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Speculative Parallel Pattern Matching
Daniel Luchaup*, Randy Smith, Cristian Estan, Somesh Jha

Abstract—Intrusion prevention systems determine whether
incoming traffic matches a database of signatures, where each
signature is a regular expression and represents an attack or
a vulnerability. IPSs need to keep up with ever-increasing line
speeds, which has lead to the use of custom hardware. A major
bottleneck that IPSs face is that they scan incoming packets one
byte at a time, which limits their throughput and latency. In
this paper, we present a method to search for arbitrary regular
expressions by scanning multiple bytes in parallel using specu-
lation. We break the packet in several chunks, opportunistically
scan them in parallel and if the speculation is wrong, correct
it later. We present algorithms that apply speculation in single-
threaded software running on commodity processors as well as
algorithms for parallel hardware. Experimental results show that
speculation leads to improvements in latency and throughput in
both cases.

Index Terms—low latency, parallel pattern matching, regular
expressions, speculative pattern matching, multi-byte, multi-byte
matching, parallel regular expression matching

I. I NTRODUCTION

Most Intrusion Prevention Systems (IPSs) match incoming
traffic against a database of signatures, which are Regular
Expressions (REs) that capture attacks or vulnerabilities. IPSs
are a very important component of the security suite. For
instance, most enterprises and organizations deploy an IPS.
A significant challenge faced by IPS designers is the need to
keep up with ever-increasing line speeds, which has forced
IPSs to move to custom hardware. Most IPSs match incoming
packets against signatures one byte at a time, causing a major
bottleneck. In this paper we address this bottleneck by using
speculation to solve the problem ofmulti-byte matching, or
the problem of IPS concurrently scanning multiple bytes of a
packet.

Deterministic Finite Automata (DFAs) are popular for sig-
nature matching because multiple signatures can be merged
into one large regular expression and a single DFA can
be used to match them simultaneously with a guaranteed
robust performance ofO(1) time per byte. However, matching
network traffic against a DFA is inherently a serial activity.
We break this inherent serialization imposed by thepointer
chasingnature of DFA matching using speculation.

This paper is the extended, journal version of the work
in [18]. It makes the following contributions: we present
Speculative Parallel Pattern Matching (SPPM), a novel method
for DFA multi-byte matching which can lead to significant
speedups. Our method works by dividing the input into
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multiple chunks and scanning each of them in parallel using
traditional DFA matching. The main idea behind our algorithm
is to guess the initial state for all but the first chunk, and then
to make sure that this guess does not lead to incorrect results.
The insight that makes this work is that although the DFA for
IPS signatures can have numerous states, only a small fraction
of these states are visited often while parsing benign network
traffic. We use a new kind of speculation where gains are
obtained not only in the case of correct guesses, but also in the
most common case of incorrect ones yet whose consequences
quickly turn out to still be valid. This idea opens the door for
an entire new class of parallel multi-byte matching algorithms.

Section III presents an overview of SPPM, with details given
in Sections IV and V. We present a single-threaded SPPM
algorithm for commodity processors which improves perfor-
mance by issuing multiple independent memory accesses in
parallel, thus hiding part of the memory latency. Measurements
show that by breaking the input into two chunks, this algorithm
can achieve an average of 40% improvement over the tradi-
tional matching procedure. We also present SPPM algorithms
suitable for platforms where parallel processing units share
a copy of the DFA to be matched. Our models show that
when using up to 100 processing units our algorithm achieves
significant reductions in latency. Increases in throughput due
to using multiple processing units are close to the maximum
increase afforded by the hardware.

II. BACKGROUND

A. Regular Expression Matching – a Performance Problem

Signature matching is a performance-critical operation in
which attack or vulnerability signatures are expressed as regu-
lar expressions and matched with DFAs. For faster processing,
DFAs for distinct signatures such as. * user. * root. * and
. * vulnerability. * are combined into a single DFA that
simultaneously represents all the signatures. Given a DFA
corresponding to a set of signatures, and an input string
representing the network traffic, an IPS needs to decide if the
DFA accepts the input string. Algorithm 1 gives the procedure
for the traditional matching algorithm.

Modern memories have large throughput and large latencies:
one memory access takes many cycles to return a result, but
one or more requests can be issued every cycle. Suppose that
readingDFA[state][input char] results in a memory access1

that takesM cycles2. Ideally the processor would schedule
other operations while waiting for the result of the read from
memory, but in Algorithm 1 each iteration is data-dependent
on the previous one: the algorithm cannot proceed with the

1Assuming that the two indexes are combined in a single offset in a linear
array

2On average. Caching may reduce the average, but our analysis still holds
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Input : DFA = the transition table
Input : I = the input string,|I| = length of I
Output : Does the input match the DFA?

1 state← start state;
2 for i = 0 to |I| do
3 input char← I[i];
4 state← DFA[state][input char];
5 if accepting (state) then
6 return MatchFound ;

7 return NoMatch ;

Algorithm 1: Traditional DFA matching.

next iteration before completing the memory access of the
current step because it needs the new value for thestate
variable (in compiler terms,M is the Recurrence Minimum
Initiation Interval). Thus the performance of the system is
limited due to the pointer chasing nature of the algorithm.

If |I| is the number of bytes in the input and if the entire
input is scanned, then the duration of the algorithm is at
leastM ∗ |I| cycles, regardless of how fast the CPU is. This
algorithm is purely sequential and can not be parallelized.

Multi-bytematching methods attempt to consume more than
one byte at a time, possibly issuing multiple overlapping
memory reads in each iteration. An idealmulti-bytematching
algorithm based on the traditional DFA method and consuming
B bytes could approach a running time ofM ∗ |I|/B cycles,
a factor ofB improvement over the traditional algorithm.

B. Signature Types

Suffix-closed Regular Expressionsover an alphabetΣ are
Regular Expressions with the property that if they match a
string, then they match that string followed by any suffix.
Formally, their languageL has the property thatx ∈ L ⇔
∀w ∈ (Σ)∗ : xw ∈ L. All signatures used by IPSs are suffix-
closed. Algorithm 1 uses this fact by checking for accepting
states after each input character instead of checking only after
the last one. This is not a change we introduced, but a widely
accepted practice for IPSs.

Prefix-closed Regular Expressions(PREs) over an alpha-
bet Σ are regular expressions whose languageL has the
property that x ∈ L ⇔ ∀w ∈ (Σ)∗ : wx ∈ L.
For instance,. * ok. * stuff. * |. * other. * is a PRE, but
. * ok. * |bad. * is not, because thebad. * part can only
match at the beginning and is not prefix-closed. In the lit-
erature, non-PRE signatures such asbad. * are also called
anchoredsignatures. A large fraction of signatures found in
IPSs are prefix-closed.

When we need to make an explicit distinction against
PRE, as a notational convenience we use the termGeneral
Regular Expressions(GRE) for unrestricted, arbitrary regular
expressions.

III. OVERVIEW

The core idea behind theSpeculative Parallel Pattern
Matching (SPPM) method is to divide the input into two or
more chunks of the same size and process themin parallel.

