Data Mining and Knowledge Discovery with Evolutionary Algorithms / Edition 1
by Alex A. Freitas
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an area of active research. In general, data mining consists of extracting knowledge from data. In this book we particularly emphasize the importance of
… See more details belowOverview
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an area of active research. In general, data mining consists of extracting knowledge from data. In this book we particularly emphasize the importance of discovering comprehensible and interesting knowledge, which is potentially useful to the reader for intelligent decision making. In a nutshell, the motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions (rules or another form of knowledge representation). In contrast, most rule induction methods perform a local, greedy search in the space of candidate rules. Intuitively, the global search of evolutionary algorithms can discover interesting rules and patterns that would be missed by the greedy search.
This book presents a comprehensive review of basic concepts on both data mining and evolutionary algorithms and discusses significant advances in the integration of these two areas. It is self-contained, explaining both basic concepts and advanced topics.
Product Details
- ISBN-13:
- 9783642077630
- Publisher:
- Springer Berlin Heidelberg
- Publication date:
- 12/25/2011
- Series:
- Natural Computing Series
- Edition description:
- 1st ed. Softcover of orig. ed. 2002
- Pages:
- 265
- Product dimensions:
- 6.14(w) x 9.21(h) x 0.59(d)
Table of Contents
Preface; 1. Introduction; 2. Data Mining Tasks and Concepts; 3. Data Mining Paradigms; 4. Data Prepration; 5. Basic Concepts of Evolutionary Algorithms; 6. Genetic Algorithms for Rule Discovery; 7. Genetic Programming for Rule Discovery and Decision-Tree Building; 8. Evolutionary Algorithms for Clustering; 9. Evolutionary Algorithms for Data Preparation; 10. Evolutionary Algorithms for Discovering Fuzzy Rules; 11. Scaling up Evolutionary Algorithms for Large Data Sets; 12. Conclusions and Research Directions; Index.
Customer Reviews
Average Review: