Data Mining: Know It All: Know It All

Data Mining: Know It All: Know It All

by Soumen Chakrabarti, Earl Cox, Eibe Frank, Ralf Hartmut Güting
     
 

View All Available Formats & Editions

This book brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases. It consolidates both introductory and advanced topics, thereby covering the gamut of data mining and machine learning tactics from data integration and pre-processing, to fundamental algorithms, to optimization

See more details below

Overview

This book brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases. It consolidates both introductory and advanced topics, thereby covering the gamut of data mining and machine learning tactics from data integration and pre-processing, to fundamental algorithms, to optimization techniques and web mining methodology. The proposed book expertly combines the finest data mining material from the Morgan Kaufmann portfolio. Individual chapters are derived from a select group of MK books authored by the best and brightest in the field. These chapters are combined into one comprehensive volume in a way that allows it to be used as a reference work for those interested in new and developing aspects of data mining. This book represents a quick and efficient way to unite valuable content from leading data mining experts, thereby creating a definitive, one-stop-shopping opportunity for customers to receive the information they would otherwise need to round up from separate sources.

• Chapters contributed by various recognized experts in the field let the reader remain up to date and fully informed from multiple viewpoints. • Presents multiple methods of analysis and algorithmic problem-solving techniques, enhancing the reader’s technical expertise and ability to implement practical solutions. • Coverage of both theory and practice brings all of the elements of data mining together in a single volume, saving the reader the time and expense of making multiple purchases.

Read More

Product Details

ISBN-13:
9780080877884
Publisher:
Elsevier Science
Publication date:
10/31/2008
Sold by:
Barnes & Noble
Format:
NOOK Book
Pages:
480
File size:
7 MB

Read an Excerpt

Data Mining

Know It All
By Soumen Chakrabarti Earl Cox Eibe Frank Ralf Hartmut Güting Jaiwei Han Xia Jiang Micheline Kamber Sam S. Lightstone Thomas P. Nadeau Richard E. Neapolitan Dorian Pyle Mamdouh Refaat Markus Schneider Toby J. Teorey Ian H. Witten

MORGAN KAUFMANN

Copyright © 2009 Elsevier Inc.
All right reserved.

ISBN: 978-0-08-087788-4


Chapter One

What's It All About?

Human in vitro fertilization involves collecting several eggs from a woman's ovaries, which, after fertilization with partner or donor sperm, produce several embryos. Some of these are selected and transferred to the woman's uterus. The problem is to select the "best" embryos to use—the ones that are most likely to survive. Selection is based on around 60 recorded features of the embryos—characterizing their morphology, oocyte, follicle, and the sperm sample. The number of features is sufficiently large that it is difficult for an embryologist to assess them all simultaneously and correlate historical data with the crucial outcome of whether that embryo did or did not result in a live child. In a research project in England, machine learning is being investigated as a technique for making the selection, using as training data historical records of embryos and their outcome.

Every year, dairy farmers in New Zealand have to make a tough business decision: which cows to retain in their herd and which to sell off to an abattoir. Typically, one-fifth of the cows in a dairy herd are culled each year near the end of the milking season as feed reserves dwindle. Each cow's breeding and milk production history influences this decision. Other factors include age (a cow is nearing the end of its productive life at 8 years), health problems, history of difficult calving, undesirable temperament traits (kicking or jumping fences), and not being in calf for the following season. About 700 attributes for each of several million cows have been recorded over the years. Machine learning is being investigated as a way of ascertaining which factors are taken into account by successful farmers—not to automate the decision but to propagate their skills and experience to others.

Life and death. From Europe to the antipodes. Family and business. Machine learning is a burgeoning new technology for mining knowledge from data, a technology that a lot of people are starting to take seriously.

