

 1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN-MADISON

Prof. Mark D. Hill

TAs Marc de Kruijf & Sanghamitra Roy

Midterm Examination 4

In Class (50 minutes)

Wednesday, May 9, 2007

Weight: 15%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, & COMPUTER.

The exam in two-sided and has NINE pages, including two blank pages and a copy of the LC-3
Instruction Set handout on the final page (please feel free to detach this final page, but insert it
into your exam when you turn it in).

Plan your time carefully, since some problems are longer than others.

NAME: __

ID# __

Problem

Number

Maximum

Points

Points

Awarded

1 5 SR

2 4 SR

3 4 SR

4 8 MK

5 4 SR

6 3 MK

7 2 MK

Total 30

 2

Problem 1 (5 points)

An assembly language LC-3 program is given below:

 .ORIG x3003

 LEA R1, DATA

 LDR R2, R1, #0

LOOP ADD R2, R2, #-3

 BRzp LOOP

 HALT

DATA .FILL x000C

 .END

a. Create a symbol table for the program:

Symbol Address

LOOP x3005

DATA x3008

b. How many times will the instruction at the memory address labeled LOOP execute?

 5 times (R2 = 12, 9, 6, 3, 0)

Problem 2 (4 points)

a. What is the purpose of the HALT statement?

A HALT instruction stops the execution of the program and returns to the OS.

b. Is it meaningful to have more than one HALT statement in a single-file LC-3

program? Explain.

Yes. A program may have more than one logical exit.

 3

c. What is the purpose of .END pseudo-op?

The .END pseudo-op tells the assembler where the program ends. Any string

that occurs after that will be disregarded and not processed by the assembler.

d. Is it meaningful to have more than one .END in a single-file LC-3 program? Explain.

No. Any .END after the first .END will never be processed by the assembler.

Problem 3 (4 points)

Regarding the assigned reading "RFID Inside" on RFID implants:

a. Give two different potential benefits of RFID implants.

I. To be used as a life saving device in an emergency

II. To be used as a source of authentication for security

b. Give two different potential drawbacks of RFID implants.

I. Invasion of employee’s privacy

II. An employee should have the right to bodily integrity

c. In what way was Wisconsin mentioned in the article?

Wisconsin passed a bill in May 2006, to prohibit requiring anyone to have a

microchip implanted.

 4

Problem 4 (8 points)

The following program calculates the sum of absolute values of two numbers and stores the sum

in R4. The subroutine at the label “ABS” finds the absolute value of the argument.

 .ORIG x3000 ; Instructions start at x3000;

 AND R4, R4, #0 ; Clearing R4

 LD R1, VAL1

 LD R2, VAL2

 ADD R0, R1, #0 ; Prepare argument VAL1 (fill)

 JSR ABS ; Call subroutine ABS

 ADD R4, R0, #0 ; Add Abs(VAL1) to R4

 ADD R0, R2, #0 ; Prepare argument VAL2 (fill)

 JSR ABS ; Call subroutine ABS

 ADD R4, R4, R0 ; Add Abs(VAL2) to R4

 HALT

 ; Argument passed in register R0 (fill)

ABS ST R4, SaveR ; Save register R4 (fill)

 ADD R0, R0, #0 ; Set condition code based on R0

 BRzp NEXT

 NOT R4, R0

 ADD R0, R4, #1

NEXT LD R4, SaveR ; Restore register R4 (fill)

 RET ; Value is returned in register R0 (fill)

 ; Values

SaveR .FILL x0000

VAL1 .FILL x0005 ; 5

VAL2 .FILL xFFFB ; -5

 .END

a. Fill in the blanks in the above program at all places indicated by “(fill)”.

See above.

b. What is the value in register R4 at the end of program execution?

R4 contains 0x000A in hexadecimal, or ‘10’ in decimal.

 5

Problem 5 (4 points)

An LC-3 assembly language program is given below. Carefully read the program and answer the

questions that follow. Adding comments will help in partial credit.

Label Assembly language instruction

START LDI R1, KBSR ; Test for character input

 BRzp START ;

 LDI R0, KBDR ;

LOOP LDI R1, DSR ; Test output register ready

 BRzp LOOP ;

 STI R0, DDR ;

 HALT ;

KBSR .FILL xFE00 ; Address of KBSR

KBDR .FILL xFE02 ; Address of KBDR

DSR .FILL xFE04 ; Address of DSR

DDR .FILL xFE06 ; Address of DDR

 .END

a. What does this program do?

The program accepts a character typed at the keyboard and displays the same

character on the monitor.

b. What is the purpose of the KBSR?

Bit 15 of the KBSR (keyboard status register) controls the synchronization of the slow

keyboard and the fast processor. When a key on the keyboard is struck the ASCII code

for that key is loaded into KBDR[7:0] and the electronic circuits associated with the

keyboard automatically set KBDR[15] to 1. When the LC-3 reads KBDR, KBSR[15] is

automatically cleared allowing another key to be struck. If KBSR[15] = 1, the keyboard

is disabled.

 6

Problem 6 (3 points)

a. What does the JSR instruction do? How does it differ from a JMP instruction?

The JSR instruction stores the next PC value in R7 and then jumps to a subroutine

via a PC-relative offset. The JMP instruction differs in that it does not store the

next PC, and also in that it uses the base + offset addressing mode rather than PC-

relative addressing.

b. Why must a RET instruction be used to return from a TRAP routine? Why won’t a BR

(Unconditional branch) instruction work instead?

TRAP routines need to be able to return to the instruction after the TRAP

initiation. The location of this instruction will differ between TRAP instances, and

could be anywhere. The RET instruction solves this problem by using the address

stored in R7, which is the next PC address that was saved when the TRAP occurred.

The BR instruction will always jump to the same PC-relative address, which cannot

work in the general case. Also note that the RET instruction is base + offset and the

BR instruction is PC-relative, so the BR instruction might have insufficient reach

(partial credit answer).

Problem 7 (2 points)

In lecture, we discussed implementing a program denoted Halt(P,I).

a. What is Halt(P,I) supposed to do?

Halt(P,I) analyzes a program P running on input I to determine whether (i) P

running on I halts (or terminates) or (ii) P running on I runs forever.

b. What are the alternative answers Halt(P,I) may return?

Halt(P) returns either "halts" (case i) or "does not halt" (case ii).

 7

Scratch Sheet 1 (in case you need additional space for some of your answers)

 8

Scratch Sheet 2 (in case you need additional space for some of your answers)

 9

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

Page 2 has an ASCII character table.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx, label (where x = {n,z,p,zp,np,nz,nzp}) ; Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO ���� ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if (GO is true) then PC ���� PC’ + SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ���� BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ���� PC’, PC ���� PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp ���� PC’, PC ���� BaseR, R7 ���� temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[mem[PC’ + SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ���� R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ���� PC’, PC ���� mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

