(N). This would make coupling extremely unlikely for automata with
large numbers of states.

3.3 Performance Metrics

One fundamental reason why speculation improves the performance of signature
matching is that completing two memory accesses in parallel takes less time
than completing them serially. While the latencies of memories remain large, the

Multi-Byte Regular Expression Matching with Speculation 7

achievable throughput is high because many memory accesses can be completed
in parallel.

When we apply SPPM in single-threaded software settings, the processing
time for packets determines both the throughput and the latency of the system
as packets are processed one at a time. Our measurements show that SPPM
improves both latency and throughput. When compared to other approaches
using a parallel architecture, SPPM improves latency significantly and achieves
a throughput close to the limits imposed by hardware constraints.

4 Speculative Matching

Speculative Parallel Pattern Matching is a general method. Depending on the
hardware platform, the desired output, the signature types, or other parameters,
one can have a wide variety of algorithms based on SPPM. This section starts by
formalizing the example from Section 3.1 and by introducing a simplified perfor-
mance model for evaluating the benefits of speculation. After presenting basic
SPPM algorithms for single-threaded software and for simple parallel hardware,
we discuss variants that are not constrained by the simplifying assumptions.
These generalized algorithms work with unconstrained regular expressions, re-
turn more information about the match, not just whether a match exists or not,
and limit speculation to guarantee good worst-case performance.

4.1 Basic SPPM Algorithm

Algorithm 2 shows the pseudocode for the informal example from Sect. 3.1. The
algorithm processes the input in three stages.

During the initialization stage (lines 1-5), the input is divided into two
chunks and the state variables for the Primary and Secondary are initialized.
During the parallel processing stage (lines 6-13), both processors scan their
chunks in lockstep. If either the Primary or the Secondary reach an accepting
state (line 10), we declare a match and finish the algorithm (line 11). The Sec-
ondary records (line 12) the states it visits in the history buffer (for simplicity,
the history buffer is as large as the input, but only its second half is actually
used). During the validation stage (lines 14-21), the Primary continues pro-
cessing the Secondary’s chunk. It still must check for accepting states as it may
see a different sequence of states than the Secondary. There are three possible
outcomes: a match is found and the algorithm returns success (line 18), coupling
occurs before the end of the second chunk (line 20) or the entire second chunk is
traversed again. If the input has an odd number of bytes, the first chunk is one
byte longer, and a sentinel is setup at line 5 such that the validation step will
ignore it.

Correctness of Algorithm 2: If during the parallel processing stage the Sec-
ondary reaches the return at line 11, then the Secondary found a match on

8 D. Luchaup, R. Smith, C. Estan, S. Jha

Input: DFA = the transition table
Input: I = the input string
Output: Does the input match the DFA?
// Initialization stage

len← |I| ; // Input length1

(len1, len2)← (dlen/2e, blen/2c); // Chunk sizes2

(chunk1, chunk2)← (&I, &I + len1); // Chunks3

(S1, S2)← (start state, start state); // Start states4

history[len1 − 1]← error state ; // Sentinel5

// Parallel processing stage

for i = 0 to len2 − 1 do6

forall k ∈ {1, 2} do in parallel7

ck ← chunkk[i];8

Sk ← DFA[Sk][ck];9

if accepting(Sk) then10

return MatchFound ;11

history[len1 + i]← S2 ; // On Secondary12

i← i + 1;13

// Validation stage (on Primary)

while i < len do14

c1 ← I[i];15

S1 ← DFA[S1][c1];16

if accepting(S1) then17

return MatchFound ;18

if S1 == history[i] then19

break ;20

i← i + 1;21

return NoMatch ; // Primary finished processing22

Algorithm 2: Parallel SPPM with two chunks. Accepts PREs.

its chunk. Since our assumption is that we search for a prefix-closed regular ex-
pression, a match in the second chunk guarantees a match on the entire input.
Therefore it is safe to return with a match.

If the algorithm executes the break at line 20, then the Primary reaches a
state also reached by the Secondary. Since the behavior of a DFA depends only
on the current state and the rest of the input, we know that if the Primary would
continue searching, from that point on it would redundantly follow the steps of
the Secondary which did not find a match, so it is safe to break the loop and
return without a match.

In all the other cases, the algorithm acts like an instance of Algorithm 1
performed by the Primary where the existence of the Secondary can be ignored.
To conclude, Algorithm 2 reports a match if and only if the input contains one.
Simplified performance models: Our evaluation of SPPM includes actual
measurements of performance improvements on single-threaded software plat-

Multi-Byte Regular Expression Matching with Speculation 9

Table 1. Simplified performance model metrics (N is number of processors).

Metric Definition

Useful work Number of bytes scanned, |I|
Processing latency (L) Number of parallel steps/iterations

Speedup (S) S = |I|/L

Processing cost (P) P = N · L
Processing efficiency (Pe) Pe = |I|/(N · L)

Memory cost (M) Number of accesses to DFA table

Memory efficiency (Me) Me = |I|/M
Size of validation region (V) Number of steps in validation stage

forms. But to understand the performance gains possible through speculation
and to estimate the performance for parallel platforms with different bottle-
necks we use a simplified model of performance. Because the input and the
history buffer are small (1.5KB for a maximum-sized packet) and are accessed
sequentially they should fit in fast memory (cache) and we do not account for
accesses to them. We focus our discussion and our performance model on the
accesses to the DFA table. Table 1 summarizes the relevant metrics.

We use the number of steps (iterations) in the parallel processing, |I|/2, and
in the validation stage, V , to approximate the processing latency: L = |I|

2 + V .

Each of these iterations contains one access to the DFA table. The latency
of processing an input I with the traditional matching algorithm (Algorithm 1)
would be |I| steps, hence we define the speedup (latency reduction) as S = |I|

L =
|I|

|I|/2+V = 2
1+2V/|I| .

The useful work performed by the parallel algorithm is scanning the entire
input, therefore equivalent to |I| serial steps. This is achieved by using N = 2
processing units (PUs), the Primary and Secondary, for a duration of L parallel
steps. Thus, the amount of processing resources used (assuming synchronization
between PUs), the processing cost is P = N · L and we define the processing
efficiency as Pe = useful work

processing cost = |I|
N ·L = |I|

2·(|I|/2+V) = 1
1+2V/|I| .

Another potential limiting factor for system performance is memory through-
put: the number of memory accesses that can be performed during unit time.
We define memory cost, M , as the number of accesses to the DFA data structure
by all PUs, M = |I| + V . Note that M ≤ N · L as during the validation stage
the Secondary does not perform memory accesses. We define memory efficiency
as Me = |I|

M = |I|
|I|+V = 1

1+V/|I| and it reflects the ratio between the throughput
achievable by running the reference algorithm in parallel on many packets and
the throughput we achieve using speculation. Both Pe and Me can be used to
characterize system throughput: Pe is appropriate when tight synchronization
between the PUs is enforced (e.g. SIMD architectures) and the processing capac-
ity is the limiting factor, Me is relevant when memory throughput is the limiting
factor.

10 D. Luchaup, R. Smith, C. Estan, S. Jha

Input: DFA = the transition table
Input: I = the input string
Output: Does the input match the DFA?
// Initialization as in Algorithm 2

...1

for i = 0 to len2 − 1 do6

c1 ← chunk1[i];7

c2 ← chunk2[i];8

S1 ← DFA[S1][c1];9

S2 ← DFA[S2][c2];10

if accepting(S1)||accepting(S2) then11

return MatchFound ;12

history[len1 + i]← S2;13

i← i + 1;14

// Validation as in Algorithm 2

...15

Algorithm 3: Single-threaded SPPM with two chunks. Accepts PREs.

Performance of Algorithm 2: In the worst case, no match is found, and
coupling between Primary and Secondary doesn’t happen (V = |I|/2). In this
case the Primary follows a traditional search of the input and all the actions of
the Secondary are overhead. We get L = |I|, S = 1, Pe = 50%, M = 1.5|I|, and
Me = 67%. In practice, because the work during the iterations is slightly more
complex than for the reference algorithm (the secondary updates the history),
we can even get a small slowdown, but the latency cannot be much lower than
that of the reference algorithm.

In the common case, no match occurs and V ¿ |I|/2. We have S = 2
1+2V/|I| ,

Pe = 1
1+2V/|I| , M = |I| + V/|I|, and Me = 1

1+V/|I| , where V/|I| ¿ 1. Thus
the latency is typically close to half the latency of the reference implementation
and the throughput achieved is very close to that achievable by just running the
reference implementation in parallel on separate packets.

In the uncommon case where matches are found, the latency is the same as
for the reference implementation if the match is found by the Primary. If the
match is found by the Secondary, the speedup can be much larger than 2.

4.2 SPPM for Single-threaded Software

Algorithm 3 shows how to apply SPPM for single-threaded software. We simply
rewrite the parallel part of Algorithm 2 in a serial fashion with the two table
accesses placed one after the other. Except for this serialization, everything else
is as in Algorithm 2 and we omit showing the common parts. The duration of
one step (lines 6-14) increases and the number of steps decreases as compared to
Algorithm 1. The two memory accesses at lines 9-10 can overlap in time, so the
duration of a step increases but does not double. If the validation region is small,

Multi-Byte Regular Expression Matching with Speculation 11

the number of steps is little over half the original number of steps. The reduction
in the number of steps depends only on the input and on the DFA whereas the
increase in the duration of a step also depends on the specific hardware (proces-
sor and memory). Our measurements show that speculation leads to an overall
reduction in processing time and the magnitude of the reduction depends on
the platform. The more instructions the processor can execute during a memory
access, the larger the benefit of speculation.

This algorithm can be generalized to work with N > 2 chunks, but the
number of variables increases (e.g. a separate state variable needs to be kept
for each chunk). If the number of variables increases beyond what can fit in the
processor’s registers, the overall result is a slowdown. We implemented a single-
threaded SPPM algorithm with 3 chunks, but since its performance is weaker
on the platforms we evaluated, we only report results for the 2-chunk version.

4.3 SPPM for Parallel Hardware

Algorithm 4 generalizes Algorithm 2 for the case where N PUs work in parallel on
N chunks of the input. We present this unoptimized version due to its simplicity.

Lines 2-5 initialize the PUs. They all start parsing from the initial state of
the DFA. They are assigned starting positions evenly distributed in the input
buffer: PUk starts scanning at position b(k − 1) ∗ |I|/Nc. During the parallel
processing stage (lines 6-13) all PUs perform the traditional DFA processing
for their chunks and record the states traversed in history (this is redundant for
PU1). The first N−1 PUs participate in the validation stage (lines 14-25). A
PU stops (becomes inactive) when coupling with the right neighbor happens, or
when it reaches the end of the input. Active PUs perform all actions performed
during normal processing (including updating the history).

The algorithm ends when all PUs become inactive.

Linear History Is Relatively Optimal: Algorithm 4 uses a linear history: for
each position in the input, exactly one state is remembered – the state saved by
the most recent PU that scanned that position. Thus PUk sees the states saved
by PUk+1, which overwrite the states saved by PUk+2, PUk+3, ..., PUN .

Since we want a PU to stop as soon as possible, a natural question arises:
would PUk have a better chance of coupling if it checked the states for all of
PUk+1, PUk+2, ..., PUN instead of just PUk+1? Would a 2-dimensional history
that saves the set of all the states obtained by preceding PUs at a position offer
better information than a linear history that saves only the most recent state?
In what follows we show that the answer is no: the most recent state is also
the most accurate one. If for a certain input position, PUk agrees with any of
PUk+1, PUk+2, ..., PUN then PUk must also agree with PUk+1 at that position.
We obtain this by substituting in the following theorem chunkk for w1, the
concatenation of chunks k + 1 to k + j − 1 for w2 and any prefix of chunkk+j

for w3. We use the notation w1w2 to represent the concatenation of strings w1

and w2; and δ(S, w) to denote the state reached by the DFA starting from state
S and transitioning for each character in string w.