1.1 DATA MINING AND MACHINE LEARNING

We are overwhelmed with data. The amount of data in the world, in our lives, continues to increase—and there's no end in sight. Omnipresent personal computers make it too easy to save things that previously we would have trashed. Inexpensive multigigabyte disks make it too easy to postpone decisions about what to do with all this stuff—we simply buy another disk and keep it all. Ubiquitous electronics record our decisions, our choices in the supermarket, our financial habits, our comings and goings. We swipe our way through the world, every swipe a record in a database. The World Wide Web overwhelms us with information; meanwhile, every choice we make is recorded. And all these are just personal choices: they have countless counterparts in the world of commerce and industry. We would all testify to the growing gap between the generation of data and our understanding of it. As the volume of data increases, inexorably, the proportion of it that people understand decreases, alarmingly. Lying hidden in all this data is information, potentially useful information, that is rarely made explicit or taken advantage of.

This book is about looking for patterns in data. There is nothing new about this. People have been seeking patterns in data since human life began. Hunters seek patterns in animal migration behavior, farmers seek patterns in crop growth, politicians seek patterns in voter opinion, and lovers seek patterns in their partners' responses. A scientist's job (like a baby's) is to make sense of data, to discover the patterns that govern how the physical world works and encapsulate them in theories that can be used for predicting what will happen in new situations. The entrepreneur's job is to identify opportunities, that is, patterns in behavior that can be turned into a profitable business, and exploit them.

In data mining, the data is stored electronically and the search is automated—or at least augmented—by computer. Even this is not particularly new. Economists, statisticians, forecasters, and communication engineers have long worked with the idea that patterns in data can be sought automatically, identified, validated, and used for prediction. What is new is the staggering increase in opportunities for finding patterns in data. The unbridled growth of databases in recent years, databases on such everyday activities as customer choices, brings data mining to the forefront of new business technologies. It has been estimated that the amount of data stored in the world's databases doubles every 20 months, and although it would surely be difficult to justify this figure in any quantitative sense, we can all relate to the pace of growth qualitatively. As the flood of data swells and machines that can undertake the searching become commonplace, the opportunities for data mining increase. As the world grows in complexity, overwhelming us with the data it generates, data mining becomes our only hope for elucidating the patterns that underlie it. Intelligently analyzed data is a valuable resource. It can lead to new insights and, in commercial settings, to competitive advantages.

Data mining is about solving problems by analyzing data already present in databases. Suppose, to take a well-worn example, the problem is fickle customer loyalty in a highly competitive marketplace. A database of customer choices, along with customer profiles, holds the key to this problem. Patterns of behavior of former customers can be analyzed to identify distinguishing characteristics of those likely to switch products and those likely to remain loyal. Once such characteristics are found, they can be put to work to identify present customers who are likely to jump ship. This group can be targeted for special treatment, treatment too costly to apply to the customer base as a whole. More positively, the same techniques can be used to identify customers who might be attracted to another service the enterprise provides, one they are not presently enjoying, to target them for special offers that promote this service. In today's highly competitive, customer-centered, service-oriented economy, data is the raw material that fuels business growth—if only it can be mined.

Data mining is defined as the process of discovering patterns in data. The process must be automatic or (more usually) semiautomatic. The patterns discovered must be meaningful in that they lead to some advantage, usually an economic advantage. The data is invariably present in substantial quantities.

How are the patterns expressed? Useful patterns allow us to make nontrivial predictions on new data. There are two extremes for the expression of a pattern: as a black box whose innards are effectively incomprehensible and as a transparent box whose construction reveals the structure of the pattern. Both, we are assuming, make good predictions. The difference is whether or not the patterns that are mined are represented in terms of a structure that can be examined, reasoned about, and used to inform future decisions. Such patterns we call structural because they capture the decision structure in an explicit way. In other words, they help to explain something about the data.

Now, finally, we can say what this book is about. It is about techniques for finding and describing structural patterns in data. Most of the techniques that we cover have developed within a field known as machine learning. But first let us look at what structural patterns are.

1.1.1 Describing Structural Patterns

What is meant by structural patterns? How do you describe them? And what form does the input take? We will answer these questions by way of illustration rather than by attempting formal, and ultimately sterile, definitions. We will present plenty of examples later in this chapter, but let's examine one right now to get a feeling for what we're talking about.

Look at the contact lens data in Table 1.1. This gives the conditions under which an optician might want to prescribe soft contact lenses, hard contact lenses, or no contact lenses at all; we will say more about what the individual features mean later. Each line of the table is one of the examples. Part of a structural description of this information might be as follows:

If tear production rate = reduced then recommendation = none Otherwise, if age = young and astigmatic = no then recommendation = soft

Structural descriptions need not necessarily be couched as rules such as these. Decision trees, which specify the sequences of decisions that need to be made and the resulting recommendation, are another popular means of expression.

This example is a simplistic one. First, all combinations of possible values are represented in the table. There are 24 rows, representing three possible values of age and two values each for spectacle prescription, astigmatism, and tear production rate (3 × 2 × 2 × 2 = 24). The rules do not really generalize from the data; they merely summarize it. In most learning situations, the set of examples given as input is far from complete, and part of the job is to generalize to other, new examples. You can imagine omitting some of the rows in the table for which tear production rate is reduced and still coming up with the rule

If tear production rate = reduced then recommendation = none

which would generalize to the missing rows and fill them in correctly. Second, values are specified for all the features in all the examples. Real-life datasets invariably contain examples in which the values of some features, for some reason or other, are unknown—for example, measurements were not taken or were lost. Third, the preceding rules classify the examples correctly, whereas often, because of errors or noise in the data, misclassifications occur even on the data that is used to train the classifier.

1.1.2 Machine Learning

Now that we have some idea about the inputs and outputs, let's turn to machine learning. What is learning, anyway? What is machine learning? These are philosophic questions, and we will not be much concerned with philosophy in this book; our emphasis is firmly on the practical. However, it is worth spending a few moments at the outset on fundamental issues, just to see how tricky they are, before rolling up our sleeves and looking at machine learning in practice. Our dictionary defines "to learn" as follows:

* To get knowledge of by study, experience, or being taught.

* To become aware by information or from observation.

* To commit to memory.

* To be informed of, ascertain.

* To receive instruction.

These meanings have some shortcomings when it comes to talking about computers. For the first two, it is virtually impossible to test whether learning has been achieved or not. How do you know whether a machine has got knowledge of something? You probably can't just ask it questions; even if you could, you wouldn't be testing its ability to learn but would be testing its ability to answer questions. How do you know whether it has become aware of something? The whole question of whether computers can be aware, or conscious, is a burning philosophic issue. As for the last three meanings, although we can see what they denote in human terms, merely "committing to memory" and "receiving instruction" seem to fall far short of what we might mean by machine learning. They are too passive, and we know that computers find these tasks trivial. Instead, we are interested in improvements in performance, or at least in the potential for performance, in new situations. You can "commit something to memory" or "be informed of something" by rote learning without being able to apply the new knowledge to new situations. You can receive instruction without benefiting from it at all.

Earlier we defined data mining operationally as the process of discovering patterns, automatically or semiautomatically, in large quantities of data—and the patterns must be useful. An operational definition can be formulated in the same way for learning:

Things learn when they change their behavior in a way that makes them perform better in the future.

This ties learning to performance rather than knowledge. You can test learning by observing the behavior and comparing it with past behavior. This is a much more objective kind of definition and appears to be far more satisfactory.

(Continues...)



Excerpted from Data Mining by Soumen Chakrabarti Earl Cox Eibe Frank Ralf Hartmut Güting Jaiwei Han Xia Jiang Micheline Kamber Sam S. Lightstone Thomas P. Nadeau Richard E. Neapolitan Dorian Pyle Mamdouh Refaat Markus Schneider Toby J. Teorey Ian H. Witten Copyright © 2009 by Elsevier Inc. . Excerpted by permission of MORGAN KAUFMANN. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >