
THEME ARTICLE: EMERGING SYSTEM INTERCONNECTS

Design Tradeoffs in CXL-Based Memory
Pools for Public Cloud Platforms
Daniel S. Berger and Daniel Ernst,Microsoft Azure, Redmond, WA, 98052, USA

Huaicheng Li, Virginia Tech, Blacksburg, VA, 24061, USA

Pantea Zardoshti, Monish Shah, Samir Rajadnya, Scott Lee, and Lisa Hsu,Microsoft Azure, Redmond, WA, 98052,
USA

Ishwar Agarwal, Intel Corporation, Santa Clara, CA, 95054, USA

Mark D. Hill,Microsoft Azure, Redmond, WA, 98052, USA and also with the University of Wisconsin-Madison,
Madison, WI, 53715, USA

Ricardo Bianchini,Microsoft Azure, Redmond, WA, 98052, USA

Dynamic random-access memory (DRAM) is a key driver of performance and cost in
public cloud servers. At the same time, a significant amount of DRAM is
underutilized due to fragmented use across servers. Emerging interconnects such as
Compute Express Link (CXL) offers a path toward improving utilization through
memory pooling. However, the design space of CXL-based memory systems is large,
with key questions around the size, reach, and topology of the memory pool. At the
same time, using pools require navigating complex design constraints around
performance, virtualization, and management. This article discusses why cloud
providers should deploy CXL memory pools, key design constraints, and
observations in designing toward practical deployment. We identify configuration
examples with significant positive return of investment.

Many public cloud customers deploy their
workloads via virtual machines (VMs). VMs
enable performance comparable to on-prem-

ises datacenters without the need to manage datacen-
ters. Cloud providers face the challenge of achieving
excellent performance at a competitive hardware cost.

A key driver of both performance and cost is main
memory. The gold standard for memory performance is
to preallocate a VM with cores and memory on the
same socket. This leads to memory latency below
100 ns and facilitates virtualization acceleration. At the
same time, Dynamic random-access memory (DRAM)
has become a major portion of hardware cost due to its
poor scaling properties with only nascent alternatives.1

For example, DRAMcan be over 50% of server cost.2

Through analysis of Azure VM traces, we identify
memory stranding as a dominant source of memory
waste and a potential source of cost savings. Stranding
happens when all server cores are rented (i.e., allocated
to customer VMs) but unallocated memory capacity
remains and cannot be rented. We find that up to 30% of
DRAM becomes stranded as more cores become allo-
cated to VMs.

Limitations of the state-of-the-art: Reducing DRAM
usage in the public cloud is challenging due to its strin-
gent performance requirements. Pooling memory via
memory disaggregation is a promising approach because
stranded memory can be returned to the disaggregated
pool and used by other servers. Unfortunately, existing
pooling systems have microsecond access latencies and
require page faults or changes to the VMguest.3,4

The emerging CXL interconnect: The emerging Com-
pute Express Link (CXL) interconnect5 enables cacheable
load/store (ld/st) accesses to pooled memory on many
current processors. Pool-memory accesses via loads/
stores is a game changer for cloud computing as it allows

0272-1732 � 2023 IEEE
Digital Object Identifier 10.1109/MM.2023.3241586
Date of publication 1 February 2023; date of current version
13 March 2023.

IEEE Micro Published by the IEEE Computer Society March/April 202330
Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3911-1512
https://orcid.org/0000-0002-3911-1512
https://orcid.org/0000-0002-3911-1512
https://orcid.org/0000-0002-3911-1512
https://orcid.org/0000-0002-3911-1512

memory to remain statically preallocated while physically
being located in a shared pool. However, CXL access
latency depends on the overall system design, especially
the pool size [the number of central processing unit
(CPU) sockets able to use a given pool] and topology.
Larger pools require traversing switching levels, which
adds significant latency. In addition, each CXL compo-
nent adds to the system cost, which must be balanced
against stranding savings.

THROUGHANALYSISOFAZUREVM
TRACES,WE IDENTIFYMEMORY
STRANDINGASADOMINANTSOURCE
OFMEMORYWASTEANDAPOTENTIAL
SOURCEOFCOST SAVINGS.

This work: This work is motivated by the memory
stranding problem identified in Pond2 and we para-
phrase the stranding analysis in the “Cloud Workload
Characterization” section. While Pond focuses on sys-
tem software policies and mechanisms for allocating/
managing pooled memory, this work focuses on design
tradeoffs in the pool’s hardware configuration. First, we
characterize pool components, possible topologies, and
associate memory access latencies. We derive a set of
design recommendations from this analysis. Second, we
compare savings frommemory pooling to the cost of its
components for different pool sizes and CXL device
types.We find that CXL-basedmemory pooling can yield
significant positive returns on investment. Contrary to
the focus of existing literature, smaller pools may be
attractive. Third, we discuss future directions for the
industry as well as academic research.

BACKGROUND
Cloud resource allocation: Public cloud workloads run
inside VMs. To offer performance close to dedicated
(nonvirtualized) resources, VM resources are statically
allocated by reserving each resource (CPU, DRAM,
network bandwidth, etc.) for a VM’s lifetime. Addition-
ally, providers optimize input/output performance
with virtualization accelerators that bypass the hyper-
visor.6 For example, accelerated networking is enabled
by default on AWS and Azure. Virtualization accelera-
tion requires statically preallocating (or “pinning”) a
VM’s entire address space.7

Cloud resource scheduling:Scheduling VMswith het-
erogeneous multidimensional resource demands onto
servers leads to a challenging bin-packing problem.8,9

Scheduling is further complicated by constraints such as
spreading VMs acrossmultiple failure domains.

A simplified view of Azure’s VM scheduling is that
VMs are first assigned to a compute cluster and then
placed on a specific server within this cluster. A clus-
ter roughly corresponds to a row of racks with homog-
enous server configurations. We use the unit of a
cluster to characterize our workloads.

Memory stranding: It is often difficult to provision
servers that closely match the resource demands of the
incoming VM mix. A common reason is that the DRAM-
to-core ratio of a server that will last yearsmust be deter-
mined at platform design time and is statically fixed over
its lifetime. Additionally, fixed-size DIMMs over limited
freedom in determining theDRAM-to-core ratio.

When the DRAM-to-core ratio of VM arrivals and a
cluster’s server resources do not match, tight packing
becomes especially difficult. We define a resource as
stranded when it is technically available to be rented
to a customer, but is practically unavailable as some
other resource has been exhausted. The typical sce-
nario for memory stranding is that all cores have been
rented, but there is still memory available in the server.

Reducing stranding via pooling: This work pro-
poses to break the fixed hardware configuration of
servers by disaggregating memory into a pool that is
accessible by multiple hosts.10 By dynamically reas-
signing memory to different hosts at different times,
we can shift memory resources to where they are
needed. Thus, we can provision servers close to the
average DRAM-to-core ratios and tackle deviations
via the memory pool.

Pooling via CXL: The CXL.mem protocol for ld/st

memory semantics maps device memory to the sys-
tem address space. Last-level cache (LLC) misses to
CXL memory addresses translate into requests on a
CXL port whose responses bring the missing cache-
lines. Similarly, LLC write-backs translate into CXL
data writes. CXL memory is virtualized using hypervi-
sor page tables and the memory-management unit
and is thus compatible with virtualization accelera-
tion. CXL.mem uses PCIe’s electrical interface with
custom link and transaction layers for low latency.
Intel measures CXL port latencies at 25-ns round-
trip.11 With PCIe 5.0, the bandwidth of a bidirectional
�8-CXL port at a typical 2:1 read:write ratio roughly
matches an 80-bit DDR5-4800 channel.

CLOUDWORKLOAD
CHARACTERIZATION
Stranding at Azure
We summarize previous analysis on stranding.2

March/April 2023 IEEE Micro 31

EMERGING SYSTEM INTERCONNECTS

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

Dataset: We measure stranding in 100 general-pur-
pose clusters over a 75-day period. A general-purpose
cluster hosts a mix of first-party and third-party VM
workloads that do not require special hardware (such
as graphics processing units). We select clusters with
similar deployment years, spanning major regions on
the planet. Each cluster trace contains millions of per-
VM arrival/departure events.