We assume that the common case isnot finding a match,
although speedup gains are possible even in the presence of
matches. As is customary in IPSs, all our regular expressions
are suffix closed. Additionally, at this point we only match REs
that are prefix closed (PRE), a restriction that will be lifted in
Sec. V. In the rest of this section we informally present the
method by example, we give statistical evidence explaining
why speculation is often successful, and we discuss ways of
measuring and modeling the effects of speculation on latency
and throughput.

A. Example of Using Speculation

As an example, consider matching the input
I=AVOIDS_VIRULENCE against the DFA recognizing
the regular expression. * VIRUS shown in Fig. 1. We
break the input into two chunks,I1=AVOIDS_V and
I2=IRULENCE, and perform two traditional DFA scans
in parallel. A Primary process scansI1 and a Secondary
process scansI2. Both use the same DFA, shown in Fig. 1.
To simplify the discussion, we assume for now that the
Primary and the Secondary are separate processors operating
in lockstep. At each step they consume one character from
each chunk, for a total of two characters in parallel.

To ensure correctness, the start state of the Secondary should
be the final state of the Primary, but that state is initially
unknown. We speculate by using the DFA’s start state, State
0 in this case, as a start state for the Secondary and rely on a
subsequent validation stage to ensure that this speculation does
not lead to incorrect results. In preparation for this validation
stage the Secondary also records its state after each input
character in aHistory buffer.

Figure 2 shows a trace of the two stages of the speculative
matching algorithm. During theparallel processing stage,
eachstep ientry shows for both the Primary and the Secondary
the new state after parsing thei-th input character in the cor-
responding chunk, as well as the history buffer being written
by the Secondary. At the end of step 8, the parallel processing
stage ends and the Secondary finishes parsing without finding a
match. At this point theHistory buffer contains 8 saved states.
During the validation stage, steps 9-12, the Primary keeps
processing the input and compares its current state with the
state corresponding to the same input character that was saved
by the Secondary in the History buffer. At step 9 the Primary
transitions on input ’I’ from state 1 to state 2 which is different
from 0, the state recorded for that position. Since the Primary
and the Secondary disagree on the state after the 9-th, 10-th
and 11-th characters, the Primary continues until step 12 when
they agree by reaching state 0. Once thiscouplingbetween the
Primary and Secondary happens, it is not necessary for the
Primary to continue processing because it would go through
the same transitions and make the same acceptance decisions
as the Secondary. We use the termvalidation regionto refer
to the portion of the input processed by both the Primary and
the Secondary (the stringIRUL in this example).Coupling is
the event when the validation succeeds in finding a common
state.

In our case, the input is 16 bytes long but the speculative
algorithm ends after only 12 iterations. Note that for differ-
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Fig. 1. DFA for . * VIRUS; dotted
lines show transitions taken when no
other transitions apply.

Input A V O I D S V I R U L E N C E
step 1 0 0
step 2 1 0 0
step 3 0 0 0 0
step 4 0 0 0 0 0
step 5 0 0 0 0 0 0
step 6 0 0 0 0 0 0 0
step 7 0 0 0 0 0 0 0 0
step 8 1 0 0 0 0 0 0 0 0
step 9 2 6=0, 0 0 0 0 0 0 0
step 10 3 6=0, 0 0 0 0 0 0
step 11 4 6=0, 0 0 0 0 0
step 12 0=0, 0 0 0 0

Fig. 2. Trace for the speculative parallel matching ofP=. * VIRUS in I=AVOIDS_VIRULENCE. During the
parallel stage, steps 1-8, the Primary scans the first chunk. The Secondary scans the second chunk and updates
the history buffer. The Primary uses the history during validation stage, steps 9-12, while re-scanning part of
the input scanned by the Secondary till agreement happens at step 12.

ent inputs, such asSOMETHING_ELSE.., the speculative
method would stop after only 9 steps, since both halves
will see only state 0. The performance gain from speculative
matching occurs only if the Primary does not need to process
the whole input. Although we guess the starting state for the
Secondary, performance improvements do not depend on this
guess being right, but rather on validation succeeding quickly,
i.e. having a validation region much smaller than the second
chunk.

B. Statistical Support for Speculative Matching

In this section we provide an intuitive explanation behind
our approach. We define adefault transitionto be a transition
on an input character that does not advance towards an
accepting state, such as the transitions shown with dotted lines
in Fig. 1. If we look at Fig. 1, we see that the automaton
for . * VIRUS. * will likely spend most of its time in state 0
because of the default transitions leading to state 0. Figure 2
shows that indeed 0 is the most frequent state. In general, it
is very likely that there are just a fewhot states in the DFA,
which are the target states for most of the transitions. This is
particularly true for PREs because they start with. * and this
usually corresponds to an initial state with default transitions
to itself.

For instance, we constructed the DFA composed from 768
PREs from Snort and measured the state frequencies when
scanning a sample of real world HTTP traffic. Fig. 3 displays
the resultingCumulative Distribution Function(cdf) graph
when the states are ordered in decreasing order of frequency.
Most time is spend in a relatively small number of states. The
most frequent state occurs in 33.8% of all transitions, and the
first 6 states account for 50% of the transitions.

The key point is that there is a state that occurs with a
relatively high frequency, 33.8% in our case. A back-of-the-
envelope calculation shows that it is quite likely that both
halves will soon reach that state. Indeed, assume a pure proba-
bilistic model where a stateS occurs with a 33.8% probability
at any position. The chances for coupling due to stateS at a
given position are0.3382 = 0.114. Equivalently, the chances
that such coupling does not happen are1− 0.3382 = 0.886.
However, the chances that disagreement happens on each of

h consecutive positions are0.886h, which decreases quickly
with h. The probability for coupling in one of20 different
positions is1 − 0.88620 = 0.912. Even if the frequency of a
stateS was 5% instead of 33.8%, it would take 45 steps to
have a probability greater than 90% for two halves to reach
state S. While 45 steps may seem high, it is only a tiny
fraction, 3%, compared to the typical maximum TCP packet
length of 1500 bytes. In other words, we contend that the
length of the validation region will be small.

Note that the high probability of coupling in a small number
of steps is based on a heavily biased distribution of frequencies
among theN states of the DFA. If all states were equally
probable, then the expected number of steps to coupling would
be O(N). This would make coupling extremely unlikely for
automata with large numbers of states.

C. Performance Metrics

One fundamental reason why speculation improves the
performance of signature matching is that completing two
memory accesses in parallel takes less time than completing
them serially. While thelatenciesof memories remain large,
the achievablethroughput is high because many memory
accesses can be completed in parallel.

When we apply SPPM in single-threaded software settings,
the processing time for packets determines both the throughput
and the latency of the system as packets are processed one at
a time. Our measurements show that SPPM improves both
latency and throughput. When compared to other approaches
using a parallel architecture, SPPM improves latency signifi-
cantly and achieves a throughput close to the limits imposed
by hardware constraints.

IV. SPECULATIVE MATCHING

Speculative Parallel Pattern Matching is a general method.
Depending on the hardware platform, the desired output, the
signature types, or other parameters, one can have a wide
variety of algorithms based on SPPM. This section starts by
formalizing the example from Section III-A and by introducing
a simplified performance model for evaluating the benefits
of speculation. Then we present basic SPPM algorithms for
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Fig. 3. The state frequencycdf graph for a PRE composed of 768 Snort signatures.
The most frequent state accounts for 33.8% of the time and the first 6 most frequent
states account for half the time.

Metric Definition
Useful work Number of bytes scanned,|I|
Processing latency (L) Number of parallel steps/iterations
Speedup (S) S = |I|/L
Processing cost (P ) P = N · L
Processing efficiency (Pe) Pe = |I|/(N · L)
Memory cost (M ) Number of accesses to DFA table
Memory efficiency (Me) Me = |I|/M
Size of validation region (V ) Number of steps in validation stage

Fig. 4. Simplified performance model metrics (N is number
of processors).

Input : DFA = the transition table
Input : I = the input string
Output : Does the input match the DFA?
// Initialization stage

1 len← |I| ; // Input length
2 (len1, len2)← (dlen/2e, blen/2c); // Chunk sizes
3 (chunk1, chunk2)← (&I, &I + len1); // Chunks
4 (S1, S2)← (start state, start state); // Start states
5 history[len1 − 1]← error state ; // Sentinel

// Parallel processing stage
6 for i = 0 to len2 − 1 do
7 forall the k ∈ {1, 2} do in parallel
8 ck ← chunkk[i];
9 Sk ← DFA[Sk][ck];

10 if accepting (Sk) then
11 return MatchFound ;

12 history[len1 + i]← S2 ; // On Secondary
13 i← i + 1;

// Validation stage (on Primary)
14 while i < len do
15 c1 ← I[i];
16 S1 ← DFA[S1][c1];
17 if accepting (S1) then
18 return MatchFound ;

19 if S1 == history[i] then
20 break ;

21 i← i + 1;

22 return NoMatch ; // Primary finished processing

Algorithm 2: Parallel SPPM with two chunks. Accepts
PREs.

single-threaded software and for simple parallel hardware.
Section V shows variants that are not constrained by the
simplifying assumptions.

A. Basic SPPM Algorithm

Algorithm 2 shows the pseudocode for the informal example
from Sect. III-A. The algorithm processes the input in three
stages.

During the initialization stage (lines 1-5), the input is
divided into two chunks and the state variables for the Primary
and Secondary are initialized. During theparallel process-
ing stage (lines 6-13), both processors scan their chunks in
lockstep. If either the Primary or the Secondary reach an

accepting state (line 10), we declare a match and finish the
algorithm (line 11). The Secondary records (line 12) the states
it visits in the history buffer (for simplicity, the history buffer
is as large as the input, but only its second half is actually
used). During thevalidation stage (lines 14-21), the Primary
continues processing the Secondary’s chunk. It still must check
for accepting states as it may see a different sequence of
states than the Secondary. There are three possible outcomes:
a match is found and the algorithm returns success (line 18),
coupling occurs before the end of the second chunk (line 20)
or the entire second chunk is traversed again. If the input has
an odd number of bytes, the first chunk is one byte longer,
and a sentinel is setup at line 5 such that the validation step
will ignore it.

Correctness of Algorithm 2: If during the parallel processing
stage the Secondary reaches thereturn at line 11, then the
Secondary found a match on its chunk. Since our assumption is
that we search for a prefix-closed regular expression, a match
in the second chunk guarantees a match on the entire input.
Therefore it is safe to return with a match.

If the algorithm executes thebreak at line 20, then the
Primary reaches a state also reached by the Secondary. Since
the behavior of a DFA depends only on the current state and
the rest of the input, we know that if the Primary would
continue searching, from that point on it would redundantly
follow the steps of the Secondary which did not find a match,
so it is safe to break the loop and return without a match.

In all the other cases, the algorithm acts like an instance of
Algorithm 1 performed by the Primary where the existence of
the Secondary can be ignored.
To conclude, Algorithm 2 reports a match if and only if the
input contains one.

Simplified performance models:Our evaluation of SPPM in-
cludes actual measurements of performance improvements on
single-threaded software platforms. But to understand the per-
formance gains possible through speculation and to estimate
the performance for parallel platforms with different bottle-
necks we use a simplified model of performance. Because the
input and the history buffer are small (1.5KB for a maximum-
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sized packet) and are accessed sequentially they should fit in
fast memory (cache) and we do not account for accesses to
them. We focus our discussion and our performance model
on the accesses to the DFA table. Figure 4 summarizes the
relevant metrics.

We use the number of steps (iterations) in the parallel pro-
cessing,|I|/2, and in the validation stage,V , to approximate
the processing latency: L = |I|

2 + V .
Each of these iterations contains one access to the DFA

table. The latency of processing an inputI with the traditional
matching algorithm (Algorithm 1) would be|I| steps, hence
we define thespeedup(latency reduction) asS = |I|

L =
|I|

|I|/2+V = 2
1+2V/|I| .

The useful work performed by the parallel algorithm is
scanning the entire input, therefore equivalent to|I| serial
steps. This is achieved by usingN = 2 processing units
(PUs), the Primary and Secondary, for a duration ofL par-
allel steps. Thus, the amount of processing resources used
(assuming synchronization between PUs), theprocessing cost
is P = N · L and we define theprocessing efficiencyas
Pe = useful work

processing cost = |I|
N ·L = |I|

2·(|I|/2+V ) = 1
1+2V/|I| .

Another potential limiting factor for system performance is
memory throughput: the number of memory accesses that can
be performed during unit time. We definememory cost, M , as
the number of accesses to the DFA data structure by all PUs,
M = |I|+ V . Note thatM ≤ N ·L as during the validation
stage the Secondary does not perform memory accesses. We
define memory efficiencyas Me = |I|

M = |I|
|I|+V = 1

1+V/|I|
and it reflects the ratio between the throughput achievable by
running the reference algorithm in parallel on many packets
and the throughput we achieve using speculation. BothPe

and Me can be used to characterize system throughput:Pe

is appropriate when tight synchronization between the PUs is
enforced (e.g. SIMD architectures) and the processing capacity
is the limiting factor,Me is relevant when memory throughput
is the limiting factor.

Performance of Algorithm 2: In the worst case, no match
is found, and coupling between Primary and Secondary does
not happen (V = |I|/2). In this case the Primary follows
a traditional search of the input and all the actions of the
Secondary are overhead. We getL = |I|, S = 1, Pe = 50%,
M = 1.5|I|, and Me = 67%. In practice, because the work
during the iterations is slightly more complex than for the
reference algorithm (the secondary updates the history), we
can even get a small slowdown, but the latency cannot be
much lower than that of the reference algorithm.

In the common case, no match occurs andV ¿ |I|/2.
We haveS = 2

1+2V/|I| , Pe = 1
1+2V/|I| , M = |I|+V/|I|, and

Me = 1
1+V/|I| , whereV/|I| ¿ 1. Thus the latency is typically

close to half the latency of the reference implementation and
the throughput achieved is very close to that achievable by just
running the reference implementation in parallel on separate
packets.

In the uncommon case where matches are found, the latency
is the same as for the reference implementation if the match is
found by the Primary. If the match is found by the Secondary,
the speedup can be much larger than2.

Input : DFA = the transition table
Input : I = the input string
Output : Does the input match the DFA?
// Initialization as in Algorithm 2

1 ...
6 for i = 0 to len2 − 1 do
7 c1 ← chunk1[i];
8 c2 ← chunk2[i];
9 S1 ← DFA[S1][c1];

10 S2 ← DFA[S2][c2];
11 if accepting (S1)||accepting (S2) then
12 return MatchFound ;

13 history[len1 + i]← S2;
14 i← i + 1;

// Validation as in Algorithm 2

15 ...

Algorithm 3: Single-threaded SPPM with two chunks.
Accepts PREs.

B. SPPM for Single-threaded Software

Algorithm 3 shows how to apply SPPM for single-threaded
software. We simply rewrite the parallel part of Algorithm 2 in
a serial fashion with the two table accesses placed one after
the other. Except for this serialization, everything else is as
in Algorithm 2 and we omit showing the common parts. The
duration of one step (lines 6-14) increases and the number of
steps decreases as compared to Algorithm 1. The two memory
accesses at lines 9-10 can overlap in time, so the duration
of a step increases but does not double. If the validation
region is small, the number of steps is little over half the
original number of steps. The reduction in the number of
steps depends only on the input and on the DFA whereas the
increase in the duration of a step also depends on the specific
hardware (processor and memory). Our measurements show
that speculation leads to an overall reduction in processing
time and the magnitude of the reduction depends on the
platform. The more instructions the processor can execute
during a memory access, the larger the benefit of speculation.

This algorithm can be generalized to work withN > 2
chunks, but the number of variables increases (e.g. a separate
state variable needs to be kept for each chunk). If the number
of variables increases beyond what can fit in the processor’s
registers, the overall result is a slowdown. We implemented
a single-threaded SPPM algorithm with 3 chunks, but, on the
platforms we evaluated, its performance was not satisfactory,
so we only report results for the 2-chunk version.

C. SPPM for Parallel Hardware

Algorithm 4 generalizes Algorithm 2 for the case whereN
PUs work in parallel onN chunks of the input. We present
this unoptimized version due to its simplicity.

Lines 2-5 initialize the PUs. They all start parsing from the
initial state of the DFA. They are assigned starting positions
evenly distributed in the input buffer: PUk starts scanning at
position b(k − 1) ∗ |I|/Nc. During the parallel processing
stage(lines 6-13) all PUs perform the traditional DFA process-
ing for their chunks and record the states traversed in history
(this is redundant forPU1). The first N−1 PUs participate
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Input : DFA = the transition table
Input : I = the input string (|I| =input length)
Output : Does the input match the DFA?

1 len← |I|;
2 forall the PUk, k ∈ {1..N} do in parallel
3 indexk ← start position of k-th chunk;
4 statek ← start state;

5 history[0..len− 1]← error state; // sentinel
// Parallel processing stage

6 while index1 < b|I|/Nc do
7 forall the PUk, k ∈ {1..N} do in parallel
8 inputk ← I[indexk];
9 statek ← DFA[statek][inputk];

10 if accepting (statek) then
11 return MatchFound ;

12 history[indexk] = statek;
13 indexk ← indexk + 1;

14 forall PUk, k ∈ {1..N − 1} do in parallel activek ← true ;
15 while there are active PUsdo
16 forall the PUk such that(activek == true) do in parallel
17 inputk ← I[indexk];
18 statek ← DFA[statek][inputk];
19 if accepting (statek) then
20 return MatchFound ;

21 if history[indexk] == statek OR indexk == len− 1
then

22 activek ← false;
23 else
24 history[indexk] = statek;
25 indexk ← indexk + 1;

26 return NoMatch ;

Algorithm 4: SPPM procedure for matching PREs with
N processing units.

in the validation stage (lines 14-25). A PU stops (becomes
inactive) whencoupling with the right neighbor happens, or
when it reaches the end of the input. Active PUs perform
all actions performed during normal processing (including
updating the history).

The algorithm ends when all PUs become inactive.

Linear History Is Relatively Optimal: Algorithm 4 uses
a linear history: for each position in the input, exactly
one state is remembered – the state saved by the most
recent PU that scanned that position. ThusPUk sees the
states saved byPUk+1, which overwrite the states saved by
PUk+2, PUk+3, ..., PUN .

Since we want a PU to stop as soon as possible, a natural
question arises: wouldPUk have a better chance ofcoupling
if it checked the states forall of PUk+1, PUk+2, ..., PUN

instead of justPUk+1? Would a 2-dimensional history that
saves the set of all the states obtained by preceding PUs at
a position offer better information than a linear history that
saves only the most recent state? In what follows we show
that the answer isno: the most recent state is also the most
accurate one. If for a certain input position,PUk agrees with
any of PUk+1, PUk+2, ..., PUN then PUk must also agree
with PUk+1 at that position. We obtain this by substituting
in the following theoremchunkk for w1, the concatenation of
chunksk+1 to k+j−1 for w2 and any prefix ofchunkk+j for
w3. We use the notationw1w2 to represent the concatenation

of stringsw1 andw2; andδ(S, w) to denote the state reached
by the DFA starting from stateS and transitioning for each
character in stringw.

Theorem 1 (monotony of PRE parsing):Assume that DFA
is the minimized deterministic finite automaton accepting
a prefix-closed regular expression, withS0 = the start
state of the DFA. For anyw1, w2, w3 input strings we
have: δ(S0, w1w2w3) = δ(S0, w3) ⇒ δ(S0, w1w2w3) =
δ(S0, w2w3).

Proof: Let S1 = δ(S0, w1w2w3) = δ(S0, w3) and S2 =
δ(S0, w2w3). Assume, by contradiction, thatS1 6= S2. Since
DFA is minimal, there must be a stringw such that only one
of δ(S1, w) and δ(S2, w) is an accepting state and the other
one is not.
AssumeL = the language accepted by the DFA.
We have two cases:

1) δ(S1, w) accepting and δ(S2, w) is not. Since
δ(S1, w) = δ(δ(S0, w3), w) = δ(S0, w3w) we
have δ(S1, w) accepting ⇒ δ(S0, w3w) accepting.
Hence w3w ∈ L. Since L is prefix closed,
w3w ∈ L ⇒ w2w3w ∈ L ⇒ δ(S0, w2w3w) accepting.
But δ(S0, w2w3w) = δ(δ(S0, w2w3), w) = δ(S2, w).
Therefore δ(S2, w) is accepting, which is a
contradiction.

2) δ(S2, w) is accepting andδ(S1, w) is not. Then
δ(S2, w) = δ(δ(S0, w2w3), w) = δ(S0, w2w3w) is
accepting. Hencew2w3w ∈ L. Since L is prefix
closed, w2w3w ∈ L ⇒ w1w2w3w ∈ L. We have
w1w2w3w ∈ L ⇔ δ(S0, w1w2w3w) is accepting. But,
δ(S0, w1w2w3w) = δ(δ(S0, w1w2w3), w) = δ(S1, w).
Thereforeδ(S1, w) is accepting, which is also a contra-
diction.

Both cases lead to contradiction, so our assumption was wrong
andS1 = S2.
Performance of Algorithm 4:

For validation regionk, we defineVk as the portion of
the packet processed byPUk during validation, so it can go
beyond the end of chunkk + 1. Let Vk be the length of the
validation regionk, Vmax = maxN

k=1 Vk, andVΣ =
∑N

k=1 Vk

.
We get the following performance metrics (see Fig.5) :

processing latency L = |I|
N + Vmax

speedup S = |I|
L = N

1+N ·Vmax/|I|
processing cost P = N · L
processing efficiency Pe = |I|

P = 1
1+N ·Vmax/|I|

memory cost M = |I|+ VΣ

memory efficiency Me = |I|
M = 1

1+VΣ/|I|

(1)

In the worst case (no coupling for any of the chunks)Vk =
|I|−k|I|/N (ignoring rounding effects),Vmax = |I|(1−1/N)
andVΣ = (N − 1)|I|/2 which results in a latency ofL = |I|
(no speedup, but no slowdown either), a processing efficiency
of Pe = 1/N , and a memory efficiency ofMe ≈ 2/N . Note
that the processing efficiency and the memory efficiency do
not need to be tightly coupled. For example if there is no
coupling for the first chunk, but coupling happens fast for the
others, the latency is stillL = |I| and thusPe = 1/N , but
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Fig. 5. Performance Metrics for one packet withI payload bytes.

Me ≈ 50% as most of the input is processed twice. But our
experiments show that forN below 100, the validation regions
are typically much smaller than the chunks and the speedups
we get are on the order ofS ≈ N and efficiencies are high.

We note here that SPPM always achieves efficiencies of
less than100% on systems using parallel hardware: within our
model, the ideal throughput one can obtain by having the PUs
work on multiple packet in parallel is always slightly higher
than with SPPM. The benefit of SPPM is that the latency of
processing a single packet decreases significantly. This can
help reduce the size of buffers needed for packets (or the
fraction of the cache used to hold them) and may reduce the
overall latency of the IPSs which may be important for traffic
with tight service quality requirements. Furthermore systems
using SPPM can break the workload into fixed-size chunks as
opposed to variable-sized packets which simplifies scheduling
in tightly coupled SIMD architectures where the processing
cost is determined by the size of the largest packet (or chunk)
in the batch. This can ultimately improve throughput as there is
no need to batch together packets of different sizes. Due to the
complexity of parallel hardware in IPSs with, the performance
depends on the specifics of the system beyond those captured
by our model whether SPPM, simple parallelization, or a mix
of the two is the best way to achieve good performance.

V. RELAXING THE ASSUMPTIONS

A. Anchored Regular Expressions

Algorithm 4 requires signatures that are PRE in order to
avoid false matches. This raises the issue of what to do
with the remaining signatures which areanchored. There are
three options: (1) treat them separately; or (2) devise a new
algorithm (Sect. V-B) ; or (3) mix them with the prefix closed
signatures and use Algorithm 4 with the cost of false positives.
In this section we give an argument for the first option. If
we partition the signature set into two sets, one containing
only PRE and the other containing only anchored expressions,

then for the PRE subset we can use Algorithm 4, and for
the anchored subset a very fast matching algorithm based on
rejecting states.

Algorithm 1 only checks for accepting states, so it needs
to scan the entire input to declare that there is no match.
However if the expression is anchored, usually only part of
the input needs to be scanned. Consider the anchored regular
expressionVIRUS, which matches the stringVIRUS only at
the beginning of the input, in contrast with. * VIRUS. * . For
VIRUS we only need to scan the first five characters in the
input to tell if a match occurs or not. This relies onrejecting
stateswhich are states that are not accepting and have all
transitions back to themselves. Once a DFA enters a rejecting
state, it cannot exit it and therefore it cannot reach an accepting
state. A minimized DFA has at most one rejecting state, which
makes checking for it easy. Not every DFA has such states
but the DFA corresponding to a set containing only anchored
expressions is likely to have one.

Lemma 1 (existence of REJECTING states):If a DFA (not
necessarily minimized) has rejecting states then the language
accepted by the DFA contains no subset that is prefix closed.

Note that the reciprocal is not true (consider a DFA that
accepts even length strings).

Proof: Let S0 be the starting state andS1 a rejecting
state. Then there must be a stringw such thatS1 = δ(S0, w).
Assume, by contradiction, that the DFA acceptsY , a prefix
closed string set. Letx ∈ Y . Y is prefix closed⇒ wx ∈
Y ⇒ δ(S0, wx) is an accepting state. Butδ(S0, wx) =
δ(δ(S0, w), x) = δ(S1, x) = S1, becauseS1 is a rejecting
state without any outgoing transitions. HenceS1 should be
both a rejecting state and accepting, which is a contradiction.

Expressions such aŝVIRUS matchVIRUS at the begin-
ning of the input or after a new line.ˆVIRUS can be separated
into VIRUS which is anchored and. * \x11VIRUS which is
prefix closed (\x11 stands for newline). This distinction can
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Input : DFA = the transition table
Input : I = the input string
Result: Does the input match the DFA?

1 state← start state;
2 for i = 0 to length(I) do
3 input char← I[i];
4 state← DFA[state][input char];
5 if accepting (state) then
6 return true ;

7 if rejecting (state) then
8 return false ;

9 return false ;

Algorithm 5: DFA matching anchored-only expressions
which have a rejecting state

be performed for all signatures. Thus, the language described
by the entire signature set is the union of the languages for
two disjoint sets of signatures: one containing only anchored
expressions, and one containing only PRE. For the later SPPM
can be used. For the former, we can use Algorithm 5 which is
Algorithm 1 modified to check for both accepting and rejecting
states.

For the set of anchored signatures extracted from Snort,
Algorithm 5 outperforms the traditional DFA algorithm by
orders of magnitude. Such speedups require the existence of
rejecting states and according to Lemma 1 this requires a
separation between anchored and prefix closed expressions.

B. General Case: Matching General Regular Expressions
(GRE)

The most general case is when the IPS uses unrestricted,
general regular expressions (GRE) and it requires an ordered
list of all matches. In this case, we must change the way
Algorithm 4 handles matches.

The basic SPPM algorithms require prefix-closed expres-
sions only because Secondaries are allowed to safely report a
match if they reach an accepting state. For non-PRE such as
. * ok|bad , the matches found by Secondaries (which start
processing from the start state of the DFA) may be false
matches such as in the case when the stringbad occurs at
the beginning of the second chunk, not at the beginning of the
input. The SPPM version described in Algorithm 6 avoids this
problem.

The separation ofparallel stageand validation stageinto
separate loops in Algorithm 4 was meant for ease of under-
standing, but the two loops can be combined. This is the format
used in Algorithm 6 which generalizes Algorithm 4 to handle
GRE. The main difference is that matches are not reported
immediately. Instead, a global flag,potential match, records
that a potential match was found and scanning is continued.

Claim 1 (Invariant:same trace as a traditional DFA):
When line 18 is reached each input byte was processed and
the corresponding position in the history buffer holds the same
state as that obtained by the traditional DFA algorithm after
processing that position. Hence the history buffer contains
exactly the same sequence (trace) of states that the traditional

Input : DFA = the transition table
Input : I = the input string (|I| =input length)
Input : STATES = starting states (onlySTATES[1]

must bestart state)
Output : Does the input match the DFA?

1 len← |I|;
2 forall the PUk, k ∈ {1..N} do in parallel
3 indexk ← start position of k-th chunk;
4 statek ← STATES[k];
5 activek ← (indexk < |I|);
6 history[0..len− 1]← error state; // sentinel
7 potential match← false;
8 forall the PUk such that(activek == true) do in parallel
9 inputk ← I[indexk];

10 statek ← DFA[statek][inputk];
11 if accepting (statek) then
12 potential match← true; // but keep going

13 if history[indexk] == statek OR indexk == len− 1 then
14 activek ← false;
15 else
16 history[indexk] = statek;
17 indexk ← indexk + 1;

18 if potential match == true then
// history contains only valid states! In

fact, the trace of a traditional DFA
19 indexk ← start position of k-th chunk;
20 forall the PUk, k ∈ {1..N} do in parallel
21 while indexk < end position of k-th chunk do
22 if accepting (history[indexk]) then
23 return MatchFound ;

24 indexk ← indexk + 1;

25 return NoMatch ;

Algorithm 6: SPPM with N processing Units (PUs).
Matches GREs. The initial state for non-Primary PUs
can be any state.

DFA matching would have produced (using the same input
and transition table).

Proof: The initial division of the input in at mostN
chunks covers the entire input. Therefore for each input byte
there is a chunk covering it. Consider thei−th input byte
and let chunkk be the chunk containing it.PUk becomes
inactive only when one of two conditions are satisfied:PUk

reaches the end of the input, orPUk couples with somePUk+l

(remember thathistory is initialized to hold an invalid state
as a sentinel in all positions). But the end of the input is at
or after positioni and coupling withPUk+l can only happen
after the starting position ofchunkk+l. Hence, positioni is
processed at least once. We use induction oni to prove that the
resulting value ofhistory[i] is the same state as that obtained
by the traditional DFA algorithm. This is clearly true fori = 0
since it falls in the Primary chunk. Assume that the property
holds for ∀i < n and we’ll prove that it also holds forn.
Let PUp be the lastPU that processed positionn (there is at
least one suchPU according to the first half of this claim). If
p = 1 thenPUp is the Primary which starts in the same initial
state as the traditional DFA and obviously traverses the same
sequence of states while active. Ifp > 1, then∀j < p : PUj

must have stopped before positionn. Let m be the largest
position processed by anyPUj , j < p. SincePUp−1 cannot
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stop before the beginning ofchunkp, it follows that position
m was also processed byPUp. Since the lastPU to visit m
did not visit the next positionm + 1, it follows that the last
visitor of m coupled withPUp at positionm. By induction
hypothesishistory[m] is the same as for a traditional DFA.
Sincehistory[m] was the state produced byPUp it follows
that all states produced byPUp after positionm, positionn
included, are the same as for a traditional DFA. Hence the
property holds for positionn which concludes the induction
proof.

After scanning the entire input, at line 18, we must decide
if any potential matches are indeed real matches. For this,
we simply look at the states saved in the history and report
the accepting ones. This is sound according to Claim 1. The
common case in IPSs is that no matches are found so the
overhead for the extra bookkeeping is incurred only for a small
fraction of the packets.

Algorithm 6 addresses two additional issues: flexibility in
the choice of secondary starting states and matching semantics:
Flexibility in Secondary Starting States: The starting state
for a Secondary no longer has to be the same as the initial
state of the DFA. This allows for the choice of other convenient
state such as the most frequent one, which in the presence of
anchored expressions might not be the initial state.
Flexibility in Matching Semantics: The basic matching
algorithm is often extended to return more information than
just whether a match occurred or not: the offset within the
input where the accepting state has been reached and/or the
signature number for that matched (a single DFA typically
tracks multiple signatures). Furthermore, multiple matches
may exist as the reference algorithm may visit accepting
states more than once. For example if one recognizes the
two signatures. * day and . * week with a single DFA and
the input isThis week on Monday night! , we have a
match for the second signature at the end of the second word
and one for the first signature at the end of the fourth word.
Since thehistory buffer contains the same trace as that of a
serial DFA, one can get either the first match or all matches
by changing the search order at lines 20-24. Algorithm 6 can
return any information about the matches that the traditional
algorithm can.

C. Bounding the Validation Region

In the worst case speculation fails and the whole input is
traversed sequentially. There is nothing we can do to guarantee
a worst case latency smaller thanI and equivalently a process-
ing efficiency of more than1/N . But we can ensure that the
memory efficiency is larger than2/N which corresponds to
the case where all PUs traverse the input to the end. We can
limit the size of each validation region toV positions, and
stop the validation stage for all PUs other than the primary
when they reach that limit, as shown in Algorithm 7. IfV is
large enough convergence may still happen (see Sec.VI-F),
but we bound the number of memory accesses performed
during the validation stage to(N − 2)V for the N − 2 non-
primary PUs doing validation and|I|− |I|/N for the primary.
Thus M ≤ |I|(2 − 1/N) + (N − 2)V < 2|I| + NV and
Me > 1/(2 + NV/|I|).

1 ..... Input : VMAX = the maximum validation size.....
2 len← |I|;
3 forall the PUk, k ∈ {2..N − 1} do in parallel
4 endk ←MIN(indexk+1 + VMAX + 1, len);

5 end1 ← endN ← len;
// ... other initialization ...

6 forall the PUk such that(activek == true) do in parallel
7 inputk ← I[indexk];
8 statek ← DFA[statek][inputk];
9 if accepting (statek) then

10 potential match← true; // but keep going

11 if history[indexk] == statek then
12 activek ← false;
13 else
14 history[indexk] = statek;
15 indexk ← indexk + 1;
16 if indexk == endk then
17 activek ← false;

18 ok limit← len;
19 forall the k, k ∈ {1..N − 1} do
20 if indexk ≥ endk then
21 ok limit← endk;
22 state← statek;
23 for i = ok limit to len− 1 do
24 c← I[i];
25 state← DFA[state][c];
26 if accepting (state) then
27 return MatchFound ;

28 if potential match == true then
29 for i = 0 to ok limit− 1 do
30 c← I[i];
31 state← DFA[state][c];
32 if accepting (state) then
33 return MatchFound ;

34 return NoMatch ;

Algorithm 7: SPPM with N PUs, using bounded vali-
dation region.Matches PRE.

VI. EXPERIMENTAL EVALUATION

We compared results using SPPM against the traditional
DFA method. There are many more variations of SPPM than
we can cover here. But the cases that we do cover show
that SPPM has very good potential for massive parallelization
of pattern matching. The simple, single threaded version can
achieve speedups of 40%, and these are larger on faster CPUs.
Simulation of parallel SPPM show that the speedup can be
almost linear inN = the number of CPUs, even for values of
N as large as 50. This is because typically validation happens
within a few bytes. The generalization of SPPM to handle
arbitrary GRE (not just PRE) comes at a performance cost
which depends on the number of matches in the input (almost
free, if there are no matches). Bounding the validation region
is a good option to guard memory efficiency.

A. Experimental Setup

Payload: As input we extracted the TCP payloads of 175,668
HTTP packets from a two-hour trace captured at the border
router of our department. Figure 6 shows the cumulative
distribution function (cdf) for packet lengths. The average
length was 1052 bytes. The most frequent packet sizes were
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Set1 Set2
Number of DFAs 106 1
Number of Signatures 639 811
Only PRE? Yes No
Number of States 217362 170265
Number of Matches 298 44060

Fig. 7. DFA sets used in experiments

1448 bytes (50.88%), 1452 bytes (4.62%) and 596 bytes
(3.82%). Furthermore 5.73% of the packets were smaller than
250 bytes, 34.37% were between 251 and 1,250 and 59.90%
were larger than 1,251.

Signatures: We used 1450 Snort HTTP signatures. Since a
single DFA containing all signatures would not fit in the
memory, an automated procedure inspired from [32] was used
to divide them into 107 DFAs. These DFAs are grouped in
two sets (see Fig.7):

• Set1contains 106 DFAs composed only of PREs.
• Set2a single DFA from a mixture of PRE and anchored

signatures.

We treatSet2separately because it contains anchored signa-
tures and it can be used with the basic PRE-only versions of
SPPM only at the cost of reporting false matches. Nevertheless
we still report results for this combination because it could be
a valid design decision where false positives would later be
discarded.

Match behavior: A common IPS behavior is to resume
scanning after a match is handled and deigned non-malicious.
This behavior can be approximated by always fully scanning
the input. However, our default behavior is to return after the
first match, as in Algorithm 1. In the few cases when we
chose the alternative behavior of resumed scanning (for both
the traditional algorithm and the speculative one), we explicitly
state it. This only makes a difference for packets that contain
a match.

B. Evaluation of Algorithm 3 (Single Threaded, Software
Implementation)

We implemented four versions of Algorithm 3, the single
threaded implementation which uses speculation to overlap
memory accesses. Figure 10 shows the resulting speedups
when compared to the traditional sequential algorithms3. The
two “PRE” columns show the results for the basic version,
intended to use only PRE as input. The two “GRE” columns
show the results for the version modified to work with all
GRE as described in Sect.V-B. For both versions we tried the

3By using the corresponding behavior in terms of returning the first match
or scanning the whole packet
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Fig. 9. Speedup of two variants of Alg. 3 (on Xeon/Set1): (1) matching
only PRE, and (2) matching all GRE

(default) behavior which returns the first match and does not
resume scanning, as well as the the behavior that resumes
scanning after each match (distinction done by the “resume?”
“YES/NO” columns in Fig. 10). We measured the actual
running times using hardware performance counters and ran
experiments on three architectures, a Pentium M at 1.5GHz,
an Intel Core 2 at 2.4GHz and a Xeon E5520 at 2.27GHz. We
explain the higher speedup on the more performing processors
in Fig. 10 by the larger gap between the processor speed
and the memory latency. Figure 8 shows how the packet size
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input: PRE input: GRE
Sign. resume? resume?

System Set NO YES NO YES
Pentium Set1 16.61 16.58 16.62 16.61
Pentium Set2 21.27* 18.44* -9.15 16.55
Core 2 Set1 30.61 36.65 16.79 26.18
Core 2 Set2 34.57* 32.79* 0.69 27.48
Xeon Set1 41.41 44.45 29.96 34.58
Xeon Set2 38.94 36.14* 5.02 29.65

Fig. 10. Speedup for versions of Alg.3 classified by the
expected input (PRE vs. GRE), and by whether or not scanning
is resumed after each match. Tests marked with ’*’ have 7 false
positives.

Set N Ṽ Ṽmax V ≤ 1 V ≤ 2 V ≤ 3
Set1 2 4.81 4.81 98.51 98.82 98.88
Set1 10 2.12 8.24 99.26 99.58 99.64
Set1 50 1.24 9.09 99.50 99.84 99.89
Set1 100 1.12 9.29 99.54 99.87 99.93
Set2 2 45.97 45.97 47.27 75.67 81.75
Set2 10 15.99 86.33 51.78 83.51 90.29
Set2 50 4.78 96.56 53.23 85.85 92.70
Set2 100 3.26 98.50 53.52 86.27 93.16

Fig. 11. Validation region (V) statistics. N= Number of PUs.Ṽ = average
V size over all chunks.̃Vmax = average value of maximum validation size
(Vmax) in each packet.V ≤ K shows the percent of chunks for which
validation occurs inK bytes.
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influences the speedup for the PRE-only version of Algorithm
3 using Set1: for packets smaller than 20 bytes speculation
may result in slowdowns. For packets larger than 150 bytes
the speedup does not change significantly with the packet size.
Each PRE-only version of the algorithm has a total of 7 false
positives when used with onSet2(which is not PRE).

The generalization of Algorithm 3 to work with GRE comes
at the cost of additional overhead. Figure 9 compares the
speedup for the two versions by packet size and shows a clear
decrease of about 10% for the general version, on the Xeon
architecture. As discussed in Sect.VI-G this supports a model
where anchored expressions are handled separrately and the
basic PRE-only algorithm is used for the rest.

C. Evaluation of Algorithm 4 (Basic SPPM for Prefix Closed
Regular Expressions) Using Simulation

We evaluated Algorithm 4 for up toN = 100 processing
units. We used a simulation of parallel architecture and report
speedups and efficiency based on our performance model
which relies on the number of accesses to the DFA table
(lines 9 and 18 of Algorithm 4). These metrics are described
in Sect. IV-C by equations 1. Fig. 12 shows that speedup is

almost linear up toN = 20 and it slowly diverges afterwords.
The processing efficiency approaches 50% and the memory
efficiency 90% by the time we reachN = 100 (see Figs. 14
and 16).

In [18] we show the influence of packet size on performance
metrics. For space reasons we do not reproduce the graphs
here, but as expected the algorithm performs better on larger
packets. The greatest impact is observed for memory efficiency
which degrades fast for small packets asN increases.

D. Validation Region

We found that the validation typically happens quickly.
WhenN = 10 and all the DFAs inSet1are matched against
the entire input, validation happens after a single byte for 99%
of the chunks.

The scanning time for a packet is determined byVmax =
the largest validation region in the packet (see Fig.5). Figure
11 shows for each signature set, and eachN = 2, 10, 50, 100
the values for̃V = average validation size over all chunks, and
Ṽmax = average value ofVmax over all packets. It also shows
the percent of chunks for which validation happens within
1, 2 or 3 bytes. Figures 18 and 19 present the cumulative
distributions for the sizes of the validation regions whenN =
10. Figure 18 captures the sizes of all validation regions, which
is relevant to memory efficiency. Figure 19 captures only the
largest validation region for each packet, which is relevant to
processing efficiency.

E. Evaluation of Algorithm 6 (SPPM for General Regular
Expressions) Using Simulation

Figure 13 shows the speedup of Algorithm 6. OnSet1 it
gets results almost identical to those for Algorithm 4. We
explain this on the small number of matches. OnSet2although
Algorithm 6 exhibits speedups, it is greatly outperformed by
Algorithm 4. Figures 15 and 17 show processor and memory
efficiencies of Algorithm 6. As expected, onSet2 these are
lower than those for Algorithm 4.

F. Evaluation of Algorithm 7 (SPPM for PRE, with Bounded
Validation Region) Using Simulation

We measured the performance of Algorithm 7 by limiting
the validation region to various sizes. In theory, this cannot
increase the processing efficiency (or the speedup). It can
only improve the worst case for memory efficiency, and
protect against certain algorithmic attacks. On our test data we
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Fig. 14. CPU efficiency for Alg.4 (basic SPPM for PRE)
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Fig. 15. CPU efficiency of Alg.6 (SPPM for GRE)
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Fig. 16. Memory efficiency of Alg.4 (basic SPPM for PRE)
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Fig. 17. Memory efficiency of Alg.6 (SPPM for GRE)

observed that if the limit is sufficiently large (about 10 bytes)
than the memory and processor efficiency (and implicitly the
speedup) are about the same as for unbounded memory (see
Figs 20 and 21).

G. Anchored expressions and Rejecting States

We gathered all anchored signatures into one DFA as
explained in Sect.V-A. We verified that the minimized DFA
has indeed a rejecting state and then we scanned the input
using Algorithm 5. Compared to the traditional algorithm, this
version reduced the number of memory accesses by 99%. The
actual matching time was reduced to 2%, that is a 50x speedup.
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Fig. 19. cdf for Vmax = largest V in a packet, over all packets
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Fig. 20. Effect of bounded validation size on performance
metrics for N=10
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Fig. 21. Effect of bounded validation size on performance
metrics for N=100

Note that the difference between the PRE and GRE versions
of SPPM can be much larger than 2% (see Figs. 9, 10 andSet2
in Figs. 12 and 13). This supports the idea of partitioning the
signatures in anchored and PRE, and handling them separately.
This separation allows the selection of Algorithm 4 which
outperforms Algorithm 6. Alternatively, Algorithm 4 could be
used for all GRE with the risk of having false positives and
having to handle them elsewhere. Because it is hard to quantify
the computation done by an IPS when a possible match is
reported, we do not explore this option further. Also, note that
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such false positives could also be used for algorithmic attacks
to slow the IPS.

VII. R ELATED WORK

Signature matching is at the heart of intrusion prevention,
but traditional matching methods have large memory foot-
prints, slow matching times, or are vulnerable to evasion.
Many techniques have been and continue to be proposed to
address these weaknesses.

Early string-based signatures used multi-pattern matching
algorithms such as Aho-Corasick [1] to efficiently match mul-
tiple strings against payloads. Many alternatives and enhance-
ments to this paradigm have since been proposed [29], [8],
[27], [17], [28]. With the rise of attack techniques involving
evasion [20], [21], [10], [23] and mutation [13], though, string-
based signatures have more limited use, and modern systems
have moved to vulnerability-based signatures written as regular
expressions [30], [6], [26], [22]. In principle, DFA-based
regular expression matching yields high matching speeds, but
combined DFAs often produce a state-space explosion [24]
with infeasible memory requirements. Many techniques have
been proposed to reduce the DFA state space [24], [25], or
to perform edge compression [16], [3], [14], [9]. These tech-
niques are orthogonal to our own, which focuses specifically
on latency and can be readily applied to strings or regular
expressions with or without alternative encoding.

Other work uses multi-byte matching to increase matching
throughput. Clark and Schimmel [7] and Brodieet al. [5]
both present designs for multi-byte matching in hardware.
Becchi and Crowley [4] also consider multi-byte matching for
various numbers of bytes, orstride, as they term it. These
techniques increase throughput at the expense of changing
DFA structure, and some form of edge compression is typically
required to keep transition table memory to a reasonable size.
Our work on the other hand reduces latency by subdividing a
payload and matching the chunks in parallel without changing
the underlying automaton. It would be interesting to apply
speculative matching to multi-byte structured automata.

Kruegelet al. [15] propose a distributed intrusion detection
scheme that divides the load across multiple sensors. Traffic
is sliced at frame boundaries, and each slice is analyzed by a
subset of the sensors. In contrast, our work subdivides individ-
ual packets or flows, speculatively matches each fragment in
parallel, and relies on fast validation. Whereas Kruegel’s work
assumes individual, distinct network sensors, our work can
benefit from the increasing availability of multicore, SIMD,
and other n-way processing environments.

Parallel algorithms for regular expression and string match-
ing have been developed and studied outside of the intrusion
detection context. Hillis and Steele [11] show that an input of
size n can be matched inΩ(log(n)) steps givenn ∗ a pro-
cessors, wherea is the alphabet size. Their algorithm handles
arbitrary regular expressions but was intended for Connection
Machines-style architectures with massive numbers of avail-
able processors. Similarly, Misra [19] derives anO(log(n))-
time string matching algorithm usingO(n ∗ length(string))
processors. Again, the resulting algorithm requires a large
number of processors.

Many techniques have been proposed that use Ternary
Content addressable Memories (TCAMs). Alicherryet al. [2]
propose a TCAM-based multi-byte string matching algorithm.
Yu et al. [33] propose a TCAM-based scheme for matching
simple regular expressions or strings. Weinsberget al. [31]
introduces the Rotating TCAM (RTCAM), which uses shifted
patterns to increase matching speeds further. In all TCAM
approaches, pattern lengths are limited to TCAM width and the
complexity of acceptable regular expressions is greatly limited.
TCAMs do provide fast lookup, but they are expensive, power-
hungry, and have restrictive limits on pattern complexity that
must be accommodated in software. Our approach is not
constrained by the limits of TCAM hardware and can handle
regular expressions of arbitrary complexity.

The work most closely related to ours is the parallel lexer
from [12]. This was concurrent work with ours, which we
were not aware at [18]. The core idea is similar to SPPM but
their application domain is different: they use speculation to
parallelize token detection. As opposed to SPPM they start the
speculative matching a few bytes before the desired location,
with the hope to reach a stable state by that point. In their
case matches are frequent, and the language (tokens for some
higher syntax) is simpler. We feel that speculation in [12]
is justified by the fact that lexing ismemory-less in the
sense that the state at the beginning of a token is always
the same no matter where parsing started, comments aside.
Valid token beginnings are always coupling positions. In our
case matches are infrequent. We give more insight on why the
speculation works, prove that a linear history is efficient and
give more implementation details and insight about coupling.
Such insight is essential for the requirements of intrusion
detection.

VIII. C ONCLUSIONS

We presented speculative pattern matching method which
is a powerful technique for low latency regular-expression
matching. The method is based on three important obser-
vations. The first key insight is that the serial nature of
the memory accesses is the main latency-bottleneck for a
traditional DFA matching. The second observation is that a
speculation that does not have to be right from the start can
break this serialization. The third insight, which makes such
a speculation possible, is that the DFA based scanning for the
intrusion detection domain spends most of the time in a few
hot states. Therefore guessing the state of the DFA at a certain
position and matching from that point on has a very good
chance that in a few steps will reach the “correct” state. Such
guesses are later on validated using a history of speculated
states. The payoff comes from the fact that in practice the
validation succeeds in a few steps. A linear history is also
essential for an efficient implementation of SPPM. It is also
a key component for the ability to retrieve information about
the matching states for arbitrary regular expressions, without
sacrificing performance with excessive bookkeeping in the
frequent case when matches are not found.

Our results predict that speculation-based parallel solutions
can scale very well. Moreover, as opposed to other methods
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in the literature, our technique does not impose restrictions
on the regular-expressions being matched. We believe that
speculation is a very powerful idea and other applications of
this technique may benefit in the context of intrusion detection.
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