Mining Complex Data / Edition 1

Mining Complex Data / Edition 1

by Djamel A. Zighed, Shusaku Tsumoto, Zbigniew W. Ras, Hakim Hacid
     
 

The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from

See more details below

Overview

The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g. structuring and organizing) to the visualization and interpretation (e.g. sorting or filtering) of the results, via the data mining methods themselves (e.g. classification, clustering, frequent patterns extraction, etc.). The papers presented here are selected from the workshop papers held yearly since 2006.

The book is composed of four parts and a total of sixteen chapters. Part I gives a general view of complex data mining by illustrating some situations and the related complexity. It contains five chapters. Chapter 1 illustrates the problem of analyzing the scientific literature. The chapter gives some background to the various techniques in this area, explains the necessary pre-processing steps involved, and presents two case studies, one from image mining and one from table identification.

Read More

Product Details

ISBN-13:
9783642099809
Publisher:
Springer Berlin Heidelberg
Publication date:
12/08/2010
Series:
Studies in Computational Intelligence Series, #165
Edition description:
Softcover reprint of hardcover 1st ed. 2009
Pages:
302
Product dimensions:
0.66(w) x 6.14(h) x 9.21(d)

Table of Contents

General Aspects of Complex Data.- Using Layout Data for the Analysis of Scientific Literature.- Extracting a Fuzzy System by Using Genetic Algorithms for Imbalanced Datasets Classification: Application on Down’s Syndrome Detection.- A Hybrid Approach of Boosting Against Noisy Data.- Dealing with Missing Values in a Probabilistic Decision Tree during Classification.- Kernel-Based Algorithms and Visualization for Interval Data Mining.- Rules Extraction.- Evaluating Learning Algorithms Composed by a Constructive Meta-learning Scheme for a Rule Evaluation Support Method.- Mining Statistical Association Rules to Select the Most Relevant Medical Image Features.- From Sequence Mining to Multidimensional Sequence Mining.- Tree-Based Algorithms for Action Rules Discovery.- Graph Data Mining.- Indexing Structure for Graph-Structured Data.- Full Perfect Extension Pruning for Frequent Subgraph Mining.- Parallel Algorithm for Enumerating Maximal Cliques in Complex Network.- Community Finding of Scale-Free Network: Algorithm and Evaluation Criterion.- The k-Dense Method to Extract Communities from Complex Networks.- Data Clustering.- Efficient Clustering for Orders.- Exploring Validity Indices for Clustering Textual Data.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >