A Single-Chip Multiprocessor For
Multimedia: The MVP

We defined the
multimedia video
processor (MVP) to
accelerate applications
with heavy image and
graphics processing
requirements. Here we
give an overview of the
architecture.

November 1992

Karl Guttag, Robert J. Gove, and Jerry R. Van Aken
Texas Instruments

Currenlly under development is the digital technology to capture,
store, enhance, transmit, and process still images and full-motion video.
With literally hundreds of billions of dollars worth of images needing han-
dling each year. the digital processing of images will be the largest growth
market in electronics products over the next decade.

Today's graphical user interfaces represent the consolidation of the sep-
arate text and graphics systems of the 1970s and early 1980s into a unified
bitmapped environment. Similarly, the computer industry will see the
merging of graphics. imaging, video, and audio functions into a fully inte-
grated multimedia environment in the 1990s.

Supporting a complete multimedia environment will require a processor
architecture that can support over 2 billion operations per second. To de-
liver this capability with the latest CMOS technology clearly requires par-
allel processing techniques. Researchers have proposed a number of
parallel processing techniques for image and graphics proccssing,H but
most architectures are narrowly directed at a few classes of algorithms.
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Our architecture incorporates a variety of parallel processing
techniques to deliver very high performance to a wide range
of imaging and graphics applications.

We refer to our architecture as the multimedia video pro-
cessor, or MVP. The MVP combines, on a single semiconduc-
tor chip, multiple fully programmable processors with
multiple data streams connected to shared RAMs through a
crossbar network. Each of the independent processors can
execute many operations in parallel every cycle. The archi-
tecture is scalable and supports different numbers of proces-
sors to meet the cost and performance requirements of
different markets. We have demonstrated through software
simulations that this architecture can support a diversity of
image processing, graphics, and audio applications.

Target environment

In developing the MVP, we considered the range of office
needs we could satisfy by making orders of magnitude more
processing power available on a desktop. While much of the
public discussion involving multimedia has dealt with image
compression, compression represents only a necessary first
step—one that reduces the cost of storing and transmitting
images. Looking beyond compression, some of the biggest
benefits will come from the ability to enhance, manipulate,
and recognize objects once we have captured images in digi-
tal form.

Our architectural analysis focused on the following three
groups of applications: document image processing (includ-
ing recognition), image generation (graphics), and compres-
sion (image and audio transmission or storage). While image
processing and graphics involve the most processing-inten-
sive applications, audio enhancement, echo cancellation,

compression and decompression, generation, and recognition
can also be very demanding.

Figure 1 shows our concept of a system that integrates video
teleconferencing, document processing, and audio into a sin-
gle environment. We expect to see these applications deliv-
ered on a variety of platforms, including PCs, workstations,
and X terminals. In addition to the desktop environment, this
technology will redefine other office products, such as digital
copiers, hard-copy units, video-conferencing systems, trans-
action processing, and security systems.

Video compression requirements

International standards—essential for growth in image-pro-
cessor markets—are making earlier, proprietary standards ob-
solete. Both vendors and users benefit from standards that
support the exchange of information among systems made by
different manufacturers.

The list below briefly describes the three most prominent
internationally proposed standards for image compression
and decompression:

¢ JPEG (Joint Photographic Experts Group): Originally
targeted at the storage and retrieval of high-quality still im-
ages at any resolution, JPEG is also used for video image
compression. However, it requires higher data rates than the
full-motion video standards described below.

* MPEG (Motion Picture Experts Group): Originally tar-
geted toward video playback at CD-ROM rates (1.2 megabits
per second). Not satisfied with the image quality of the origi-
nal MPEG standard, developers of digital VCRs and digital
cable movie distribution systems are working toward en-
hanced versions. Dubbed MPEG++ and MPEG 2, they sup-
port higher data rates.

® Px64: International standard
for video teleconferencing (two-

way video and audio) using data
rates that can be any multiple of
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tiplication-intensive. They take

Figure 1. An integrated media environment.
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(using variations on Huffman coding), which involves bit-
field manipulation and table lookup operations. The video
standards MPEG and Px64 both perform motion estimations
that require massive numbers of integer operations. The full-
motion standards also require audio compression and decom-
pression.

While these standards define the data formats and suggest
coding techniques, they permit a large degree of latitude in
their implementation. The full-motion standards incorporate
decision-making processes that selectively apply a variety of
compression techniques in an attempt to achieve the best im-
age quality for a given data rate. Developers can use both
pre- and post-decompression processing (not defined by the
standards) to reduce artifacts introduced by the compression
process. The need to dynamically choose among a variety of
compression techniques suggests that designers ought to base
the system on a programmable processor.

Table 1 shows that, for a sample implementation of Px64.
roughly 1.2 billion RISC-like operations per second are re-
quired to execute the key elements of Px64's H.261 compres-
sion and decompression at 30 frames per second. The almost
1.2 billion total operations include over 40 million multiplies,
each counted as a single operation. The total does not in-
clude any pre- or post-processing, audio processing, data
transmission formatting, or other system functions. Note that
several of the functions in the table require around 100 mil-
lion RISC instructions per second, which is roughly the speed
of today’s fastest RISC microprocessors.

General image processing

Much has been written about general digital image pro-
cessing.s'6 and standards groups are now looking at issues be-
yond image compression. Recent work has focused on the
interchange and processing of digital images. The proposed
XIE (X Imaging Extension) standard.” for instance, defines a
standard mechanism for transmitting images and also for ma-
nipulating those images with a set of operations reproducible
across a variety of systems.

Image processing algorithms typically require massive
numbers of arithmetic operations. These algorithms include
convolution, warping, histograms, halftoning, color-space
conversions, median filtering, fast Fourier transforms (FFTs),
and morphology. Each of these requires on the order of 10 to
100 operations per pixel. Dealing with color further adds to
the processing work load. With images frequently containing
more than 1 million pixels each, the processing task can be
formidable.

While the computational demands of image processing are
quite high, the data bandwidth requirements can be just as
demanding. Image processing algorithms can require literally
billions of bytes per second of data bandwidth. Over a given
period of time, these algorithms tend to work within localized
regions of data (for example, rectangular patches within the
image) and make repeated accesses to the same locations.
For this reason, a single-chip processor can achieve the re-
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Table 1. Typical RISC processing requirements

for CCITT H.261 (Px64) video compression and decompression.

Function

RISC-Like MOPS

Motion estimation - block matching 608 (51.0%)

Coding mode decisions 40 (3.4%)
) Loop filtering (encode and decode) 110 (9.2%)
Pixel difference 18 (1.5%)
DCT (encode) 74 (6.2%)

Inverse DCT (encode and decode) 192 (16.1%)

Threshold/quantization/zig-zag scan 50 (4.2%)

Bit stream encode 17 (1.4%)

Reconstruction (encode and decode) 62 (16.1%)

Bit stream decode and inverse quantization| 22 (1.8%)

Total 1,193 MOPS

quired data bandwidth by loading data into on-chip memory,
from which it can be processed at high speeds. Also, most of
these algorithms work their way through external image
memory in a predictable pattern that makes it possible to
load the data on chip before a processor needs to process it.
Loading data onto the chip and saving results to external
memory can still require the transfer of over 100 million
bytes per second.

Desktop document image processing

One area of multimedia that has received relatively little
attention is the single most pervasive medium for communi-
cation in the office: paper. In many an office today, the paper
just piles up for lack of a good way to deal with it. For a num-
ber of practical reasons, paper is likely to remain a favored
medium for both reading and publishing for the foreseeable
future. Predictions of computers reducing paper in the office
will not be realized until computers can input paper docu-
ments at least as fast as they can generate them.

Meanwhile, the technology is at hand to help office work-
ers manage paper documents much more effectively. Desk-
top document image processing (DDIP) systems will soon be
widely available to process both paper and electronic docu-
ments. Because these documents often contain both text and
embedded pictures and graphics, the system must

1. distinguish between the regions of the document that
contain text and nontext,

2. perform optical character recognition on fonts of any
size, style, and orientation, and

3. compress the nontext images.
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Once the system has recognized the text, it can parse the text
to aid in sorting, filing, and alerting the user to key topics
based on an individually defined profile. In effect, these sys-
tems will act as information processing assistants.

Optical character recognition (OCR) of printed text re-
quires an assortment of processing functions, from low-level
image conditioning to high-level functions such as detailed
feature extraction, matching, scoring, and decision making.
The current trend in OCR involves detecting features in both
frequency and spatial domains, then comparing results to im-
prove accuracy. The pervasive use of decision-making pro-
cesses favors multiple-instruction, multiple-data-stream
(MIMD) architectures that can readily handle branches in
program flow.

At 10-page-per-minute rates (roughly the speed at which
office laser printers can generate documents) and scanning
resolutions of 300 to 600 dots per inch, the system must pro-
cess from 1.5 to greater than 6 million pixels per second. In-
dividual functions like edge operations, convolutions, and
FFTs require from 20 to more than 100 operations per pixel,
and a series of these functions are required to perform OCR.
With multiple algorithms employed to improve accuracy, the
processing requirements can easily exceed 1,000 millions of
operations per second (MOPS), or 1 GOPS.

Basic graphics processing requirements

Image processing is destined to become an integral part of
workstations and PCs, but it will be performed within a
graphical environment. Higher resolution systems with 24
bits or more per pixel will become commonplace on the
desktop. The speed and quality of desktop graphics will ben-
efit from the raw performance in pixel manipulation that im-
age processors will provide.

Graphical user interfaces (GUIs) such as the X Window
System and Microsoft Windows use bit-aligned block trans-
fers (bitblts) extensively for text and window manipulation.
In addition to basic bitblts, graphics applications require
primitives such as the following:

¢ text with color expansion

e filled polygons

* lines

e curves (splines and Bezier)

e antialiased lines

* Gouraud- and Phong-shaded surfaces

Compared with image processing operations, bitblts®” are
simple bit-aligned moves that include minimal (often only
Boolean) processing of pixel values. Both bitmapped charac-
ter fonts and cached stroke fonts usually are stored at 1 bit
per pixel and are “expanded” (see the sidebar “Lessons
learned from the 340 family™) into color as they are drawn.
Color expansion can be time-consuming unless the hardware
supports it directly.
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From our previous experience in developing the
340/TIGA graphics architecture,"*® we knew that a proces-
sor requires special hardware such as barrel shifters, color
expanders, video RAM block-write control, and splittable
arithmetic logic units in order to efficiently support graph-
ics primitives.

In the 340, however, instructions to perform bitblts®®
and draw lines were executed in a sequence of states con-
trolled by on-chip microcode ROM. This meant that soft-
ware programs could oy use the graphics hardware in
the finite number of ways supported by the microcode.
From a chip development perspective, given all the combi-
nations of operations the 340 supports, writing and de-
bugging the microcode was a significant challenge. With
each graphics standard having slightly different require-
ments, and given the limitless number of image processing
algorithms, we sought to develop an architecture that
would allow virtually any multicycle operation to be effi-
ciently implemented as a sequence of single-cycle instruc-
tions.

The MVP's parallel processors have many architectural
features to support pixel processing. To avoid problems
and limitations of the microcoded approach, the parallel
processors have single-cycle instructions (that is, no mi-
crocode) and give software direct control of the hardware.
Making the hardware directly accessible allows program-
mers to write software to efficiently execute multicycle op-
erations as a sequence of single-cycle instructions. One
challenge was to devise how we could use sequences of
the parallel processor-instructions as building blocks to per-
form multicycle operations.

The expander hardware provides an example of how we
made the parallel processor's hardware directly accessible
to the programmer. While the 34010 had “expander”
hardware, it was dedicated to converting 1-bit-per-pixel
bitmaps into two colors.** This “color expansion” is com-
monly used to draw text, usually stored at 1 bit per pixel,
into a color display buffer. The parallel processor architec-
ture generalized the expander to simply take 1-bit values
from the multiple flags register and replicate them to fill a
32-bit word that is then routed to the ALU. This lets us
translate between 1-bit and-color representations of pixels.

In the example of Figure A, a parallel processor expands
the color of four pixels from 1 to 8 bits each. At the top of
the figure, the four least-significant bits of the multiple
flags register have been loaded with four adjacent 1-bit
pixels from a bitmap. The parallel processor’s expander
logic forms a 32-bit merge mask by replicating the value of
each of the four 1-bit pixels in the multiple flags register to
8 bits. The "0 color” register inthe figure has been loaded
with four 8-bit pixels that represent the color to which 0s
in the source bitmap are to be expanded. Similarly, the "1
color” register contains four 8-bit pixels that represent the
color to-which 1s in the source bitmap are to be expanded.
The programmer specifies these two color registers, along
with the merge mask, as the inputs to the three-operand
ALU. The programmer also has the ALU perform a three-
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Lessons learned from the 340 family

operand Boolean operation that selects between the bits con-
tained in the two color registers based on the value of the
corresponding bits in the merge mask. In the result shown at
the bottom of the figure, the ALU sets the 8-bit pixels corre-
sponding to 1s in the original bitmap to the 1-color value; it
sets pixels corresponding to Os to the 0-color value. The par-
allel processor executes the entire
color-expand process shown in Figure

plicitly supported by the 340’s microcoded instruction set.
The parallel processor’s multiple flags register makes this in-
termediate information available to the programmer.

The parallel processors can synthesize a vast number of dif-
ferent graphics operations by combining the various ALU op-
erations with the various routings of data to the ALU, the

A in a single machine cycle.

The implementation of the max
{maximum) raster-op illustrates the
usefulness of the parallel processor’s
ability to rapidly transform an image
back and forth between 1-bit and n-
bit representations of pixels. By defi-
nition, the max operation compares
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tion on four 8-bit pixels in only two
machine cycles. At the top of the fig-

Figure A. A parallel processor color-expand example.

ure, four adjacent 8-bit pixels from
the destination have been loaded into
one 32-bit register and four source
pixels have been loaded into another.
During the first cycle, the ALU is split
into four 8-bit segments. The source
word is subtracted from the destina-
tion, and the carry-out bits from the
four ALU segments, each of which in-
dicates whether a particular source
pixel is greater than the correspond-
ing destination pixel, are saved in the
multiple flags register. In the second
cycle, the parallel processor’s ex-
pander logic forms a 32-bit merge
mask by replicating the value of each
of the four carry-out bits in the multi-
ple flags register to 8 bits. The pro-
grammer specifies source and
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destination pixel values, along with
the merge mask, as the inputs to the
three-operand ALU. The programmer
also configures the ALU to perform a
three-operand Boolean operation that selects between the
bits contained in the source and destination pixel values
based on the value of the corresponding bits in the merge
mask. In the result shown at the bottom of the figure, each
of the four 8-bit pixels represents the larger value of the cor-
responding source and destination pixels.

In contrast, the 340 architecture, when performing the
max function, stores the carries out of the ALU segments in
latches accessible only by the microcode. This prevents the
programmer from using the hardware in applications not ex-

Figure B. A parallel processor max raster-op example.

expander, and other hardware. In addition to color expansion
and max, these operations include min, add or subtract with
saturation (clamping to a maximum or minimum value),
transparency on source or destination, and z-buffering. And
while we originally intended the expander to accelerate
graphics operations, we have found that its usefulness ex-
tends as well to image processing and other applications. For
example, the expander hardware is used in the key inner
loops of algorithms that perform motion estimation for the
Px64 and MPEG video compression standards.
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With more powerful processors, many of the
simple, single-color primitives such as lines (for
example, Bresenham) and fills are limited only
by memory bandwidth. The more sophisticated
drawing functions, including antialiased lines and
shaded polygons, have computational require-
ments similar to image processing functions—
they involve high-speed multiplies and
accumulations on pixel values.

Floating-point requirements

Well-known algorithms for constructing both
3D graphics and 2D geometric shapes (such as
font outlines) require extensive amounts of float-
ing-point calculations. Graphics standards such
as PHIGS (Programmers’ Hierarchical Interac-
tive Graphics System) and GL (Graphics Lan-
guage) can be floating-point intensive. Some
image processing applications, such as medical
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Figure 2. Trends in programmable processor performance.

imaging, can require higher precision integer and floating-
point calculations to maintain accuracy. Audio algorithms
can also require floating-point calculations, as is the case for
the latest audio compression standard, G.728, for Px64.

The calculation of an inner product—the key primitive in a

homogeneous 3D transform—in-
volves accumulating the results

could improve the performance of the target applications by
at least an order of magnitude. We measured our efforts
against general-purpose reduced instruction set computers
fabricated with the same generation of semiconductor tech-

nology that we planned

to use.

of four multiplies. The fre-
quency-domain transforms used
in image processing have kernels
(butterflies) that consist of only
one or two multiplies plus two
additions and/or subtractions.
The key to performing this type

of application efficiently is to re-
duce the overhead required to
set up floating-point operations.

After looking at a variety of
graphics and imaging algorithms,
we concluded that a single float-
ing-point unit in parallel with
one to eight integer processors
would give a good balance of
floating-point and integer pro-
cessing capabilities.

Roots of the
architecture

We drove the definition of the
MVP in the top-down direction
based on the algorithms it had to
support, and in the bottom-up
direction based on new semicon-
ductor technology. Our goal was
to define an architecture that
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Imaging applications require processing techniques that
range from multiplication-intensive filtering and frequency
domain transforms, to massive numbers of simple arith-
metic operations on pixel data, to bit-field extraction and
table-lookup operations. Most image processing applica-
tions require adaptive algorithms that select among a vari-
ety of techniques according to characteristics detected in
the image. Because digital image processing is still in its in-
fancy, new algorithms will continue to emerge.

While providing special hardware to accelerate the most
demanding tasks is important, overspecialization also has dis-
advantages. If a processor performs any of its required func-
tions poorly, the resulting bottleneck might degrade overall
performance to the point where it cancels any gains resulting
from acceleration of the other functions. In the MVP, we in-
corporated acceleration features, but in a way that avoided
dedicating the hardware to a narrow set of functions. We de-
fined the instruction set to give the programmer direct access
to hardware functions without framing them within the con-
straints of specific algorithms. For example, while we spent
considerable effort on enhancing the discrete cosine trans-
form (DCT) performance of the MVP's processors, we did not
want to have dedicated DCT units for the following reasons:

Flexible architecture versus dedicated hardware

1. With parallel hardware multipliers, ALUs, and address
units, the parallel processors’ performance was such that
less than 20 percent of the processing time would be re-
quired for DCTs when used on so-called DCT-based com-
pression methods. Speeding up DCTs further would have
diminishing effects on overall performance. (For example,
doubling DCT speed would speed up the whole application
by less than 10 percent!)

2. The same hardware used to perform DCTs can be used
for a variety of other multiplication-intensive algorithms, in-
cluding convolution filters, finite-impulse-response (FIR) fil-
ters, optical character recognition (OCR), color-space
transforms, graphics, and modems.

3. We could obtain high processing efficiency if the appli-
cation could select between different DCT algorithms
(Chen, Lee, Veterali, and so on) to make speed and preci-
sion trade-offs.

4. While compression standards today use DCTs heavily,
we expect 1o see better approaches that may not be DCT-
based in the future.

Figure 2 shows the trends in programmable processor per-
formance, in terms of millions of operations per second. Gen-
eral-purpose RISC processors typically perform only one
operation per instruction. Developers reduce machine cycle
time by using faster semiconductor technology and some-
times obtain further speedups by executing multiple instruc-
tions per cycle through a combination of pipelining and
superscalar techniques. But these techniques rapidly reach a
point of diminishing returns—beyond two instructions per
cycle. Digital signal processors (DSPs) have demonstrated
that providing multipliers and other hardware to perform
many operations in parallel enables them to deliver much
higher levels of performance to targeted applications than
can general-purpose processors.

In defining the MVP, we analyzed]0 imaging, graphics, and
audio processing applications. Figure 3 shows our process for
analyzing the requirements of target applications. Each of
these applications can involve many different processing
techniques, which we grouped under the headings of signal
(image and audio) processing, image analysis, compression
(data, image, and audio), 2D graphics, and 3D graphics. Each
technique can, in turn, employ a number of different algo-
rithms. The list of algorithms shown in Figure 3 is hardly ex-
haustive, and you can implement each algorithm in many
different ways.

The arrows in Figure 3 show one example path from docu-
ment image processing (DIP). Capturing documents, recog-
nizing text, and reproducing documents requires a number of
different techniques. Taking just one of these techniques—
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feature extraction used in text recognition—leads to a large
number of algorithms. The programmer then has to decide
which algorithms to use and determine the best way to imple-
ment them.

To fulfill the target applications’ performance require-
ments, image processors must be able to execute even more
operations in parallel than can existing DSPs. To achieve the
massive parallelism required, we employed a battery of tech-
niques, including multiple parallel processors, split arithmetic
logic units (ALUs), parallel multipliers, very large instruction
words (VLIWs), and special hardware to accelerate critical
imaging and graphics operations.

The MVP was influenced by Texas Instruments’ practical
experience in graphics (TMS340 familyll and video RAMSIZ)
and digital signal processing (TMS320 family). We learned
from the TMS340 and TMS320 processor families that a pro-
grammable architecture adapts best to emerging applications.
(Refer to the sidebar “Flexible architecture versus dedicated
hardware.”) By combining TI's ongoing research into image
processing with our experience in application-oriented pro-
cessors, we defined an architecture that can provide high per-
formance over a wide range of office and business tasks, yet
adapt to evolving imaging and graphics standards.

We refined the architecture by functionally simulating it
with a series of imaging and graphics algorithms. We tuned
the instruction set and modified the architecture of the pro-
cessors as our testing of key algorithms uncovered bottle-
necks. We benchmarked both inherently serial functions,
such as the JPEG’s modified Huffman decompression, and
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inherently parallel operations, such as Px64’s motion-estima-
tion algorithm.

Architecture for multimedia

Figure 4 shows a block diagram of the major functional
blocks of the MVP. The key elements include

1. The master processor (MP): A general-purpose RISC
processor with integral floating-point unit.

2. One or more parallel processors (PP): While the dia-
gram shows four parallel processors, the architecture readily
supports from one to eight. We designed the parallel proces-
sors to handle digital signal processing, pixel processing, and
other massively parallel integer or fixed-point processing
tasks. Each parallel processor can make two parallel data ac-
cesses into the on-chip RAM per machine cycle.

3. Transfer controller: This controller manages the hard-
ware interface between the on- and off-chip memories. It
supports both automatic cache servicing and processor-di-
rected (by either the master processor or parallel processors)
multidimensional direct memory access (DMA) transfers.
We designed the transfer controller to interface with a wide
range of dynamic RAM, video RAM, and static RAM mem-
ory devices.

4. Shared RAMs: The on-chip data memory for the paral-
lel processors is contained in a number of individual on-chip
RAM modules, each accessible in parallel over a crossbar
switching network.

5. Local and global crossbars: The on-chip crossbar switch-
ing network allows the processors to access each RAM mod-
ule independently and in parallel with accesses of the other
RAMs. The crossbars support cycle-by-cycle connection be-
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tween the processors and the various shared RAMs on the
chip. The parallel processors each have two data memory
ports, the master processor has one data memory port, and
the transfer controller has one data memory port, all of
which can access shared RAM in parallel. The master proces-
sor, transfer controller, and each of the parallel processors
can access any portion of the shared RAM via the global
crossbar. Additionally, each parallel processor has a local
crossbar through which it simultaneously can access a group
of RAM modules local to that processor.

6. Cache RAMs: The master processor has both instruction
and data caches, and each parallel processor has its own in-
struction cache. The cache controllers reside within each pro-
CEessOT.

7. Dual frame-buffer controllers: These support pro-
grammable video timing to control both display and capture.

Master processor

The master processor (see Figure 5) is a general-purpose
RISC processor with an integral IEEE-compatible floating-
point unit (FPU). The processor has a 32-bit instruction word
and can load or store 8-, 16-, 32-, and 64-bit data sizes. It has
thirty-one 32-bit general-purpose registers, with register 0
hardwired to a constant value of 0.

Like most RISC processors, the master processor has or-
thogonal three-operand data-path operations, load or store
memory operations, and one-cycle delayed branches with op-
tional annul. Most instructions execute in a single cycle.

The master processor also has features less typical of RISC
processors. The register file is common to both the floating-
point and integer operations. Scoreboard logic keeps track of
the registers that will receive the results of loads and floating-
point operations, automatically preventing use of these regis-
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Figure 5. Master processor block diagram.

ters until they have been updated. The addressing modes
support the optional updating of the base-address register
with the result of the address computation.

As its name implies, we intended the master processor to
be the main supervisor and distributor of tasks within the
chip. With its RISC architecture, it is designed to support ef-
ficient compilation of programs written in high-level lan-
guages. The master processor services external interrupts,
although, depending on the application’s requirements, the
master processor might in turn initiate or interrupt tasks on
the parallel processors. The master processor is responsible
for communicating with external processors. It can handle
many nonrepetitive tasks and simple interrupts so that the
parallel processors can execute more efficiently.

Because of its FPU. the master processor is also the pre-
ferred processor on the chip for performing high-precision
and floating-point math. Beyond system control and other
more general-purpose tasks, the master processor will likely
process audio signals (which generally require higher preci-
sion but fewer operations) and 3D graphics transformations.
In applications such as medical imaging, the master processor
can perform high-precision frequency-domain operations.

Floating-point considerations

In addition to the floating-point operations found in other
RISC instruction sets, we added a set of special instructions
targeted at 3D graphics and imaging to the master processor.
The master processor’s floating-point unit can initiate inde-
pendent multiply and ALU operations every cycle.

Typical of fast FPUs, the master processor’s FPU is
pipelined. Pipelining requires special attention to the data
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Figure 6. Parallel processor block.

flow in order to efficiently execute the small inner loops asso-
ciated with 3D transforms and imaging operations.

In addition to a set of floating-point instructions similar to
those found in other RISC architectures, we defined a special
set of floating-point instructions designed to work together
without causing pipeline delays. These instructions support
initiating in each successive cycle a new floating-point multi-
ply. add or subtract, a load or store, and an increment of the
address pointer.

Parallel processors

In the parallel processor architecture, we merged our expe-
rience with digital signal processors. graphics processors, and
parallel processing systems. While DSPs have historically ex-
celled at multiply-accumulate-intensive processing, they have
not done as well in performing bit and pixel manipulations
(necessary for image compression and graphics). Graphics
processors perform basic pixel movement and bit manipula-
tion well, but they have not done well at DSP and other
math-intensive operations. We designed a single parallel pro-
cessor to be more powerful at general integer DSP or bit and
pixel manipulation than existing single-chip processors.

Figure 6 shows a block diagram of a parallel processor and
its four major functional units: the data unit, two address
units, and the program flow control unit. These parallel exe-
cution units let each parallel processor perform many opera-
tions in cach cycle. The parallel processor’s architecture
supports the massive processing associated with frequency-
domain transforms (for example, discrete cosine transforms),
correlation, filters, and the pixel manipulation required by
imaging and graphics. To specify all these parallel operations,
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the parallel processor uses a very large instruction word of 64
bits.

Because it is a fully programmable processor, you can pro-
gram the parallel processor in a high-level language such as
C, as well as in assembly code. Just as with the newer DSP ar-
chitectures, we expect the bulk of code to be written in C,
with the key inner loops and other time-critical operations
written in assembly code. When the ultimate in performance
is required, a programmer can specify the equivalent of 3 to
15 RISC instructions in one parallel processor 64-bit opcode.

Parallel processor data unit

The parallel processor data unit has eight data registers, a
status register, and a special mulitiple flags register. The data
registers are “octal ported” so that up to eight different reads
or writes take place in a single cycle. The status register con-
tains ALU-result status bits that can be used with conditional
instructions. The multiple flags register captures the multiple
status results (flags) from split-ALU operations and provides
the bits that are input to the expander (see below) for use in
ALU operations. In addition to their special access modes,
the programmer can access the multiple flags and status reg-
isters in the same manner as any other register.

The expander takes 1, 2, or 4 bits in the multiple flags reg-
ister and replicates them 32, 16, or 8 times to fill out a 32-bit
word that is routed to the ALU (see the sidebar “Lessons
learned from the 340 family”). Conceptually, each status bit
loaded into the multiple flags register from an n-bit segment
of the split ALU represents a transformation from n bits to 1
bit, and the expander performs an inverse transformation of
each multiple flags bit to n bits. We have found this hardware
helpful in performing a number of graphics and imaging op-
erations.

The barrel rotator can rotate an incoming 32-bit quantity
by 0 to 31 bits. The decoder generates masks from 0 to 32 bits
in length that are used with the barrel rotator to generate
signed or unsigned right or left shift operations. (An n-bit
mask has the value 2" - 1.) You can use the barrel rotator
and decoder to perform field extraction and bitblts.

The bit detectors perform leftmost- and rightmost-bit de-
tection. These functions often aid in decoding entropy-com-
pressed (for example, Huffman-encoded) data streams.

The 32-bit ALU performs addition, subtraction, and
Boolean operations. The ALU can support the 256 three-
operand Booleans that are supported by graphics environ-
ments such as MS Windows. Status logic associated with the
ALU sends carry-out, zero, sign, and overflow bits to the sta-
tus register. The ALU can be split into two 16-bit or four 8-
bit ALUs during arithmetic operations. During split-ALU
operations, a zero or carry-out bit is available from each
ALU segment and can be saved in the multiple flags register.

The multiplier performs 16 x 16 multiplies and produces
32-bit results in a single cycle. Special rounding hardware on
the muitiplier’s output maintains the various precision levels
required by the compression standards.

62

Parallel processor’s two address units

The parallel processor has two nearly identical address
units. Each address unit can independently perform a load
from, or store to, the on-chip shared RAM. Each processor
has associated with it a number of RAMs considered local to
that processor.

During each machine cycle, the parallel processor’s two
address units can independently access the on-chip RAMs in
parallel. One of the address units can access the parallel pro-
cessor’s local RAMs via its own local crossbar while the
other unit simultaneously accesses any of the shared RAMs
via the global crossbar. In the unlikely event that both ad-
dress units attempt to access nonlocal RAMs in the same cy-
cle, hardware detects the conflict and the instruction takes
two cycles to complete the two accesses.

Each of the two address units contains four address regis-
ters and four index registers, and they share a single stack-
pointer register. These registers not only facilitate address
calculations, but also serve as source or destination registers
both for the data unit’s ALU operations and for memory
loads and stores.

An address unit’s 32-bit data paths can add or subtract an
index register or immediate value to or from an address reg-
ister. The programmer can optionally update the address reg-
ister with the results of address calculations. To support pre-
or post-indexing, the address output to memory can either be
the result of the address computation or the original contents
of the address register.

Program flow controller

The parallel processor’s PFC is responsible for program
counter increments, branch-and-loop control, interrupt-con-
text switching, instruction-cache control, and instruction de-
coding.

The PFC contains a program-counter register, two pro-
gram-counter-history registers, and loop-control registers.
Like all user-visible parallel processor registers, these regis-
ters can be accessed by both the data unit and the address
unit. Similar to the PDP-11,13 a program branch occurs when-
ever the program counter either is the result of a data-unit
operation or is loaded by an address-unit operation. We de-
signed the program-counter-history registers for use as return
pointers from jumps, interrupts, and emulation-controlled
changes to program flow.

