Data Mining with Decision Trees: Theory and Applications

Data Mining with Decision Trees: Theory and Applications

by Lior Rokach, Oded Maimon
     
 

This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique.

Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of exploring large and complex bodies of data in order to discover

See more details below

Overview

This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique.

Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of exploring large and complex bodies of data in order to discover useful patterns. The area is of great importance because it enables modeling and knowledge extraction from the abundance of data available. Both theoreticians and practitioners are continually seeking techniques to make the process more efficient, cost-effective and accurate. Decision trees, originally implemented in decision theory and statistics, are highly effective tools in other areas such as data mining, text mining, information extraction, machine learning, and pattern recognition. This book invites readers to explore the many benefits in data mining that decision trees offer:

• Self-explanatory and easy to follow when compacted
• Able to handle a variety of input data: nominal, numeric and textual
• Able to process datasets that may have errors or missing values
• High predictive performance for a relatively small computational effort
• Available in many data mining packages over a variety of platforms
• Useful for various tasks, such as classification, regression, clustering and feature selection

Read More

Product Details

ISBN-13:
9789812771711
Publisher:
World Scientific Publishing Company, Incorporated
Publication date:
04/28/2008
Series:
Series in Machine Perception and Artificial Intelligence
Pages:
264
Product dimensions:
6.02(w) x 9.29(h) x 0.75(d)

Table of Contents

Preface     vii
Introduction to Decision Trees     1
Data Mining and Knowledge Discovery     1
Taxonomy of Data Mining Methods     3
Supervised Methods     4
Overview     4
Classification Trees     5
Characteristics of Classification Trees     8
Tree Size     9
The Hierarchical Nature of Decision Trees     10
Relation to Rule Induction     11
Growing Decision Trees     13
Training Set     13
Definition of the Classification Problem     14
Induction Algorithms     16
Probability Estimation in Decision Trees     16
Laplace Correction     17
No Match     18
Algorithmic Framework for Decision Trees     18
Stopping Criteria     19
Evaluation of Classification Trees     21
Overview     21
Generalization Error     21
Theoretical Estimation of Generalization Error     22
Empirical Estimation of Generalization Error     23
Alternatives to the Accuracy Measure     24
The F-Measure     25
Confusion Matrix     27
Classifier Evaluationunder Limited Resources     28
ROC Curves     30
Hit Rate Curve     30
Qrecall (Quota Recall)     32
Lift Curve     32
Pearson Correlation Coefficient     32
Area Under Curve (AUC)     34
Average Hit Rate     35
Average Qrecall     35
Potential Extract Measure (PEM)     36
Which Decision Tree Classifier is Better?     40
McNemar's Test     40
A Test for the Difference of Two Proportions     41
The Resampled Paired t Test     43
The k-fold Cross-validated Paired t Test     43
Computational Complexity     44
Comprehensibility     44
Scalability to Large Datasets     45
Robustness     47
Stability     47
Interestingness Measures     48
Overfitting and Underfitting     49
"No Free Lunch" Theorem     50
Splitting Criteria     53
Univariate Splitting Criteria     53
Overview     53
Impurity based Criteria     53
Information Gain     54
Gini Index     55
Likelihood Ratio Chi-squared Statistics      55
DKM Criterion     55
Normalized Impurity-based Criteria     56
Gain Ratio     56
Distance Measure     56
Binary Criteria     57
Twoing Criterion     57
Orthogonal Criterion     58
Kolmogorov-Smirnov Criterion     58
AUC Splitting Criteria     58
Other Univariate Splitting Criteria     59
Comparison of Univariate Splitting Criteria     59
Handling Missing Values     59
Pruning Trees     63
Stopping Criteria     63
Heuristic Pruning     63
Overview     63
Cost Complexity Pruning     64
Reduced Error Pruning     65
Minimum Error Pruning (MEP)     65
Pessimistic Pruning     65
Error-Based Pruning (EBP)     66
Minimum Description Length (MDL) Pruning     67
Other Pruning Methods     67
Comparison of Pruning Methods     68
Optimal Pruning     68
Advanced Decision Trees     71
Survey of Common Algorithms for Decision Tree Induction     71
ID3     71
C4.5     71
CART      71
CHAID     72
QUEST     73
Reference to Other Algorithms     73
Advantages and Disadvantages of Decision Trees     73
Oblivious Decision Trees     76
Decision Trees Inducers for Large Datasets     78
Online Adaptive Decision Trees     79
Lazy Tree     79
Option Tree     80
Lookahead     82
Oblique Decision Trees     83
Decision Forests     87
Overview     87
Introduction     87
Combination Methods     90
Weighting Methods     90
Majority Voting     90
Performance Weighting     91
Distribution Summation     91
Bayesian Combination     91
Dempster-Shafer     92
Vogging     92
Naive Bayes     93
Entropy Weighting     93
Density-based Weighting     93
DEA Weighting Method     93
Logarithmic Opinion Pool     94
Gating Network     94
Order Statistics     95
Meta-combination Methods     95
Stacking     95
Arbiter Trees      97
Combiner Trees     99
Grading     100
Classifier Dependency     101
Dependent Methods     101
Model-guided Instance Selection     101
Incremental Batch Learning     105
Independent Methods     105
Bagging     105
Wagging     107
Random Forest     108
Cross-validated Committees     109
Ensemble Diversity     109
Manipulating the Inducer     110
Manipulation of the Inducer's Parameters     111
Starting Point in Hypothesis Space     111
Hypothesis Space Traversal     111
Manipulating the Training Samples     112
Resampling     112
Creation     113
Partitioning     113
Manipulating the Target Attribute Representation     114
Partitioning the Search Space     115
Divide and Conquer     116
Feature Subset-based Ensemble Methods     117
Multi-Inducers     121
Measuring the Diversity     122
Ensemble Size     124
Selecting the Ensemble Size     124
Pre Selection of the Ensemble Size      124
Selection of the Ensemble Size while Training     125
Pruning - Post Selection of the Ensemble Size     125
Pre-combining Pruning     126
Post-combining Pruning     126
Cross-Inducer     127
Multistrategy Ensemble Learning     127
Which Ensemble Method Should be Used?     128
Open Source for Decision Trees Forests     128
Incremental Learning of Decision Trees     131
Overview     131
The Motives for Incremental Learning     131
The Inefficiency Challenge     132
The Concept Drift Challenge     133
Feature Selection     137
Overview     137
The "Curse of Dimensionality"     137
Techniques for Feature Selection     140
Feature Filters     141
FOCUS     141
LVF     141
Using One Learning Algorithm as a Filter for Another     141
An Information Theoretic Feature Filter     142
An Instance Based Approach to Feature Selection - RELIEF     142
Simba and G-flip     142
Contextual Merit Algorithm     143
Using Traditional Statistics for Filtering     143
Mallows Cp      143
AIC, BIC and F-ratio     144
Principal Component Analysis (PCA)     144
Factor Analysis (FA)     145
Projection Pursuit     145
Wrappers     145
Wrappers for Decision Tree Learners     145
Feature Selection as a Means of Creating Ensembles     146
Ensemble Methodology as a Means for Improving Feature Selection     147
Independent Algorithmic Framework     149
Combining Procedure     150
Simple Weighted Voting     151
Naive Bayes Weighting using Artificial Contrasts     152
Feature Ensemble Generator     154
Multiple Feature Selectors     154
Bagging     156
Using Decision Trees for Feature Selection     156
Limitation of Feature Selection Methods     157
Fuzzy Decision Trees     159
Overview     159
Membership Function     160
Fuzzy Classification Problems     161
Fuzzy Set Operations     163
Fuzzy Classification Rules     164
Creating Fuzzy Decision Tree     164
Fuzzifying Numeric Attributes     165
Inducing of Fuzzy Decision Tree     166
Simplifying the Decision Tree     169
Classification of New Instances     169
Other Fuzzy Decision Tree Inducers     169
Hybridization of Decision Trees with other Techniques     171
Introduction     171
A Decision Tree Framework for Instance-Space Decomposition     171
Stopping Rules     174
Splitting Rules     175
Split Validation Examinations     175
The CPOM Algorithm     176
CPOM Outline     176
The Grouped Gain Ratio Splitting Rule     177
Induction of Decision Trees by an Evolutionary Algorithm     179
Sequence Classification Using Decision Trees     187
Introduction     187
Sequence Representation     187
Pattern Discovery     188
Pattern Selection     190
Heuristics for Pattern Selection     190
Correlation based Feature Selection     191
Classifier Training     191
Adjustment of Decision Trees     192
Cascading Decision Trees     192
Application of CREDT in Improving of Information Retrieval of Medical Narrative Reports     193
Related Works     195
Text Classification     195
Part-of-speech Tagging     198
Frameworks for Information Extraction     198
Frameworks for Labeling Sequential Data     199
Identifying Negative Context in Nondomain Specific Text (General NLP)     199
Identifying Negative Context in Medical Narratives     200
Works Based on Knowledge Engineering     200
Works based on Machine Learning     201
Using CREDT for Solving the Negation Problem     201
The Process Overview     201
Step 1: Corpus Preparation     201
Step 1.1: Tagging     202
Step 1.2: Sentence Boundaries     202
Step 1.3: Manual Labeling     203
Step 2: Patterns Creation     203
Step 3: Patterns Selection     206
Step 4: Classifier Training     208
Cascade of Three Classifiers     209
Bibliography     215
Index     243

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >