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C H A P T E R 1

Introduction to
Consistency and

Coherence
Many modern computer systems and most multicore chips (chip multiprocessors)
support shared memory in hardware. In a shared memory system, each of the pro-
cessor cores may read and write to a single shared address space. These designs seek
various goodness properties, such as high performance, low power, and low cost. Of
course, it is not valuable to provide these goodness properties without �rst providing
correctness. Correct sharedmemory seems intuitive at a hand-wave level, but, as this
lecture will help show, there are subtle issues in even de�ning what it means for a
sharedmemory system to be correct, as well as many subtle corner cases in designing
a correct shared memory implementation. Moreover, these subtleties must be mas-
tered in hardware implementations where bug �xes are expensive. Even academics
should master these subtleties to make it more likely that their proposed designs will
work.

Designing and evaluating a correct shared memory system requires an archi-
tect to understand memory consistency and cache coherence, the two topics of this
primer. Memory consistency (consistency, memory consistency model, or memory
model) is a precise, architecturally-visible de�nition of shared memory correctness.
Consistency de�nitions provide rules about loads and stores (or memory reads and
writes) and how they act upon memory. Ideally, consistency de�nitions would be
simple and easy to understand. However, de�ning what it means for shared memory
to behave correctly is more subtle than de�ning the correct behavior of, for example,
a single-threaded processor core. The correctness criterion for a single processor
core partitions behavior between one correct result and many incorrect alternatives.
This is because the processor’s architecture mandates that the execution of a thread
transforms a given input state into a single well-de�ned output state, even on an out-
of-order core. Shared memory consistency models, however, concern the loads and
stores of multiple threads and usually allow many correct executions while disallow-
ing many (more) incorrect ones. The possibility of multiple correct executions is due
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to the ISA allowing multiple threads to execute concurrently, often with many pos-
sible legal interleavings of instructions from di�erent threads. The multitude of cor-
rect executions complicates the erstwhile simple challenge of determining whether
an execution is correct. Nevertheless, consistency must be mastered to implement
shared memory and, in some cases, to write correct programs that use it.

The microarchitecture—the hardware design of the processor cores and the
shared memory system—must enforce the desired consistency model. As part of this
consistency model support, the hardware provides cache coherence (or coherence).
In a shared-memory system with caches, the cached values can potentially become
out-of-date (or incoherent) when one of the processors updates its cached value.
Coherence seeks to make the caches of a shared-memory system as functionally
invisible as the caches in a single-core system; it does so by propagating a processor’s
write to other processors’ caches. It is worth stressing that unlike consistency which
is an architectural speci�cation that de�nes shared memory correctness, coherence
is a means to supporting a consistency model.

Even though consistency is the �rst major topic of this primer, we begin in
Chapter 2 with a brief introduction to coherence because coherence protocols play
an important role in providing consistency. The goal of this chapter is to explain
enough about coherence to understand how consistency models interact with co-
herent caches, but not to explore speci�c coherence protocols or implementations,
which are topics we defer until the second portion of this primer in Chapters 6–9.

1.1 CONSISTENCY (A.K.A., MEMORY CONSISTENCY,
MEMORY CONSISTENCYMODEL, ORMEMORY
MODEL)

Consistency models de�ne correct shared memory behavior in terms of loads and
stores (memory reads and writes), without reference to caches or coherence. To gain
some real-world intuition on why we need consistency models, consider a university
that posts its course schedule online. Assume that the Computer Architecture course
is originally scheduled to be in Room 152. The day before classes begin, the univer-
sity registrar decides to move the class to Room 252. The registrar sends an e-mail
message asking the web site administrator to update the online schedule, and a few
minutes later, the registrar sends a text message to all registered students to check
the newly updated schedule. It is not hard to imagine a scenario—if, say, the web
site administrator is too busy to post the update immediately—in which a diligent
student receives the text message, immediately checks the online schedule, and still
observes the (old) class location Room 152. Even though the online schedule is even-
tually updated to Room 252 and the registrar performed the “writes” in the correct
order, this diligent student observed them in a di�erent order and thus went to the
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wrong room. A consistency model de�nes whether this behavior is correct (and thus
whether a user must take other action to achieve the desired outcome) or incorrect
(in which case the system must preclude these reorderings).

Although this contrived example used multiple media, similar behavior can
happen in shared memory hardware with out-of-order processor cores, write
bu�ers, prefetching, andmultiple cache banks. Thus, we need to de�ne sharedmem-
ory correctness—that is, which shared memory behaviors are allowed—so that pro-
grammers know what to expect and implementors know the limits to what they can
provide.

Shared memory correctness is speci�ed by a memory consistency model or,
more simply, a memory model. The memory model speci�es the allowed behavior
of multithreaded programs executing with shared memory. For a multithreaded pro-
gram executing with speci�c input data, the memory model speci�es what values
dynamic loads may return and, optionally, what possible �nal states of the mem-
ory are. Unlike single-threaded execution, multiple correct behaviors are usually al-
lowed, making understanding memory consistency models subtle.

Chapter 3 introduces the concept of memory consistency models and presents
sequential consistency (SC), the strongest and most intuitive consistency model. The
chapter begins by motivating the need to specify shared memory behavior and pre-
cisely de�nes what a memory consistency model is. It next delves into the intuitive
SC model, which states that a multithreaded execution should look like an interleav-
ing of the sequential executions of each constituent thread, as if the threads were
time-multiplexed on a single-core processor. Beyond this intuition, the chapter for-
malizes SC and explores implementing SC with coherence in both simple and ag-
gressive ways, culminating with a MIPS R10000 case study.

In Chapter 4, wemove beyond SC and focus on thememory consistencymodel
implemented by x86 and historical SPARC systems. This consistency model, called
total store order (TSO), is motivated by the desire to use �rst-in–�rst-out write
bu�ers to hold the results of committed stores beforewriting the results to the caches.
This optimization violates SC, yet promises enough performance bene�t to inspire
architectures to de�ne TSO, which permits this optimization. In this chapter, we
show how to formalize TSO from our SC formalization, how TSO a�ects implemen-
tations, and how SC and TSO compare.

Finally, Chapter 5 introduces “relaxed” or “weak”memory consistencymodels.
It motivates these models by showing that most memory orderings in strong models
are unnecessary. If a thread updates ten data items and then a synchronization �ag,
programmers usually do not care if the data items are updated in orderwith respect to
each other but only that all data items are updated before the �ag is updated. Relaxed
models seek to capture this increased ordering �exibility to get higher performance
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or a simpler implementation. After providing this motivation, the chapter develops
an example relaxed consistency model, called XC, wherein programmers get order
only when they ask for it with a FENCE instruction (e.g., a FENCE after the last
data update but before the �ag write). The chapter then extends the formalism of the
previous two chapters to handle XC and discusses how to implement XC (with con-
siderable reordering between the cores and the coherence protocol). The chapter
then discusses a way in which many programmers can avoid thinking about relaxed
models directly: if they add enough FENCEs to ensure their program is data-race
free (DRF), then most relaxed models will appear SC. With “SC for DRF,” program-
mers can get both the (relatively) simple correctness model of SCwith the (relatively)
higher performance of XC. For those who want to reason more deeply, the chapter
concludes by distinguishing acquires from releases, discussing write atomicity and
causality, pointing to commercial examples (including an IBM Power case study),
and touching upon high-level language models ( Java and C++).

Returning to the real-world consistency example of the class schedule, we can
observe that the combination of an email system, a human web administrator, and
a text-messaging system represents an extremely weak consistency model. To pre-
vent the problem of a diligent student going to the wrong room, the university regis-
trar needed to perform a FENCE operation after her email to ensure that the online
schedule was updated before sending the text message.

1.2 COHERENCE (A.K.A., CACHE COHERENCE)
Unless care is taken, a coherence problem can arise if multiple actors (e.g., multiple
cores) have access to multiple copies of a datum (e.g., in multiple caches) and at least
one access is a write. Consider an example that is similar to the memory consistency
example. A student checks the online schedule of courses, observes that the Com-
puter Architecture course is being held in Room 152 (reads the datum), and copies
this information into her calendar app in her mobile phone (caches the datum). Sub-
sequently, the university registrar decides to move the class to Room 252, updates
the online schedule (writes to the datum) and informs the students via a text message.
The student’s copy of the datum is now stale, and we have an incoherent situation. If
she goes to Room 152, she will fail to �nd her class. Examples of incoherence from
the world of computing, but not including computer architecture, include stale web
caches and programmers using un-updated code repositories.

Access to stale data (incoherence) is prevented using a coherence protocol,
which is a set of rules implemented by the distributed set of actors within a system.
Coherence protocols come inmany variants but follow a few themes, as developed in
Chapters 6–9. Essentially, all of the variantsmake one processor’s write visible to the
other processors by propagating the write to all caches, i.e., keeping the calendar in
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syncwith the online schedule. But protocols di�er inwhen and how the syncing hap-
pens. There are two major classes of coherence protocols. In the �rst approach, the
coherence protocol ensures that writes are propagated to the caches synchronously.
When the online schedule in updated, the coherence protocol ensures that the stu-
dent’s calendar is updated as well. In the second approach, the coherence protocol
propagates writes to the caches asynchronously, while still honoring the consistency
model. The coherence protocol does not guarantee that when the online schedule
is updated, the new value will have propagated to the student’s calendar as well;
however, the protocol does ensure that the new value is propagated before the text
message reaches her mobile phone. This primer focuses on the �rst class of the co-
herence protocols (Chapters 6–9) while Chapter 10 discusses the emerging second
class.

Chapter 6 presents the big picture of cache coherence protocols and sets the
stage for the subsequent chapters on speci�c coherence protocols. This chapter cov-
ers issues shared by most coherence protocols, including the distributed operations
of cache controllers and memory controllers and the common MOESI coherence
states: modi�ed (M), owned (O), exclusive (E), shared (S), and invalid (I). Importantly,
this chapter also presents our table-driven methodology for presenting protocols
with both stable (e.g., MOESI) and transient coherence states. Transient states are
required in real implementations becausemodern systems rarely permit atomic tran-
sitions from one stable state to another (e.g., a read miss in state Invalid will spend
some time waiting for a data response before it can enter state Shared). Much of the
real complexity in coherence protocols hides in the transient states, similar to how
much of processor core complexity hides in micro-architectural states.

Chapter 7 covers snooping cache coherence protocols, which initially domi-
nated the commercial market. At the hand-wave level, snooping protocols are sim-
ple. When a cache miss occurs, a core’s cache controller arbitrates for a shared bus
and broadcasts its request. The shared bus ensures that all controllers observe all
requests in the same order and thus all controllers can coordinate their individual,
distributed actions to ensure that they maintain a globally consistent state. Snoop-
ing gets complicated, however, because systems may use multiple buses and modern
buses do not atomically handle requests. Modern buses have queues for arbitration
and can send responses that are unicast, delayed by pipelining, or out-of-order. All
of these features lead to more transient coherence states. Chapter 7 concludes with
case studies of the Sun UltraEnterprise E10000 and the IBM Power5.

Chapter 8 delves into directory cache coherence protocols that o�er the
promise of scaling to more processor cores and other actors than snooping proto-
cols that rely on broadcast. There is a joke that all problems in computer science can
be solved with a level of indirection. Directory protocols support this joke: A cache
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miss requests a memory location from the next level cache (or memory) controller,
which maintains a directory that tracks which caches hold which locations. Based
on the directory entry for the requested memory location, the controller sends a re-
sponse message to the requestor or forwards the request message to one or more
actors currently caching the memory location. Each message typically has one desti-
nation (i.e., no broadcast ormulticast), but transient coherence states abound as tran-
sitions from one stable coherence state to another stable one can generate a number
of messages proportional to the number of actors in the system. This chapter starts
with a basic directory protocol and then re�nes it to handle the MOESI states E and
O, distributed directories, less stalling of requests, approximate directory entry rep-
resentations, and more. The chapter also explores the design of the directory itself,
including directory caching techniques. The chapter concludes with case studies of
the old SGI Origin 2000 and the newer AMD HyperTransport, HyperTransport As-
sist, and Intel QuickPath Interconnect (QPI).

Chapter 9 deals with some, but not all, of the advanced topics in coherence. For
ease of explanation, the prior chapters on coherence intentionally restrict themselves
to the simplest system models needed to explain the fundamental issues. Chapter 9
delves into more complicated system models and optimizations, with a focus on is-
sues that are common to both snooping and directory protocols. Initial topics include
dealing with instruction caches, multilevel caches, write-through caches, translation
lookaside bu�ers (TLBs), coherent direct memory access (DMA), virtual caches, and
hierarchical coherence protocols. Finally, the chapter delves into performance opti-
mizations (e.g., targetingmigratory sharing and false sharing) and directlymaintaining
the SWMR invariant with token coherence.

1.3 CONSISTENCY AND COHERENCE FOR
HETEROGENEOUS SYSTEMS

Modern computer systems are predominantly heterogeneous. A mobile phone pro-
cessor today not only contains a multicore CPU, it also has a GPU and other accel-
erators (e.g., neural network hardware). In the quest for programmability, such het-
erogeneous systems are starting to support shared memory. Chapter 10 deals with
consistency and coherence for such heterogeneous processors.

The chapter starts by focusing on GPUs, arguably the most popular among
accelerators today. The chapter observes that GPUs originally chose not to sup-
port hardware cache coherence, since GPUs are designed for embarrassingly parallel
graphics workloads that do not synchronize or share data all that much. However,
the absence of hardware cache coherence leads to programmability and/or perfor-
mance challenges when GPUs are used for general-purpose workloads with �ne-
grained synchronization and data sharing. The chapter discusses in detail some of



1.4. SPECIFYINGANDVALIDATINGMEMORYCONSISTENCYMODELSANDCACHECOHERENCE 7

the promising coherence alternatives that overcome these limitations—in particu-
lar, explaining why the candidate protocols enforce the consistency model directly
rather than implementing coherence in a consistency-agnostic manner. The chapter
concludes with a brief discussion on consistency and coherence across CPUs and the
accelerators.

1.4 SPECIFYING AND VALIDATINGMEMORY
CONSISTENCYMODELS AND CACHE COHERENCE

Consistency models and coherence protocols are complex and subtle. Yet, this com-
plexity must be managed to ensure that multicores are programmable. To achieve
this goal, it is critical that consistency models are speci�ed formally. A formal spec-
i�cation would enable programmers to clearly and exhaustively (with tool support)
understand what behaviors are permitted by the memory model and what behaviors
are not. Second, a precise formal speci�cation is mandatory for validating implemen-
tations.

Chapter 11 starts by discussing twomethods for specifying systems—axiomatic
and operational—focusing on how these methods can be applied for consistency
models and coherence protocols. Then the chapter goes over techniques for val-
idating implementations—including processor pipeline and coherence protocol
implementations—against their speci�cation. The chapter focuses on both formal
methods and informal testing.

1.5 A CONSISTENCY AND COHERENCE QUIZ
It can be easy to convince oneself that one’s knowledge of consistency and coherence
is su�cient and that reading this primer is not necessary. To test whether this is the
case, we o�er this pop quiz.

Question 1: In a system that maintains sequential consistency, a core must issue
coherence requests in program order. True or false? (Answer is in Section 3.8)

Question 2: The memory consistency model speci�es the legal orderings of coher-
ence transactions. True or false? (Section 3.8)

Question 3: To perform an atomic read–modify–write instruction (e.g., test-and-
set), a core must always communicate with the other cores. True or false? (Sec-
tion 3.9)

Question 4: In a TSO system with multithreaded cores, threads may bypass values
out of thewrite bu�er, regardless of which threadwrote the value. True or false?
(Section 4.4)
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Question 5: A programmer who writes properly synchronized code relative to the
high-level language’s consistency model (e.g., Java) does not need to consider
the architecture’s memory consistency model. True or false? (Section 5.9)

Question 6: In anMSI snooping protocol, a cache block may only be in one of three
coherence states. True or false? (Section 7.2)

Question 7: A snooping cache coherence protocol requires the cores to communi-
cate on a bus. True or false? (Section 7.6)

Question 8: GPUs do not support hardware cache coherence. Therefore, they are
unable to enforce a memory consistency model. True or False? (Section 10.1).

Even though the answers are provided later in this primer, we encourage read-
ers to try to answer the questions before looking ahead at the answers.

1.6 WHAT THIS PRIMER DOES NOT DO

This lecture is intended to be a primer on coherence and consistency.We expect this
material could be covered in a graduate class in about nine 75-minute classes (e.g.,
one lecture per Chapter 2 to Chapter 9 plus one lecture for advanced material).

For this purpose, there are many things the primer does not cover. Some of
these include:

• Synchronization. Coherence makes caches invisible. Consistency can make
shared memory look like a single memory module. Nevertheless, programmers
will probably need locks, barriers, and other synchronization techniques to
make their programs useful. Readers are referred to the Synthesis Lecture on
Shared-memory synchronization [2].

• Commercial Relaxed Consistency Models. This primer does not cover all the
subtleties of the ARM and PowerPC memory models, but does describe which
mechanisms they provide to enforce order.

• Parallel programming. This primer does not discuss parallel programming mod-
els, methodologies, or tools.

• Consistency in distributed systems. This primer restricts itself to consistency
within a shared memory multicore, and does not cover consistency models and
their enforcement for a general distributed system. Readers are referred to the
Synthesis lectures on Database Replication [1] and Quorum Systems [3].
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C H A P T E R 2

Coherence Basics
In this chapter, we introduce enough about cache coherence to understand how con-
sistencymodels interactwith caches.We start in Section 2.1 by presenting the system
model that we consider throughout this primer. To simplify the exposition in this
chapter and the following chapters, we select the simplest possible system model
that is su�cient for illustrating the important issues; we defer until Chapter 9 issues
related to more complicated system models. Section 2.2 explains the cache coher-
ence problem that must be solved and how the possibility of incoherence arises.
Section 2.3 precisely de�nes cache coherence.

2.1 BASELINE SYSTEMMODEL

In this primer, we consider systems with multiple processor cores that share mem-
ory. That is, all cores can perform loads and stores to all (physical) addresses. The
baseline system model includes a single multicore processor chip and o�-chip main
memory, as illustrated in Figure 2.1. The multicore processor chip consists of mul-
tiple single-threaded cores, each of which has its own private data cache, and a last-
level cache (LLC) that is shared by all cores. Throughout this primer, when we use
the term “cache,” we are referring to a core’s private data cache and not the LLC.
Each core’s data cache is accessed with physical addresses and is write-back. The
cores and the LLC communicate with each other over an interconnection network.
The LLC, despite being on the processor chip, is logically a “memory-side cache”
and thus does not introduce another level of coherence issues. The LLC is logically
just in front of the memory and serves to reduce the average latency of memory ac-
cesses and increase the memory’s e�ective bandwidth. The LLC also serves as an
on-chip memory controller.

This baseline system model omits many features that are common but that are
not required for purposes of most of this primer. These features include instruc-
tion caches, multiple-level caches, caches shared among multiple cores, virtually
addressed caches, TLBs, and coherent direct memory access (DMA). The baseline
system model also omits the possibility of multiple multicore chips. We will discuss
all of these features later, but for now, they would add unnecessary complexity.
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Figure 2.1: Baseline system model used throughout this primer.

2.2 THE PROBLEM: HOW INCOHERENCE COULD
POSSIBLY OCCUR

The possibility of incoherence arises only because of one fundamental issue: there
exist multiple actors with access to caches and memory. In modern systems, these
actors are processor cores, DMA engines, and external devices that can read and/or
write to caches and memory. In the rest of this primer, we generally focus on actors
that are cores, but it is worth keeping in mind that other actors may exist.

Table 2.1 illustrates a simple example of incoherence. Initially, memory loca-
tion A has the value 42 in memory as well as each of the core’s local caches. At
time 1, Core 1 changes the value at memory location A from 42 to 43 in its cache,
making Core 2’s value of A in its cache stale. Core 2 executes a while loop loading,
repeatedly, the (stale) value of A from its local cache. Clearly, this is an example of
incoherence as the store from Core 1 has not not been made visible to Core 2 and
consequently C2 is stuck in the while loop.
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Table 2.1: Example of incoherence. Assume the value of memory at memory loca-
tion A is initially 42 and cached in the local caches of both cores.

Time Core C1 Core C2
1 S1: A = 43; L1: while (A == 42);
2 L2: while (A == 42);
3 L3: while (A == 42);
4 ...
n Ln: while (A == 42);

Toprevent incoherence, the systemmust implement a cache coherence protocol
that makes the store fromCore 1 visible to Core 2. The design and implementation of
these cache coherence protocols are themain topics of Chapter 7 throughChapter 9.

2.3 THE CACHE COHERENCE INTERFACE
Informally, a coherence protocol must ensure that writes are made visible to all
processors. In this section, we will more formally understand coherence protocols
through the abstract interfaces they expose.

The processor cores interact with the coherence protocol through a coherence
interface (Figure 2.2) that provides twomethods: (1) a read-requestmethod that takes
in amemory location as the parameter and returns a value; (2) awrite-requestmethod
takes in a memory location and a value (to be written) as parameters and returns an
acknowledgment.

There are a number of coherence protocols that have appeared in the liter-
ature and been employed in real processors. We classify these protocols into two
categories based on the nature of their coherence interfaces—speci�cally, based on
whether there is a clean separation of coherence from the consistency model or
whether they are indivisible.

Consistency-agnostic coherence. In the �rst category, a write is made visible to all
other cores before returning. Because writes are propagated synchronously, the �rst
category presents an interface that is identical to that of an atomic memory system
(with no caches). Thus, any sub-system that interacts with the coherence protocol—
e.g., the processor core pipeline—can assume it is interactingwith an atomicmemory
system with no caches present. From a consistency enforcement perspective, this
coherence interface enables a nice separation of concerns. The cache coherence
protocol abstracts away the caches completely and presents an illusion of atomic
memory—it is as if the caches are removed and only the memory is contained within
the coherence box (Figure 2.2)—while the processor core pipeline enforces the or-
derings mandated by the consistency model speci�cation.
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Figure 2.2: The pipeline-coherence interface.

Consistency-directed coherence. In the second more-recent category, writes are
propagated asynchronously—a write can thus return before it has been made visible
to all processors, thus allowing for stale values (in real time) to be observed. How-
ever, in order to correctly enforce consistency, coherence protocols in this class
must ensure that the order in which writes are eventually made visible adheres to
the ordering rules mandated by the consistency model. Referring back to Figure 2.2,
both the pipeline and the coherence protocol enforce the orderings mandated by
the consistency model. This second category emerged to support throughput-based
general-purpose graphics processing units (GP-GPUs) and gained prominence after
the publication of the �rst edition of this primer.

The primer (and the rest of the chapter) focuses on the �rst class of coherence
protocols. We discuss the second class of coherence protocols in the context of het-
erogeneous coherence (chapter 10).

2.4 (CONSISTENCY-AGNOSTIC) COHERENCE
INVARIANTS

What invariants must a coherence protocol satisfy to make the caches invisible and
present an abstraction of an atomic memory system?

There are several de�nitions of coherence that have appeared in textbooks and
in published papers, and we do not wish to present all of them. Instead, we present
the de�nition we prefer for its insight into the design of coherence protocols. In the
sidebar, we discuss alternative de�nitions and how they relate to our preferred def-
inition.
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We de�ne coherence through the single-writer–multiple-reader (SWMR) in-
variant. For any given memory location, at any given moment in time, there is either
a single core that maywrite it (and that may also read it) or some number of cores that
may read it. Thus, there is never a timewhen a givenmemory locationmay bewritten
by one core and simultaneously either read or written by any other cores. Another
way to view this de�nition is to consider, for eachmemory location, that thememory
location’s lifetime is divided up into epochs. In each epoch, either a single core has
read-write access or some number of cores (possibly zero) have read-only access.
Figure 2.3 illustrates the lifetime of an example memory location, divided into four
epochs that maintain the SWMR invariant.

Figure 2.3: Dividing a given memory location’s lifetime into epochs.

In addition to the SWMR invariant, coherence requires that the value of a given
memory location is propagated correctly. To explain why valuesmatter, let us recon-
sider the example in Figure 2.3. Even though the SWMR invariant holds, if during the
�rst read-only epoch Cores 2 and 5 can read di�erent values, then the system is not
coherent. Similarly, the system is incoherent if Core 1 fails to read the last value writ-
ten by Core 3 during its read-write epoch or any of Cores 1, 2, or 3 fail to read the
last write performed by Core 1 during its read-write epoch.

Thus, the de�nition of coherence must augment the SWMR invariant with a
data value invariant that pertains to how values are propagated from one epoch to
the next. This invariant states that the value of a memory location at the start of an
epoch is the same as the value of thememory location at the end of its last read-write
epoch.

There are other interpretations of these invariants that are equivalent. One no-
table example [5] interpreted the SMWR invariants in terms of tokens. The invariants
are as follows. For each memory location, there exists a �xed number of tokens that
is at least as large as the number of cores. If a core has all of the tokens, it may write
the memory location. If a core has one or more tokens, it may read the memory lo-
cation. At any given time, it is thus impossible for one core to be writing the memory
location while any other core is reading or writing it.
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Coherence invariants

1. Single-Writer, Multiple-Read (SWMR) Invariant. For any memory loca-
tion A, at any given (logical) time, there exists only a single core that maywrite
to A (and can also read it) or some number of cores that may only read A.

2. Data-Value Invariant. The value of the memory location at the start of an
epoch is the same as the value of the memory location at the end of the its
last read-write epoch.

2.4.1 MAINTAINING THE COHERENCE INVARIANTS
The coherence invariants presented in the previous section provide some intuition
into howcoherence protocolswork. The vastmajority of coherence protocols, called
“invalidate protocols,” are designed explicitly to maintain these invariants. If a core
wants to read a memory location, it sends messages to the other cores to obtain the
current value of the memory location and to ensure that no other cores have cached
copies of the memory location in a read-write state. These messages end any active
read-write epoch and begin a read-only epoch. If a core wants to write to a memory
location, it sends messages to the other cores to obtain the current value of themem-
ory location, if it does not already have a valid read-only cached copy, and to ensure
that no other cores have cached copies of thememory location in either read-only or
read-write states. These messages end any active read-write or read-only epoch and
begin a new read-write epoch. This primer’s chapters on cache coherence (Chap-
ters 6–9) expand greatly upon this abstract description of invalidate protocols, but
the basic intuition remains the same.

2.4.2 THE GRANULARITY OF COHERENCE
A core can perform loads and stores at various granularities, often ranging from 1 to
64 bytes. In theory, coherence could be performed at the �nest load/store granular-
ity. However, in practice, coherence is usually maintained at the granularity of cache
blocks. That is, the hardware enforces coherence on a cache block by cache block
basis. In practice, the SWMR invariant is likely to be that, for any block of mem-
ory, there is either a single writer or some number of readers. In typical systems, it
is not possible for one core to be writing to the �rst byte of a block while another
core is writing to another byte within that block. Although cache-block granularity
is common, and it is what we assume throughout the rest of this primer, one should
be aware that there have been protocols that have maintained coherence at �ner and
coarser granularities.



2.4. (CONSISTENCY-AGNOSTIC) COHERENCE INVARIANTS 17

Sidebar: Consistency-Like De�nitions of Coherence
Our preferred de�nition of coherence de�nes it from an implementation

perspective—specifying hardware-enforced invariants regarding the access per-
missions of di�erent cores to a memory location and the data values passed be-
tween cores.

There exists another class of de�nitions that de�nes coherence from a pro-
grammer’s perspective, similar to how memory consistency models specify ar-
chitecturally visible orderings of loads and stores.

One consistency-like approach to specifying coherence is related to the
de�nition of sequential consistency. Sequential consistency (SC), amemory con-
sistency model that we discuss in great depth in Chapter 3, speci�es that the sys-
tem must appear to execute all threads’ loads and stores to all memory locations
in a total order that respects the program order of each thread. Each load gets
the value of the most recent store in that total order. A de�nition of coherence
that is analogous to the de�nition of SC is that a coherent system must appear
to execute all threads’ loads and stores to a single memory location in a total
order that respects the program order of each thread. This de�nition highlights
an important distinction between coherence and consistency in the literature:
coherence is speci�ed on a per-memory location basis, whereas consistency is
speci�ed with respect to all memory locations. It is worth noting that any co-
herence protocol that satis�es the SWMR and data-value invariants (combined
with a pipeline that does not reorder accesses to any speci�c location) is also
guaranteed to satisfy this consistency-like de�nition of coherence. (However,
the converse is not necessarily true).

Another de�nition [1, 2] of coherence de�nes coherence with two invari-
ants: (1) every store is eventually made visible to all cores and (2) writes to the
same memory location are serialized (i.e., observed in the same order by all
cores). IBM takes a similar view in the Power architecture [4], in part to facilitate
implementations in which a sequence of stores by one core may have reached
some cores (their values visible to loads by those cores) but not other cores. In-
variant 2 is equivalent to the consistency-like de�nition we described earlier. In
contrast to invariant 2, which is a safety invariant (bad things must not happen),
invariant 1 is a liveness invariant (good things must eventually happen).

Another de�nition of coherence, as speci�ed by Hennessy and Patter-
son [3], consists of three invariants: (1) a load to memory location A by a core
obtains the value of the previous store to A by that core, unless another core
has stored to A in between, (2) a load to A obtains the value of a store S to A
by another core if S and the load “are su�ciently separated in time” and if no
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other store occurred between S and the load, and (3) stores to the same memory
location are serialized (same as invariant #2 in the previous de�nition). Like the
previous de�nition, these set of invariants capture both safety and liveness.

2.4.3 WHEN IS COHERENCE RELEVANT?
The de�nition of coherence—regardless of which de�nition we choose—is relevant
only in certain situations, and architects must be aware of when it pertains and when
it does not. We now discuss two important issues:

• Coherence pertains to all storage structures that hold blocks from the shared
address space. These structures include the L1 data cache, L2 cache, shared
last-level cache (LLC), and main memory. These structures also include the L1
instruction cache and translation lookaside bu�ers (TLBs).1

• Coherence is not directly visible to the programmer. Rather, the processor
pipeline and coherence protocol jointly enforce the consistency model—and
it is only the consistency model that is visible to the programmer.
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C H A P T E R 3

Memory Consistency
Motivation and Sequential

Consistency
This chapter delves into memory consistency models (a.k.a. memory models) that
de�ne the behavior of shared memory systems for programmers and implementors.
These models de�ne correctness so that programmers know what to expect and im-
plementors know what to provide. We �rst motivate the need to de�ne memory be-
havior (Section 3.1), say what a memory consistency model should do (Section 3.2),
and compare and contrast consistency and coherence (Section 3.3).

We then explore the (relatively) intuitive model of sequential consistency (SC).
SC is important because it is what many programmers expect of shared memory and
provides a foundation for understanding the more relaxed (weak) memory consis-
tency models presented in the next two chapters. We �rst present the basic idea of
SC (Section 3.4) and present a formalism of it that we will also use in subsequent
chapters (Section 3.5). We then discuss implementations of SC, starting with naive
implementations that serve as operational models (Section 3.6), a basic implemen-
tation of SC with cache coherence (Section 3.7), more optimized implementations
of SC with cache coherence (Section 3.8), and the implementation of atomic opera-
tions (Section 3.9). We conclude our discussion of SC by providing a MIPS R10000
case study (Section 3.10) and pointing to some further reading (Section 3.11).

3.1 PROBLEMSWITH SHAREDMEMORY BEHAVIOR

To see why shared memory behavior must be de�ned, consider the example execu-
tion of two cores1 depicted in Table 3.1 (this example, as is the case for all examples
in this chapter, assumes that the initial values of all variables are zero).Most program-
merswould expect that core C2’s register r2 should get the valueNEW.Nevertheless,
r2 can be 0 in some of today’s computer systems.

1Let “core” refer to software’s viewof a core, whichmay be an actual core or a thread context of amultithreaded
core.
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Hardware can make r2 get the value 0 by reordering core C1’s stores S1 and
S2. Locally (i.e., if we look only at C1’s execution and do not consider interactions
with other threads), this reordering seems correct because S1 and S2 access di�erent
addresses. The sidebar on page 18 describes a few of the ways in which hardware
might reorder memory accesses, including these stores. Nonhardware experts may
wish to trust that such reordering can happen (e.g., with a write bu�er that is not
�rst-in–�rst-out).

Table 3.1: Should r2 always be set to NEW?

With the reordering of S1 and S2, the execution order may be S2, L1, L2, S1,
as illustrated in Table 3.2.

Table 3.2: One possible execution of program in Table 3.1

Sidebar: How a Core Might Reorder Memory Access

This sidebar describes a few of the ways in which modern cores may re-
ordermemory accesses to di�erent addresses. Those unfamiliar with these hard-
ware concepts may wish to skip this on �rst reading. Modern cores may reorder
many memory accesses, but it su�ces to reason about reordering two memory
operations. In most cases, we need to reason only about a core reordering two
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memory operations to two di�erent addresses, as the sequential execution (i.e.,
von Neumann) model generally requires that operations to the same address ex-
ecute in the original program order. We break the possible reorderings down
into three cases based on whether the reordered memory operations are loads
or stores.

Store-store reordering. Two stores may be reordered if a core has a non-
FIFO write bu�er that lets stores depart in a di�erent order than the order in
which they entered. This might occur if the �rst store misses in the cache while
the second hits or if the second store can coalesce with an earlier store (i.e., be-
fore the �rst store). Note that these reorderings are possible even if the core ex-
ecutes all instructions in program order. Reordering stores to di�erent memory
addresses has no e�ect on a single-threaded execution. However, in the multi-
threaded example of Table 3.1, reordering Core C1’s stores allows Core C2 to
see �ag as SET before it sees the store to data. Note that the problem is not �xed
even if the write bu�er drains into a perfectly coherent memory hierarchy. Co-
herence will make all caches invisible, but the stores are already reordered.

Load-load reordering. Modern dynamically-scheduled cores may exe-
cute instructions out of program order. In the example of Table 3.1, Core C2
could execute loads L1 and L2 out of order. Considering only a single-threaded
execution, this reordering seems safe because L1 and L2 are to di�erent ad-
dresses. However, reordering Core C2’s loads behaves the same as reordering
Core C1’s stores; if the memory references execute in the order L2, S1, S2 and
L1, then r2 is assigned 0. This scenario is evenmore plausible if the branch state-
ment B1 is elided, so no control dependence separates L1 and L2.

Load-storeandstore-loadreordering. Out-of-order cores may also re-
order loads and stores (to di�erent addresses) from the same thread. Reordering
an earlier load with a later store (a loadstore reordering) can cause many incor-
rect behaviors, such as loading a value after releasing the lock that protects it (if
the store is the unlock operation). The example in Table 3.3 illustrates the e�ect
of reordering an earlier store with a later load (a store-load reordering). Reorder-
ing Core C1’s accesses S1 and L1 and Core C2’s accesses S2 and L2 allows the
counterintuitive result that both r1 and r2 are 0. Note that store-load reorderings
may also arise due to local bypassing in the commonly implemented FIFO write
bu�er, even with a core that executes all instructions in program order.

A readermight assume that hardware should not permit some or all of these
behaviors, but without a better understanding of what behaviors are allowed, it
is hard to determine a list of what hardware can and cannot do.
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Table 3.3: Can both r1 and r2 be set to 0?

This execution satis�es coherence because the SWMRproperty is not violated,
so incoherence is not the underlying cause of this seemingly erroneous execution
result.

Let us consider another important example inspired by Dekker’s Algorithm for
ensuring mutual exclusion, as depicted in Table 3.3. After execution, what values are
allowed in r1 and r2? Intuitively, one might expect that there are three possibilities:

• (r1, r2) = (0, NEW) for execution S1, L1, S2, then L2

• (r1, r2) = (NEW, (0) for S2, L2, S1, and L1

• (r1, r2) = (NEW, NEW), e.g., for S1, S2, L1, and L2

Surprisingly, most real hardware, e.g., x86 systems from Intel and AMD, also
allows (r1, r2) = (0, (0) because it uses �rst-in—�rst-out (FIFO) write bu�ers to en-
hance performance. As with the example in Table 3.1, all of these executions satisfy
cache coherence, even (r1, r2) = (0, 0).

Some readersmight object to this example because it is non-deterministic (mul-
tiple outcomes are allowed) and may be a confusing programming idiom. However,
in the �rst place, all current multiprocessors are non-deterministic by default; all
architectures of which we are aware permit multiple possible interleavings of the
executions of concurrent threads. The illusion of determinism is sometimes, but not
always, created by software with appropriate synchronization idioms. Thus, wemust
consider non-determinism when de�ning shared memory behavior.

Furthermore, memory behavior is usually de�ned for all executions of all pro-
grams, even those that are incorrect or intentionally subtle (e.g., for non-blocking
synchronization algorithms). In Chapter 5, however, we will see some high-level
language models that allow some executions to have unde�ned behavior, e.g., ex-
ecutions of programs with data races.
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3.2 WHAT IS AMEMORY CONSISTENCYMODEL?

The examples in the last sub-section illustrate that sharedmemory behavior is subtle,
giving value to precisely de�ning (a) what behaviors programmers can expect and
(b) what optimizations system implementors may use. A memory consistency model
disambiguates these issues.

A memory consistency model, or, more simply, a memory model, is a speci-
�cation of the allowed behavior of multithreaded programs executing with shared
memory. For a multithreaded program executing with speci�c input data, it speci�es
what values dynamic loads may return. Unlike a single-threaded execution, multi-
ple correct behaviors are usually allowed, as we will see for sequential consistency
(Section 3.4 and beyond).

In general, a memory consistency model MC gives rules that partition execu-
tions into those obeying MC (MC executions) and those disobeying MC (non-MC
executions). This partitioning of executions, in turn, partitions implementations. An
MC implementation is a system that permits only MC executions, while a non-MC
implementation sometimes permits non-MC executions.

Finally, we have been vague regarding the level of programming. We begin by
assuming that programs are executables in a hardware instruction set architecture,
and we assume that memory accesses are to memory locations identi�ed by physical
addresses (i.e., we are not considering the impact of virtual memory and address
translation). In Chapter 5, we will discuss issues with high-level languages (HLLs).
We will see then, for example, that a compiler allocating a variable to a register can
a�ect an HLL memory model in a manner similar to hardware reordering memory
references.

3.3 CONSISTENCY VS. COHERENCE

Chapter 2 de�ned cache coherence with two invariants that we informally repeat
here. The Single-Writer—Multiple-Reader (SWMR) invariant ensures that at any
(logical) time for a memory location with a given address, either (a) one core may
write (and read) the address or (b) one or more cores may only read it. The Data-
Value Invariant ensures that updates to the memory location are passed correctly so
that cached copies of the memory location always contain the most recent version.