The parallel processor supports conditional execution of
data-unit and address-unit operations. Status-register bits set
by a previous instruction determine whether results are saved
from data-unit operations and transfers are performed by ad-
dress-unit operations. Conditional execution of an instruction
is often more efficient than conditionally branching around
one instruction. In keeping with treating the program counter
the same as other registers, the parallel processor has no ex-
plicit conditional-jump instructions. The architecture per-
forms conditional jumps by specifying an operation for which
the program counter is a conditional destination.
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DSP architectures have already demonstrated the effec-
tiveness of including a single hardware unit to support zero-
overhead control of program loops. In analyzing the
algorithms for imaging and graphics, we determined that a
number of key aigorithms could make good use of up to
three sets of loop-control units. Each loop control unit can
also support zero-overhead branches or returns. You can use
zero-overhead branches to support branching from. and re-
turning to, a tight loop.

The need to branch out and back within a tight loop was
driven by the massive number of different pixel processing
operations—including Booleans, arithmetics (with satura-
tion), max. min, transparency. and color expand—that bitblts
can perform. We wanted programmers to be able to write the
software to set up the inner loop without regard to the type
or number of cycles required for the raster-op. At the same
time, we knew we could not afford
to add branch-delay penalties to

® Each parallel processor can make two independent 32-bit
data accesses and a 64-bit instruction fetch.

e The transfer controller can make a 64-bit DMA-like
transfer to save old results or load in new data or instructions
for the processors.

* The master processor can make one 64-bit data access
and a 32-bit instruction fetch.

Because these RAMs can be shared via the crossbars.
memory can be allocated among the processors as needed.
Shared memory eliminates the need to move results from
one processor to another, which preserves on-chip band-
width.

The crossbar connections that tie the parallel processors,
master processor, and transfer controller to the shared
RAMs are dynamically configured on each successive cycle.
If more than one processor contends
for the same RAM module during the
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sic example of an architectural con-
cept that becomes practical in terms of

Requests

lel processors, master processor,
and transfer controller connect to
any of the shared RAMs on the
chip.

Many of the imaging and graphics algorithms, such as con-
volution, morphology, DCT. FFT, and antialiasing, require
multiple accesses within a group of pixels. Pulling these
groups on chip once and keeping intermediate results on chip
greatly reduces the number of accesses to external memory.
The transfer controller can fetch multidimensional groups of
data before a processor needs them. It can also save old re-
sults while the processor begins to work on the next block of
prefetched data.

Rather than supply a few large RAM modules, the archi-
tecture uses many smaller wide-word (accessible up to 64 bits
wide) modules that collectively provide tremendous memory
bandwidth. The following accesses can occur in parallel in a
single cycle:
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Figure 7. Transfer controller block diagram.

size and speed only with the integration
of multiple processors onto a single
chip. With the four-parallel-processors
implementation, for example, the
crossbar will have well over 500 data, address, and control
lines that must switch in a few nanoseconds.

The shared memory structure also lets us scale the archi-
tecture by adding or subtracting parallel processors. As we
add more parallel processors to the chip to obtain the desired
performance level, we extend the crossbar and add shared
memory.

Transfer controller and memory interface

The transfer controller, shown in Figure 7, prioritizes,
schedules, and transfers data between on- and off-chip mem-
ories. These transfers can be initiated automatically to per-
form cache servicing, dynamic RAM refresh, and video-
RAM serial-register transfers. Any of the processors can, un-
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der software control, initiate block transfers of data between
memory spaces.

Both the source and destination arrays of the block trans-
fers can have up to three dimensions (for example, the x and
y dimensions of a rectangular area of an image plus the stride
from one rectangular area to the next). The transfer con-
troller contains source and destination FIFOs to support
byte-aligned transfers and to permit the efficient use of high-
speed dynamic-RAM and video-RAM column-access modes.

Having the transfer controller support independent trans-
fers of multidimensional byte-aligned data allows the various
processors (master and parallel) to focus their processing
power on manipulating data, rather than on collecting or dis-
tributing it.

The memory interface supports a wide range of external
memory systems, composed of high-performance dynamic
RAM, video RAM, and static RAM or a combination
thereof. The transfer controller can generate all the neces-
sary control signals for dynamic RAMs and supports the
pipelined memory accesses of some of the newer memories.

Dual frame-buffer controllers

The MVP includes two identical and independent pro-
grammable display controllers. You can program each con-
troller to generate the synchronization signals to control a
display, or to lock to externally generated video signals for
video capture. Each controller can automatically post re-
quests to the transfer controller for video RAM serial trans-
fer cycles.

Summary

We defined the multimedia video processor to be a fully
programmable multiprocessor architecture for multimedia
applications. On a single-chip architecture, we combined ele-
ments of RISC, floating point, advanced DSPs, graphics pro-
cessors, display and acquisition control, RAM, and external
memory control. The MVP brings a formidable amount of
processing power to a variety of video, image, audio, and
other signal processing applications. The architecture sup-
ports expanding the number of processors on a single chip to
deliver in excess of 2 billion operations per second for multi-
media applications. a
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