Memory stranding: Figure 1(a) shows the hourly
average amount of stranded DRAM across our cluster
sample, bucketed by the percentage of scheduled
CPU cores. In clusters where 75% of CPU cores are
scheduled for VMs, 6% of memory is stranded. This
grows to over 10% when �85% of CPU cores are allo-
cated to VMs. This makes sense since stranding is an
artifact of highly utilized nodes, which correlates with
highly utilized clusters. Outliers are shown by the error
bars, representing 5th and 95th percentiles. At 95th,
stranding reaches 25% during high utilization periods.
Individual outliers reach more than 30% stranding.
Figure 1(b) shows stranding over time across eight
adjacent racks. Every row shows a server within each

rack. A workload change (around day 36) suddenly
increased stranding significantly. Furthermore, strand-
ing can affect many racks concurrently (e.g., racks 2,
4–7) and it is generally hard to predict which clusters/
racks will have stranded memory.

VMMemory Utilization in Azure
Dataset: We perform measurements on the same 100
general-purpose production clusters. For untouched
memory, we rely on guest-reported memory usage
counters cross-referenced with hypervisor page table
access bit scans. We sample memory bandwidth coun-
ters using Intel RDT12 for a subset of clusters with com-
patible hardware. Finally, we use hypervisor counters to
measure nonuniformmemory access (NUMA) spanning
in dual-socket servers, where a VM has cores on one
socket and somememory from another socket.

Memory bandwidth: Memory bandwidth usage of
general-purpose workloads is generally low with aver-
age bandwidth utilization below 10 GB/s. VMs on a
small number of hosts do, however, use 100% of mem-
ory bandwidth.

NUMA spanning: Most VMs are small and can fit
on a single socket. Azure’s hypervisor aims to sched-
ule VMs on dual-socket servers such that they fit
entirely (cores and memory) on a single NUMA node.
We find that spanning occurs for only 2%–3% of VMs.

Overall, untouched memory and low memory
bandwidth requirements make VM workloads a good
fit for memory pooling. However, with 97%–98% of
VMs using NUMA-local memory, performance parity
for pooled memory will be challenging.

Workload Sensitivity to Memory
Latency
We summarize previous experiments on latency
sensitivity.2

Dataset: We evaluate 158 workloads across propri-
etary workloads, in-memory stores, data processing,
and benchmark suites. They run on dual-socket Intel
Skylake 8157 M, with a 182% latency increase for
socket-remote memory, or AMD EPYC 7452, with
222% latency increase. We normalize performance as
slowdown relative to NUMA-local performance.

Latency sensitivity: Figure 2 surveys workload
slowdowns. Under a 182% increase in memory latency,
we find that 26% of the 158 workloads experience less
than 1% slowdown under CXL. At the same time, some
workloads are severely affected with 21% of the work-
loads facing > 25% slowdowns. Overall, every work-
load class has at least one workload with less than 5%
slowdown and one workload with more than 25%
slowdown (except SPLASH2x). Our proprietary

FIGURE 1. Memory stranding. (a) Stranding increases signifi-

cantly as more CPU cores are scheduled; (b) Stranding

changes dynamically over time.

32 IEEE Micro March/April 2023

EMERGING SYSTEM INTERCONNECTS

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

workloads are less impacted than the overall workload
set with almost half seeing < 1% slowdown. These pro-
duction workloads are NUMA-aware and often include
data placement optimizations.

Under a 222% increase in memory latency, we find
that 23% of the 158 workloads experience less than 1%
slowdown under CXL. More than 37% of workloads
face > 25% slowdowns—a significantly higher fraction
than on the 182% emulated latency increase. We find
that the processing pipeline for some workloads, like
VoltDB, seems to have just enough slack to accommo-
date the smaller 182% latency increase with significant
pipeline stalls for 222% latency increase. Other work-
load classes like graph processing (GAPBS) are sensi-
tive to both latency and bandwidth, and both effects
are worsened on the 222% system.

THEMEMORY POOL DESIGN
SPACE

Designing a memory pool involves multiple hardware
components and design choices that expand with every
new CXL release. To limit complexity, we focus on two
design aspects: 1) whether to provide connectivity via
CXL switches or through CXL multiheaded devices
(MHDs) (see Sec. 2.5)5 and 2) how large the constructed
pool should be to maximize return-on-investment (ROI).
We discuss a particular set of choices suitable for gen-
eral-purpose cloud computing. Other use casesmay see
different sets of choices and tradeoffs.