It would seem that cache coherence de�nes shared memory behavior. It does
not. As we can see from Figure 3.1, the coherence protocol simply provides the pro-
cessor core pipeline an abstraction of a memory system. It alone cannot determine
shared memory behavior—the pipeline matters too. If, for example, the pipeline re-
orders and presents memory operations to the coherence protocol in an order con-
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Figure 3.1: A consistencymodel is enforced by the processor core pipeline combined
with the coherence protocol

trary to program order, (even if the coherence protocol does its job correctly) shared
memory correctness may not ensue.

In summary:

• Cache coherence does not equal memory consistency.

• A memory consistency implementation can use cache coherence as a useful
“black box.”

3.4 BASIC IDEA OF SEQUENTIAL CONSISTENCY (SC)
Arguably the most intuitive memory consistency model is sequential consistency
(SC). Sequential consistency was �rst formalized by Lamport [11]. Lamport �rst
called a single processor (core) sequential if “the result of an execution is the same as
if the operations had been executed in the order speci�ed by the program.” He then
called a multiprocessor sequentially consistent if “the result of any execution is the
same as if the operations of all processors (cores) were executed in some sequential
order, and the operations of each individual processor (core) appear in this sequence
in the order speci�ed by its program.” This total order of operations is calledmemory
order. In SC, memory order respects each core’s program order, but other consis-
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tency models may permit memory orders that do not always respect the program
orders.

Figure 3.2 depicts an execution of the example program from Table 3.1. The
middle vertical downward arrow represents thememory order (<m)while each core’s
downward arrow represents its program order (<p). We denote memory order using
the operator <m, so op1 <m op2 implies that op1 precedes op2 in memory order.
Similarly, we use the operator <p to denote program order for a given core, so op1
<p op2 implies that op1 precedes op2 in that core’s program order. Under SC, mem-
ory order respects each core’s program order. “Respects” means that op1 <p op2 im-
plies op1 <m op2. The values in comments (/* ... */) give the value loaded or stored.
This execution terminates with r2 being NEW. More generally, all executions of Ta-
ble 3.1’s program terminate with r2 as NEW. The only non-determinism—howmany
times L1 loads �ag as 0 before it loads the value SET once—is unimportant.

Figure 3.2: A sequentially consistent execution of Table 3.1’s program.

This example illustrates the value of SC. In Section 3.1, if you expected that r2
must be NEW, you were perhaps independently inventing SC, albeit less precisely
than Lamport.

The value of SC is further revealed in Figure 3.3, which illustrates four execu-
tions of the program from Table 3.3. Figure 3.3a–c depict SC executions that corre-
spond to the three intuitive outputs: (r1, r2) = (0, NEW), (NEW, 0), or (NEW, NEW).
Note that Figure 3.3c depicts only one of the four possible SC executions that leads
to (r1, r2) = (NEW, NEW); this execution is {S1, S2, L1, L2}, and the others are {S1,
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S2, L2, L1}, {S2, S1, L1, L2}, and {S2, S1, L2, L1}. Thus, across Figure 3.3a–c, there
are six legal SC executions.

Figure 3.3d shows a non-SC execution corresponding to the output (r1, r2) = (0,
0). For this output, there is no way to create a memory order that respects program
orders. Program order dictates that:

• S1 <p L1

• S2 <p L2

But memory order dictates that:

• L1 <m S2 (so r1 is (0)

• L2 <m S1 (so r2 is (0)

Honoring all these constraints results in a cycle, which is inconsistent with a
total order. The extra arcs in Figure 3.3d illustrate the cycle.

We have just seen six SC executions and one non-SC execution. This can help
us understand SC implementations: an SC implementation must allow one or more
of the �rst six executions, but cannot allow the seventh execution.

We have also just observed a key distinction between consistency and coher-
ence. Coherence applies on a per-block basis, whereas consistency is de�ned across
all blocks. (Forecasting ahead to Chapter 7, we will see that snooping systems en-
sure a total order of coherence requests across all blocks, even though coherence
requires only a total order of coherence requests to each individual block. This seem-
ing overkill is required for snooping protocols to support consistency models such as
SC.)

3.5 A LITTLE SC FORMALISM
In this section, we de�ne SC more precisely, especially to allow us to compare SC
with the weaker consistency models in the next two chapters. We adopt the for-
malism of Weaver and Germond [20]—an axiomatic method to specify consistency
(more in Chapter 11 —with the following notation: L(a) and S(a) represent a load
and a store, respectively, to address a. Orders <p and <m de�ne program and global
memory order, respectively. Program order <p is a per-core total order that captures
the order in which each core logically (sequentially) executes memory operations.
Global memory order <m is a total order on the memory operations of all cores.

An SC execution requires:

(1) All cores insert their loads and stores into the order <m respecting their program
order, regardless of whether they are to the same or di�erent addresses (i.e., a=b
or a 6= b). There are four cases:
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Figure 3.3: Four alternative executions of Table 3.3’s program.
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• If L(a) <p L(b)⇒ L(a) <m L(b) /* Load→Load */

• If L(a) <p S(b)⇒ L(a) <m S(b) /* Load→Store */

• If S(a) <p S(b)⇒ S(a) <m S(b) /* Store→Store */

• If S(a) <p L(b)⇒ S(a) <m L(b) /* Store→Load */

(2) Every load gets its value from the last store before it (in global memory order)
to the same address:

Value of L(a) = Value of MAX <m {S(a) | S(a) <m L(a)}, where MAX <m denotes
“latest in memory order.”

Atomic read-modify-write (RMW) instructions, which we discuss in more
depth in Section 3.9, further constrain allowed executions. Each execution of a test-
and-set instruction, for example, requires that the load for the test and the store for
the set logically appear consecutively in the memory order (i.e., no other memory
operations for the same or di�erent addresses interpose between them).

We summarize SC’s ordering requirements in Table 3.4. The table speci�es
which program orderings are enforced by the consistency model. For example, if
a given thread has a load before a store in program order (i.e., the load is “Operation
1” and the store is “Operation 2” in the table), then the table entry at this intersection
is an “X” which denotes that these operations must be performed in program order.
For SC, all memory operationsmust appear to perform in programorder; under other
consistency models, which we study in the next two chapters, some of these order-
ing constraints are relaxed (i.e., some entries in their ordering tables do not contain
an “X”).

An SC implementation permits only SC executions. Strictly speaking, this is
the safety property for SC implementations (do no harm). SC implementations should
also have some liveness properties (do some good). Speci�cally, a store must become
eventually visible to a load that is repeatedly attempting to load that location. This
property, referred to as eventual write-propagation, is typically ensured by the co-
herence protocol. More generally, starvation avoidance and some fairness are also
valuable, but these issues are beyond the scope of this discussion.

3.6 NAIVE SC IMPLEMENTATIONS
SC permits two naive implementations that make it easier to understand which exe-
cutions SC permits.

TheMultitasking Uniprocessor
First, one can implement SC for multi-threaded user-level software by executing all
threads on a single sequential core (a uniprocessor). Thread T1’s instructions exe-
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Table 3.4: SC ordering rules. An “X” denotes an enforced ordering.

cute on core C1 until a context switch to thread T2, etc. On a context switch, any
pending memory operations must be completed before switching to the new thread.
An inspection reveals that all SC rules are obeyed.

The Switch
Second, one can implement SC with a set of cores Ci, a single switch, and memory,
as depicted in Figure 3.4. Assume that each core presents memory operations to the
switch one at a time in its program order. Each core can use any optimizations that
do not a�ect the order in which it presents memory operations to the switch. For
example, a simple 5-stage in-order pipeline with branch prediction can be used.

Figure 3.4: A simple SC implementation using a memory switch.
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Assume next that the switch picks one core, allows memory to fully satisfy the
load or store, and repeats this process as long as requests exist. The switch may pick
cores by any method (e.g., random) that does not starve a core with a ready request.
This implementation operationally implements SC by construction.

Assessment
The good news from these implementations is that they provide operational models
de�ning (1) allowed SC executions and (2) SC implementation “gold standards.” (In
Chapter11, we will see that such operational models can be used to formally specify
consistency models.) The switch implementation also serves as an existence proof
that SC can be implemented without caches or coherence.

The bad news, of course, is that the performance of these implementations
does not scale up with increasing core count, due to the sequential bottleneck of
using a single core in the �rst case and the single switch/memory in the second case.
These bottlenecks have led some people to incorrectly conclude that SC precludes
true parallel execution. It does not, as we will see next.

3.7 A BASIC SC IMPLEMENTATIONWITH CACHE
COHERENCE

Cache coherence facilitates SC implementations that can execute non-con�icting
loads and stores—two operations con�ict if they are to the same address and at least
one of them is a store—completely in parallel. Moreover, creating such a system is
conceptually simple.

Here, we treat coherence as mostly a black box that implements the Single-
Writer–Multiple Reader (SWMR) invariant of Chapter 2. We provide some imple-
mentation intuition by opening the coherence block box slightly to reveal simple
level-one (L1) caches that:

• use state modi�ed (M) to denote an L1 block that one core can write and read,

• use state shared (S) to denote an L1 block that one or more cores can only read,
and

• have GetM and GetS denote coherence requests to obtain a block in M and S,
respectively.

We do not require a deep understanding of how coherence is implemented, as
discussed in Chapter 6 and beyond.

Figure 3.5a depicts the model of Figure 3.4 with the switch and memory re-
placed by a cache-coherent memory system represented as a black box. Each core
presents memory operations to the cache-coherent memory system one at a time in
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its program order. The memory system fully satis�es each request before beginning
the next request for the same core.

Figure 3.5: Implementing SC with cache coherence.

Figure 3.5b “opens” the memory system black box a little to reveal that each
core connects to its own L1 cache (we will talk about multithreading later). The
memory system can respond to a load or store to block B if it has B with appropri-
ate coherence permissions (state M or S for loads and M for stores). Moreover, the
memory system can respond to requests from di�erent cores in parallel, provided
that the corresponding L1 caches have the appropriate permissions. For example,
Figure 3.6a depicts the cache states before four cores each seek to do a memory
operation. The four operations do not con�ict, can be satis�ed by their respective
L1 caches, and therefore can be done concurrently. As depicted in Figure 3.6b, we
can arbitrarily order these operations to obtain a legal SC execution model. More
generally, operations that can be satis�ed by L1 caches always can be done concur-
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rently because coherence’s single-writer–multiple-reader invariant ensures they are
non-con�icting.

Assessment
We have created an implementation of SC that:

• fully exploits the latency and bandwidth bene�ts of caches,

• is as scalable as the cache coherence protocol it uses, and

• decouples the complexities of implementing cores from implementing coher-
ence.

Figure 3.6: A concurrent SC execution with cache coherence.

3.8 OPTIMIZED SC IMPLEMENTATIONSWITH CACHE
COHERENCE

Most real core implementations are more complicated than our basic SC implemen-
tation with cache coherence. Cores employ features like prefetching, speculative ex-
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ecution, and multithreading in order to improve performance and tolerate memory
access latencies. These features interact with the memory interface, and we now
discuss how these features impact the implementation of SC.

Non-Binding Prefetching
A non-binding prefetch for block B is a request to the coherent memory system to
change B’s coherence state in one or more caches. Most commonly, prefetches are
requested by software, core hardware, or the cache hardware to change B’s state in
the level-one cache to permit loads (e.g., B’s state is M or S) or loads and stores (B’s
state is M) by issuing coherence requests such as GetS and GetM. Importantly, in
no case does a non-binding prefetch change the state of a register or data in block
B. The e�ect of the non-binding prefetch is limited to within the “cache-coherent
memory system” block of Figure 3.5, making the e�ect of non-binding prefetches on
the memory consistency model to be the functional equivalent of a no-op. So long
as the loads and stores are performed in program order, it does not matter in what
order coherence permissions are obtained.

Implementationsmay do non-binding prefetcheswithout a�ecting thememory
consistency model. This is useful for both internal cache prefetching (e.g., stream
bu�ers) and more aggressive cores.

Speculative Cores
Consider a core that executes instructions in program order, but also does branch
prediction wherein subsequent instructions, including loads and stores, begin execu-
tion, butmay be squashed (i.e., have their e�ects nulli�ed) on a branchmisprediction.
These squashed loads and stores can be made to look like non-binding prefetches,
enabling this speculation to be correct because it has no e�ect on SC. A load after a
branch prediction can be presented to the L1 cache, wherein it eithermisses (causing
a non-binding GetS prefetch) or hits and then returns a value to a register. If the load
is squashed, the core discards the register update, erasing any functional e�ect from
the load—as if it never happened. The cache does not undo non-binding prefetches,
as doing so is not necessary and prefetching the block can help performance if the
load gets re-executed. For stores, the core may issue a non-binding GetM prefetch
early, but it does not present the store to the cache until the store is guaranteed to
commit.

Flashback toQuizQuestion 1: In a system that maintains sequential consistency,
a core must issue coherence requests in program order. True or false?
Answer: False! A core may issue coherence requests in any order.
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Dynamically Scheduled Cores
Many modern cores dynamically schedule instruction execution out of program or-
der to achieve greater performance than statically scheduled cores that must exe-
cute instructions in strict program order. A single-core processor that uses dynamic
or out-of-(program-)order scheduling must simply enforce true data dependences
within the program. However, in the context of a multicore processor, dynamic
scheduling introduces a new issue:memory consistency speculation. Consider a core
that wishes to dynamically reorder the execution of two loads, L1 and L2 (e.g., be-
cause L2’s address is computed before L1’s address). Many cores will speculatively
execute L2 before L1, and they are predicting that this reordering is not visible to
other cores, which would violate SC.

Speculating on SC requires that the core verify that the prediction is correct.
Gharachorloo et al. [7] presented two techniques for performing this check. First,
after the core speculatively executes L2, but before it commits L2, the core could
check that the speculatively accessed block has not left the cache. So long as the
block remains in the cache, its value could not have changed between the load’s
execution and its commit. To perform this check, the core tracks the address loaded
by L2 and compares it to blocks evicted and to incoming coherence requests. An
incoming GetM indicates that another core could observe L2 out of order, and this
GetM would imply a mis-speculation and squash the speculative execution.

The second checking technique is to replay each speculative load when the
core is ready to commit the load2 [2, 17]. If the value loaded at commit does not equal
the value that was previously loaded speculatively, then the predictionwas incorrect.
In the example, if the replayed load value of L2 is not the same as the originally loaded
value of L2, then the load—load reordering has resulted in an observably di�erent
execution and the speculative execution must be squashed.

Non-Binding Prefetching in Dynamically Scheduled Cores
A dynamically scheduled core is likely to encounter load and store misses out of
program order. For example, assume that program order is Load A, Store B, then
Store C. The core may initiate non-binding prefetches “out of order,” e.g., GetM C
�rst and then GetS A and GetM B in parallel. SC is not a�ected by the order of non-
binding prefetches. SC requires only that a core’s loads and stores (appear to) access
its level-one cache in program order. Coherence requires the level-one cache blocks
to be in the appropriate states to receive loads and stores.

Importantly, SC (or any other memory consistency model):

• dictates the order in which loads and stores (appear to) get applied to coherent
memory but

2Roth [17] demonstrated a scheme for avoidingmany load replays by determining when they are not necessary.
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• does NOT dictate the order of coherence activity.

Flashback to Quiz Question 2: The memory consistency model speci�es the
legar orderings of coherence transations. True or false?
Answer: False!

Multithreading
Multithreading—at coarse grain, �ne grain, or simultaneous—can be accommodated
by SC implementations. Each multithreaded core should be made logically equiva-
lent to multiple (virtual) cores sharing each level-one cache via a switch where the
cache chooses which virtual core to service next. Moreover, each cache can actu-
ally serve multiple non-con�icting requests concurrently because it can pretend that
they were serviced in some order. One challenge is ensuring that a thread T1 cannot
read a value written by another thread T2 on the same core before the store has been
made “visible” to threads on other cores. Thus, while thread T1 may read the value
as soon as thread T2 inserts the store in the memory order (e.g., by writing it to a
cache block in state M), it cannot read the value from a shared load-store queue in
the processor core.

3.9 ATOMIC OPERATIONSWITH SC
To write multithreaded code, a programmer needs to be able to synchronize the
threads, and such synchronization often involves atomically performing pairs of op-
erations. This functionality is pro-vided by instructions that atomically perform a
“read–modify–write” (RMW), such as the well-known “test-and-set,” “fetch-and-
increment,” and “compare-and-swap.” These atomic instructions are critical for
proper synchronization and are used to implement spin-locks and other synchro-
nization primitives. For a spin-lock, a programmer might use an RMW to atomically
readwhether the lock’s value is unlocked (e.g., equal to (0) andwrite the locked value
(e.g., equal to 1). For the RMW to be atomic, the read (load) and write (store) opera-
tions of the RMWmust appear consecutively in the total order of operations required
by SC.

Implementing atomic instructions in the microarchitecture is conceptually
straightforward, but naive designs can lead to poor performance for atomic instruc-
tions. A correct but simplistic approach to implementing atomic instructions would
be for the core to e�ectively lock the memory system (i.e., prevent other cores
from issuing memory accesses) and perform its read, modify, and write operations
to memory. This implementation, although correct and intuitive, sacri�ces perfor-
mance.
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More aggressive implementations of RMWs leverage the insight that SC re-
quires only the appearance of a total order of all requests. Thus, an atomic RMW
can be implemented by �rst having a core obtain the block in state M in its cache, if
the block is not already there in that state. The core then needs to only load and store
the block in its cache—without any coherence messages or bus locking—as long as
it waits to service any incoming coherence request for the block until after the store.
This waiting does not risk deadlock because the store is guaranteed to complete.

Flashback toQuizQuestion 3:To perform an atomic read-modify-write instruc-
tion (e.g., test-and-set), a coremust always communicatewith the other cores.True
or false?
Answer: False!

An even more optimized implementation of RMWs could allow more time be-
tween when the load part and store part perform, without violating atomicity. Con-
sider the case where the block is in a read-only state in the cache. The load part of
the RMW can speculatively perform immediately, while the cache controller issues
a coherence request to upgrade the block’s state to read-write. When the block is
then obtained in read-write state, the write part of the RMW performs. As long as
the core can maintain the illusion of atomicity, this implementation is correct. To
check whether the illusion of atomicity is maintained, the core must check whether
the loaded block is evicted from the cache between the load part and the store part;
this speculation support is the same as that needed for detecting mis-speculation in
SC (Section 3.8).

3.10 PUTTING IT ALL TOGETHER: MIPS R10000

The MIPS R10000 [21] provides a venerable, but clean, commercial example for
a speculative microprocessor that implements SC in cooperation with a cache-
coherent memory hierarchy. Herein, we concentrate on aspects of the R10000 that
pertain to implementing memory consistency.

The R10000 is a four-way superscalar RISC processor core with branch pre-
diction and out-of-order execution. The chip supports writeback caches for L1 in-
structions and L1 data, as well as a private interface to an (o�-chip) uni�ed L2 cache.

The chip’s main system interface bus supports cache coherence for up to four
processors, as depicted in Figure 3.7 (adapted from Figure 1 in Yeager [21]). To con-
struct an R10000-based system with more processors, such as the SGI Origin 2000
(discussed at length in Section 8.8.1), architects implemented a directory coherence
protocol that connects R10000 processors via the system interface bus and a special-
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ized Hub chip. In both cases, the R10000 processor core sees a coherent memory
system that happens to be partially on-chip and partially o�-chip.

During execution, an R10000 core issues (speculative) loads and stores in pro-
gram order into an address queue. A load obtains a (speculative) value from the last
store before it to the same address or, if none, the data cache. Loads and stores com-
mit in program order and then remove their address queue entries. To commit a
store, the L1 cache must hold the block in state M and the store’s value must be
written atomically with the commit.

Importantly, the eviction of a cache block—due to a coherence invalidation
or to make room for another block—that contains a load’s address in the address
queue squashes the load and all subsequent instructions, which then re-execute.
Thus, when a load �nally commits, the loaded block was continuously in the cache
between when it executed and when it commits, so it must get the same value as
if it executed at commit. Because stores actually write to the cache at commit, the
R10000 logically presents loads and stores in program order to the coherent memory
system, thereby implementing SC, as discussed above.

Figure 3.7: Coherent MESI bus connects up to four MIPS R10000 processors.

3.11 FURTHER READING REGARDING SC
Below we highlight a few of the papers from the vast literature surrounding SC.

Lamport [11] de�ned SC. As far as we know, Meixner and Sorin [14, 15] were
the �rst to prove that a system in which cores present loads and stores in program
order to a cache coherent memory system was su�cient to implement SC, even as
this result was intuitively believed for some time.

SC can be compared with database serializability [9]. The two concepts are
similar in that they both insist that the operations from all entities appear to a�ect
shared state in a serial order. The concepts di�er due to the nature of and expec-
tation for operations and shared state. With SC, each operation is a single memory
access to volatile state (memory) that is assumed not to fail. With serializability, each
operation is a transaction on a database that can read and write multiple data-base
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entities and is expected to obey ACID properties: Atomic—all or nothing even with
failures, Consistent—leave the database consistent, Isolated—no e�ect from concur-
rent transactions, and Durable—e�ects survive crashes and power loss.

We followedLamport and SPARC to de�ne a total order of allmemory accesses.
While this can ease intuition for some, it is not necessary. Let two accesses con�ict
if they are from di�erent threads, access the same location, and at least one is a store
(or read-modify-write). Instead of a total order, one can just de�ne the constraints
on con�icting accesses and leave non-con�icting accesses unordered, as pioneered
by Shasha and Snir [18]. This view can be especially valuable for the relaxed models
of Chapter 5.

There have been many papers on aggressive implementations of SC. Ghara-
chorloo et al. [7] show that non-binding prefetches and speculative execution are
permittedwhen implementing SC and othermemorymodels. Ranganathan et al. [16]
and Gniady et al. [8] seek to speculatively retire (commit) instructions (freeing re-
sources) and handle SC violations with secondary mechanisms. Recent work has im-
plemented SC by building on implicit transactions and related mechanisms [1, 3, 10,
19]. All of these works use speculation and prefetching to execute memory opera-
tions out of order while completing them in program order. But there have been a
couple of papers that have shown that it is possible to even non-speculatively com-
plete memory operations out of order while enforcing SC, if the reordering is not
visible to other cores. For example, two accesses to thread-private variables can be
safely reordered. Whereas Singh et al. [5] seek the help of static compiler and mem-
ory management unit to determine such safe accesses, Lin et al [6] and Gope and
Lipasti [4] employ hardware support for this.

Finally, a cautionary tale. We stated earlier (Section 3.7) that one way to check
whether a speculatively executed load could have been observed out of order is to
remember the value A that is speculatively read by a load and to commit the load
if, at commit, the memory location has the same value A. Martin et al. [13] show
that this is not the case for cores that perform value prediction [12]. With value
prediction, when a load executes, the core can speculate on its value. Consider a
core that speculates that a load of block X will produce the value A, although the
value is actually B. Between when the core speculates on the load of X and when
it replays the load at commit, another core changes block X’s value to A. The core
then replays the load at commit, compares the two values, which are equal, and mis-
takenly determines that the speculation was correct. The system can violate SC if
it speculates in this way. This situation is analogous to the so-called ABA problem
(http://en.wikipedia.org/wiki/ABA_problem), and Martin et al. showed that there
are ways of checking speculation in the presence of value prediction that avoid the
possibility of consistency violations (e.g., by also replaying all loads dependent on the



3.11. REFERENCES 39

initially speculated load). The point of this discussion is not to delve into the details
of this particular corner case or its solutions, but rather to convince you to prove that
your implementation is correct rather than rely on intuition.
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