12 D. Luchaup, R. Smith, C. Estan, S. Jha

Input: DFA = the transition table
Input: I = the input string (|I| =input length)
Output: Does the input match the DFA?
len← |I|;1

forall PUk, k ∈ {1..N} do in parallel2

indexk ← start position of k-th chunk ;3

statek ← start state;4

history[0..len− 1]← error state; // sentinel5

// Parallel processing stage

while index1 < b|I|/Nc do6

forall PUk, k ∈ {1..N} do in parallel7

inputk ← I[indexk];8

statek ← DFA[statek][inputk];9

if accepting(statek) then10

return MatchFound ;11

history[indexk] = statek;12

indexk ← indexk + 1;13

forall PUk, k ∈ {1..N − 1} do in parallel activek ← true ;14

while there are active PUs do15

forall PUk such that (activek == true) do in parallel16

inputk ← I[indexk];17

statek ← DFA[statek][inputk];18

if accepting(statek) then19

return MatchFound ;20

if history[indexk] == statek OR indexk == len− 1 then21

activek ← false;22

else23

history[indexk] = statek;24

indexk ← indexk + 1;25

return NoMatch ;26

Algorithm 4: SPPM with N processing Units (PUs). Accepts PREs.

Theorem 1 (monotony of PRE parsing) Assume that DFA is the minimized
deterministic finite automaton accepting a prefix-closed regular expression, with
S0 = the start state of the DFA. For any w1, w2, w3 input strings we have:
δ(S0, w1w2w3) = δ(S0, w3) ⇒ δ(S0, w1w2w3) = δ(S0, w2w3).

Proof. Let S1 = δ(S0, w1w2w3) = δ(S0, w3) and S2 = δ(S0, w2w3). Assume, by
contradiction, that S1 6= S2. Since DFA is minimal, there must be a string w
such that only one of δ(S1, w) and δ(S2, w) is an accepting state and the other
one is not.
Assume L = the language accepted by the DFA.
We have two cases:

Multi-Byte Regular Expression Matching with Speculation 13

1. δ(S1, w) accepting and δ(S2, w) is not. Since δ(S1, w) = δ(δ(S0, w3), w) =
δ(S0, w3w) we have δ(S1, w) accepting⇒ δ(S0, w3w) accepting. Hence w3w ∈
L. Since L is prefix closed, w3w ∈ L ⇒ w2w3w ∈ L ⇒ δ(S0, w2w3w) accept-
ing. But δ(S0, w2w3w) = δ(δ(S0, w2w3), w) = δ(S2, w). Therefore δ(S2, w) is
accepting, which is a contradiction.

2. δ(S2, w) is accepting and δ(S1, w) is not. Then δ(S2, w) = δ(δ(S0, w2w3), w) =
δ(S0, w2w3w) is accepting. Hence w2w3w ∈ L. Since L is prefix closed,
w2w3w ∈ L ⇒ w1w2w3w ∈ L. We have w1w2w3w ∈ L ⇔ δ(S0, w1w2w3w) is
accepting. But, δ(S0, w1w2w3w) = δ(δ(S0, w1w2w3), w) = δ(S1, w). There-
fore δ(S1, w) is accepting, which is also a contradiction.

Both cases lead to contradiction, so our assumption was wrong and S1 = S2. ut
Performance of Algorithm 4: We define validation region k as the portion
of the packet processed by PUk during validation, so it can go beyond the end of
chunk k +1. Let Vk be the length of the validation region k, Vmax = maxN

k=1 Vk,

and VΣ =
∑N

k=1 Vk .
We get the following performance metrics:

processing latency L = |I|
N + Vmax

speedup S = |I|
L = N

1+N ·Vmax/|I|
processing cost P = N · L
processing efficiency Pe = |I|

P = 1
1+N ·Vmax/|I|

memory cost M = |I|+ VΣ

memory efficiency Me = |I|
M = 1

1+VΣ/|I|

(1)

In the worst case (no coupling for any of the chunks) Vk = |I| − k|I|/N
(ignoring rounding effects), Vmax = |I|(1 − 1/N) and VΣ = (N − 1)|I|/2 which
results in a latency of L = |I| (no speedup, but no slowdown either), a processing
efficiency of Pe = 1/N , and a memory efficiency of Me ≈ 2/N . Note that the
processing efficiency and the memory efficiency do not need to be tightly coupled.
For example if there is no coupling for the first chunk, but coupling happens fast
for the others, the latency is still L = |I| and thus Pe = 1/N , but Me ≈ 50% as
most of the input is processed twice. But our experiments show that for N below
100, the validation regions are typically much smaller than the chunks and the
speedups we get are on the order of S ≈ N and efficiencies are Pe ≈ 100% and
Me ≈ 100%.

We note here that SPPM always achieves efficiencies of less than 100% on
systems using parallel hardware: within our model, the ideal throughput one
can obtain by having the PUs work on multiple packet in parallel is always
slightly higher than with SPPM. The benefit of SPPM is that the latency of
processing a single packet decreases significantly. This can help reduce the size
of buffers needed for packets (or the fraction of the cache used to hold them) and
may reduce the overall latency of the IPSs which may be important for traffic
with tight service quality requirements. Furthermore systems using SPPM can
break the workload into fixed-size chunks as opposed to variable-sized packets

14 D. Luchaup, R. Smith, C. Estan, S. Jha

which simplifies scheduling in tightly coupled SIMD architectures where the
processing cost is determined by the size of the largest packet (or chunk) in the
batch. This can ultimately improve throughput as there is no need of batching
together packets of different sizes. Due to the complexity of performance in IPSs
with parallel hardware, it depends on the specifics of the system beyond those
captured by our model whether SPPM, simple parallelization, or a mix of the
two is the best way to achieve good performance.

4.4 Relaxing the Assumptions

Matching non-PRE expressions: The basic SPPM algorithms require prefix-
closed expressions only because Secondaries are allowed to safely terminate the
algorithm if they reach an accepting state. For non-PRE such as .*ok|bad, the
matches found by Secondaries (which start processing from the start state of the
DFA) may be false matches such as the case when the string bad occurs at the
beginning of the second chunk, not at the beginning of the input. The version
of the algorithm described later in this section avoids the problem.

Returning more information about matched packets: The basic match-
ing algorithm is often extended to return more information than just whether a
match occurred or not: the offset within the input where the accepting state has
been reached and/or the signature number for that matched (a single DFA typ-
ically tracks multiple signatures). Furthermore, multiple matches may exist as
the reference algorithm may visit accepting states more than once. For example
if the DFA recognizes the two signatures .*day and .*week with a single DFA
and the input is This week on Monday night!, we have a match for the second
signature at the end of the second word and one for the first signature at the
end of the fourth word. It is straightforward to extend Algorithm 4 to deliver
information about the match, but if the system requires information about the
first match (or about all matches), we need a more elaborate modification.

The most general case is when the system requires an ordered list of all
matches and accepts arbitrary regular expressions. We change the way Algo-
rithm 4 handles matches: instead of returning immediately, each Secondary PU
keeps a list of all the matches it finds. After validation, the individual lists are
combined in an ordered list of all matches, but candidate matches found by PUk

at positions preceding the coupling position with PUk−1 are discarded. Note
that since the common case in IPSs is that no matches are found, the overhead
of the extra bookkeeping required is incurred only for a small fraction of the
packets and the overall system performance is not affected.

Limiting inefficiency by bounding the validation cost: In the worst case
speculation fails and the whole input is traversed sequentially. There is nothing
we can do to guarantee a worst case latency smaller than I and equivalently
a processing efficiency of more than 1/N . But we can ensure that the memory
efficiency is larger than 2/N which corresponds to the case where all PUs traverse
the input to the end. We can limit the size of the history buffer to H positions,

Multi-Byte Regular Expression Matching with Speculation 15

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400

s
p
e
e

d
u
p

 %

packet size

Legend
fast CPU
slow CPU

Fig. 4. Speedup of Algorithm 3 over the se-
quential DFA Algorithm

 98

 98.2

 98.4

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 0 100 200 300 400 500 600 700 800

c
u

m
u
la

ti
v
e
 o

c
c
u

re
n

c
e
s
 (

%
)

Size of the validation region

Fig. 5. CDF graph for the sizes of the val-
idation region

and stop the validation stage for all PUs other than the primary when they
reach the end of their history buffer. If H is large enough convergence may still
happen (based on our experiments 40 would be a good value), but we bound the
number of memory accesses performed during the validation stage to H(N − 2)
for the k− 2 non-primary PUs doing validation and |I| − |I|/N for the primary.
Thus M ≤ |I|(2− 1/N) + H(N − 2) < 2|I|+ HN and Me > 1/(2 + HN/|I|).

5 Experimental Evaluation

We compared results using speculative matching against the traditional DFA
method. We used 106 DFAs recognizing a total of 1499 Snort HTTP signatures.
As input we extracted the TCP payloads of 175,668 HTTP packets from a two-
hour trace captured at the border router of our department. The most frequent
packet sizes were 1448 bytes (50.88%), 1452 bytes (4.62%) and 596 bytes (3.82%).
Furthermore 5.73% of the packets were smaller than 250 bytes, 34.37% were
between 251 and 1,250 and 59.90% were larger than 1,251.

5.1 Evaluation of Algorithm 3 (Software Implementation)

We implemented Algorithm 3 and measure its actual running time using Pentium
performance counters. We ran experiments on two processors, an Intel Core 2
at 2.4GHz and a Pentium M at 1.5GHz. Compared to the traditional sequential
algorithms we obtained speedups of 24% and respectively 13%. We explain the
higher speedup for the faster processor by the larger gap between the processor
speed and the memory latency. Figure 4 shows how the packet size influences
the speedup for Algorithm 3: for packets smaller than 20 bytes speculation may
result in slowdowns, but for packets larger than 50 bytes the speedup does not
change significantly with packet size.

We also find that the validation typically happens quickly. For 98% of the
packet validation happens after a single input byte is processed. Validation failed

16 D. Luchaup, R. Smith, C. Estan, S. Jha

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100
Number of PUs

Legend
speedup

Fig. 6. Speedup for Algorithm 4

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100
Number of PUs

Legend
small sizes
medium sizes
large sizes

Fig. 7. Speedup by packet size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100
Number of PUs

Legend
small sizes
medium sizes
large sizes

Fig. 8. Processing efficiency by packet size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Number of PUs

Legend
small sizes
medium sizes
large sizes

Fig. 9. Memory efficiency by packet size

for only 0.335% of the packets. Figure 5 shows the cumulative distribution of
the sizes of the validation regions.

5.2 Evaluation of Algorithm 4

We evaluated Algorithm 4 for up to N = 100 processing units. We report
speedups and efficiency based on our performance model which relies on the
number of accesses to the DFA data structure (lines 9 and 18 of Algorithm 4).
These metrics are described in Sect. 4.3 by equations 1. From Fig. 6 we see that
speedup is almost linear up to N = 20 and it slowly diverges afterwords. The
processing efficiency approaches 50% and the memory efficiency 90% by the time
we reach N = 100. Figures 7, 8 and 9 show the speedup, processing efficiency
and respectively memory efficiency for packets of various sizes: small (1-250),
medium (251-1250) and large (1251-1500). The only notable difference is the
low memory efficiency for small packets.

Figures 10 and 11 present the cumulative distributions for the sizes of the
validation regions when N = 10. Figure 10 captures the sizes of all validation
regions, which is relevant to memory efficiency. Figure 11 captures only the
largest validation region for each packet, which is relevant to processing efficiency.

Multi-Byte Regular Expression Matching with Speculation 17

 99.2

 99.3

 99.4

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 0 200 400 600 800 1000 1200 1400

c
u

m
u
la

ti
v
e
 o

c
c
u

re
n

c
e
s
 (

%
)

Size of the validation region

Fig. 10. Cumulative distribution of the
sizes of validation regions

 95

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 0 200 400 600 800 1000 1200 1400

c
u

m
u
la

ti
v
e
 o

c
c
u

re
n

c
e
s
 (

%
)

Size of the largest validation region

Fig. 11. Cumulative distribution of the size
of largest validation regions

The average size for the validation regions is VΣ/(N − 1) = 2.12 and for the
largest validation regions is Vmax = 8.24. 99.26% of the validation regions were
a single byte long and 95.35% of the packet had Vmax = 1.

6 Related Work

Signature matching is at the heart of intrusion prevention, but traditional match-
ing methods have large memory footprints, slow matching times, or are vulner-
able to evasion. Many techniques have been and continue to be proposed to
address these weaknesses.

Early string-based signatures used multi-pattern matching algorithms such
as Aho-Corasick [1] to efficiently match multiple strings against payloads. Many
alternatives and enhancements to this paradigm have since been proposed [27,
8, 25, 16, 26]. With the rise of attack techniques involving evasion [18, 19, 10, 21]
and mutation [12], though, string-based signatures have more limited use, and
modern systems have moved to vulnerability-based signatures written as regular
expressions [28, 6, 24, 20]. In principle, DFA-based regular expression matching
yields high matching speeds, but combined DFAs often produce a state-space
explosion [22] with infeasible memory requirements. Many techniques have been
proposed to reduce the DFA state space [22, 23], or to perform edge compres-
sion [15, 3, 13, 9]. These techniques are orthogonal to our own, which focuses
specifically on latency and can be readily applied to strings or regular expres-
sions with or without alternative encodings.

Other work uses multi-byte matching to increase matching throughput. Clark
and Schimmel [7] and Brodie et al. [5] both present designs for multi-byte match-
ing in hardware. Becchi and Crowley [4] also consider multi-byte matching for
various numbers of bytes, or stride, as they term it. These techniques increase
throughput at the expense of changing DFA structure, and some form of edge
compression is typically required to keep transition table memory to a reasonable
size. Our work on the other hand reduces latency by subdividing a payload and

18 D. Luchaup, R. Smith, C. Estan, S. Jha

matching the chunks in parallel without changing the underlying automaton.
It would be interesting to apply speculative matching to multi-byte structured
automata.

Kruegel et al. [14] propose a distributed intrusion detection scheme that di-
vides the load across multiple sensors. Traffic is sliced at frame boundaries, and
each slice is analyzed by a subset of the sensors. In contrast, our work subdivides
individual packets or flows, speculatively matches each fragment in parallel, and
relies on fast validation. Whereas Kruegel’s work assumes individual, distinct
network sensors, our work can benefit from the increasing availability of multi-
core, SIMD, and other n-way processing environments.

Parallel algorithms for regular expression and string matching have been
developed and studied outside of the intrusion detection context. Hillis and Steele
[11] show that an input of size n can be matched in Ω(log(n)) steps given n ∗
a processors, where a is the alphabet size. Their algorithm handles arbitrary
regular expressions but was intended for Connection Machines-style architectures
with massive numbers of available processors. Similarly, Misra [17] derives an
O(log(n))-time string matching algorithm using O(n∗length(string)) processors.
As with the above, the resulting algorithm requires a large number of processors.

Many techniques have been proposed that use Ternary Content address-
able Memories (TCAMs). Alicherry et al. [2] propose a TCAM-based multi-
byte string matching algorithm. Yu et al. [30] propose a TCAM-based scheme
for matching simple regular expressions or strings. Weinsberg et al. [29] intro-
duces the Rotating TCAM (RTCAM), which uses shifted patterns to increase
matching speeds further. In all TCAM approaches, pattern lengths are limited
to TCAM width and the complexity of acceptable regular expressions is greatly
limited. TCAMs do provide fast lookup, but they are expensive, power-hungry,
and have restrictive limits on pattern complexity that must be accommodated
in software. Our approach is not constrained by the limits of TCAM hardware
and can handle regular expressions of arbitrary complexity.

7 Conclusions

We presented speculative pattern matching method which is a powerful tech-
nique for low latency regular-expression matching. The method is based on three
important observations. The first key insight is that the serial nature of the mem-
ory accesses is the main latency-bottleneck for a traditional DFA matching. The
second observation is that a speculation that doesn’t have to be right from the
start can break this serialization. The third insight, which makes such a specula-
tion possible, is that the DFA based scanning for the intrusion detection domain
spends most of the time in a few hot states. Therefore guessing the state of the
DFA at a certain position and matching from that point on has a very good
chance that in a few steps will reach the “correct” state. Such guesses are later
on validated using a history of speculated states. The payoff comes from the fact
that in practice the validation succeeds in a few steps.

Multi-Byte Regular Expression Matching with Speculation 19

Our technique is the first method we are aware of that performs regular-
expression matching in parallel. Our results predict that speculation-based par-
allel solutions can scale very well. Moreover, as opposed to other methods in the
literature, our technique does not impose restrictions on the regular-expressions
being matched. We believe that speculation is a very powerful idea and other
applications of this technique may benefit in the context of intrusion detection.

Acknowledgements: The authors are thankful to the anonymous reviewers
and to Mihai Marchidann for their constructive comments.

References

1. A. V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. In Communications of the ACM, June 1975.

2. M. Alicherry, M. Muthuprasannap, and V. Kumar. High speed pattern matching
for network IDS/IPS. In ICNP, Nov. 2006.

3. M. Becchi and P. Crowley. An improved algorithm to accelerate regular expression
evaluation. In ANCS 2007.

4. M. Becchi and P. Crowley. Efficient regular expression evaluation: Theory to prac-
tice. In Proceedings of the 2008 ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems (ANCS). ACM, December 2008.

5. B. Brodie, R., and D. Taylor. A scalable architecture for high-throughput regular-
expression pattern matching. SIGARCH Comput. Archit. News, 34(2):191–202,
2006.

6. D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic
generation of vulnerability-based signatures. In IEEE Symposium on Security and
Privacy, May 2006.

7. C. R. Clark and D. E. Schimmel. Scalable pattern matching for high-speed net-
works. In IEEE FCCM, Apr. 2004.

8. S. Dharmapurikar and J. W. Lockwood. Fast and scalable pattern matching for
network intrusion detection systems. IEEE Journal on Selected Areas in Comm.,
24(10):1781–1792, 2006.

9. D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and A. D. Pietro. An
improved dfa for fast regular expression matching. SIGCOMM Comput. Commun.
Rev., 38(5):29–40, 2008.

10. M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection: Evasion,
traffic normalization, and end-to-end protocol semantics. In Usenix Security, Aug.
2001.

11. W. D. Hillis and J. Guy L. Steele. Data parallel algorithms. Communications of
the ACM, 29(12):1170–1183, 1986.

12. M. Jordan. Dealing with metamorphism. Virus Bulletin Weekly, 2002.
13. S. Kong, R. Smith, and C. Estan. Efficient signature matching with multiple

alphabet compression tables. In Securecomm, Sep 2008.
14. C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful intrusion detection

for high-speed networks. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 285–293, May 2002.

15. S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. In
ACM SIGCOMM, Sept. 2006.

20 D. Luchaup, R. Smith, C. Estan, S. Jha

16. R. Liu, N. Huang, C. Chen, and C. Kao. A fast string-matching algorithm for net-
work processor-based intrusion detection system. Trans. on Embedded Computing
Sys., 3(3):614–633, 2004.

17. J. Misra. Derivation of a parallel string matching algorithm. Information Process-
ing Letters, 85:255–260, 2003.

18. V. Paxson. Defending against network IDS evasion. In Recent Advances in Intru-
sion Detection (RAID), 1999.

19. T. Ptacek and T. Newsham. Insertion, evasion and denial of service: Eluding
network intrusion detection. In Secure Networks, Inc., Jan. 1998.

20. M. Roesch. Snort - lightweight intrusion detection for networks. In 13th Systems
Administration Conference. USENIX, 1999.

21. U. Shankar and V. Paxson. Active mapping: Resisting nids evasion without altering
traffic. In IEEE Symp. on Security and Privacy, May 2003.

22. R. Smith, C. Estan, and S. Jha. Deflating the big bang: Fast and scalable deep
packet inspection with extended finite automata. In SIGCOMM, August 2008.

23. R. Smith, C. Estan, and S. Jha. XFA: Faster signature matching with extended
automata. In IEEE Symposium on Security and Privacy, May 2008.

24. R. Sommer and V. Paxson. Enhancing byte-level network intrusion detection sig-
natures with context. In ACM CCS, Oct. 2003.

25. I. Sourdis and D. Pnevmatikatos. Fast, large-scale string match for a 10gbps fpga-
based network intrusion detection system. In Int. Conf. on Field Programmable
Logic and Applications, sep. 2003.

26. L. Tan and T. Sherwood. A high throughput string matching architecture for
intrusion detection and prevention. In ISCA, June 2005.

27. N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-efficient
string matching algorithms for intrusion detection. In IEEE INFOCOM 2004,
pages 333–340.

28. H. J. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield: Vulnerability-driven
network filters for preventing known vulnerability exploits. In ACM SIGCOMM,
August 2004.

29. Y. Weinsberg, S. Tzur-David, D. Dolev, and T. Anker. High performance string
matching algorithm for a network intrusion prevention system. In High Perfor-
mance Switching and Routing, 2006.

30. F. Yu, R. H. Katz, and T. Lakshman. Gigabit rate packet pattern-matching using
tcam. In In ICNP, pages 174–183, 2004.