Components
CXL memory controller (MC) devices act as a bridge
between the CXL protocol and memory devices such
as DDR5 DRAMs. Today’s MCs typically bridge
between 1-2 CXL �8 ports and 1-2 80b channels of
DDR5.13

CXL switches behave similar to other network
switches in that they forward requests and data, with-
out serving as an endpoint. Physically, CXL switches
will likely share many characteristics (e.g., port count)
with PCIe switches, due to using the same physical
interface. For the purposes of this analysis, we assume
that switches with 128 lanes (16 ports) of CXL are used
to build a fabric layer.

A CXL MHD essentially combines a switch and a
memory controller in a single device. Specifically, the
MHD offers multiple CXL ports and appears to each
connected host as a single logical memory device.5

The most significant tradeoffs for MHD designs are
the number of incoming CXL ports and DDR channels.
A useful design comparison is a modern server CPU
IO-die (IOD), such as the one in AMD Genoa.14 The
Genoa IOD offers 128 PCIe5 lanes as well as 12 DDR5
channels. With the �8-CXL requirement, this would be
analogous to a 16-headed device with at least 8 chan-
nels of DDR5. In our analysis, we consider both this 16-
headed device as well as a smaller 8-headed device.

Pool Size Versus Latency
At a high level, the first design decision is whether
cloud compute servers can pool all of their memory.
With 21%–37% of workloads facing significant slow-
downs on pool-only configurations (see the “Cloud
Workload Characterization” section), we do not rec-
ommend fully disaggregating compute and memory.
Servers need to retain significant amounts of local
DRAM to maintain performance expectations, which
will likely go beyond the scope of on-die memory. Fur-
ther, achieving maximum memory bandwidth requires
CPUs to populate all available local DDR channels,
creating a practical minimum for local memory
capacity.

FIGURE 2. Performance slowdowns when memory latency increases by 182%–222% (see the “Workload Sensitivity to Memory

Latency” section). Workloads have different sensitivity to increased memory latency as they would see with CXL. X-axis shows

158 representative workloads; Y represents the normalized performance slowdown, i.e., performance under higher (remote)

latency relative to all local memory. “Proprietary” denotes production workloads at Azure.

March/April 2023 IEEE Micro 33

EMERGING SYSTEM INTERCONNECTS

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

Observation 1: A significant percentage (more than
25%) of datacenter memory needs to remain local to
compute servers.

To understand pool latencies, we first characterize
the impact on latency of achievable topologies given
viable components.

Observation 2: When using at least a �8-CXL port
for each host, pool sizes beyond 16–32 hosts will
require at least one level of switches if MHDs are used
or two levels of switches if using only individual MCs.

Access latencies derive from multiple parameters.
Port latency plays a dominant role with initial meas-
urements indicating 25 ns.11 Retimers are devices
used to maintain CXL/PCIe signal integrity over dis-
tances above roughly half a meter, depending on the
implementation of the signal path. They add about
10 ns of latency in each direction.15 Each switch will
add at least 70 ns of latency due to ports, arbitration,
and network-on-chip (NOC).

Figure 3 shows a range of CXL path types based
on pool sizes and the use of MHDs versus switches
with single-headed devices. We find that small 8 and
16-socket pools using MHDs increase latencies to
182%–212% (155–180 ns) relative to NUMA-local
DRAM. Latency when using only switches and
single-headed memory controllers would further
increase by 23%–38%.

Rack-scale pooling with 64 sockets would increase
latencies by 318%–405% (270–345 ns) and pooling
across multiple racks would require yet another level
of switching and potentially multiple retimers, increas-
ing latencies by more than 465% (395 ns). Comparing
these latencies to the slowdowns observable at
182%–222% (see the “Cloud Workload Characteriza-
tion” section), we observe that large-scale pooling will
likely be prohibitive from a performance perspective.

Observation 3: The size of CXL-based memory
pools will likely be a subset of a rack to minimize the
performance impact of access latencies.

Modern CPUs can connect to multiple MHDs or
switches, which allows scaling to meet bandwidth and
capacity goals for different clusters.

Pool Size Versus DRAM Savings
We analyze VM-to-server traces from Azure (see the
“Cloud Workload Characterization” section) to esti-
mate the amount of DRAM that could be saved via
pools of different sizes. The reduction in DRAM comes
from averaging host’s peak memory needs across the
pool. Our simulation plays back VM traces while
assigning a fixed percentage of pool memory. We
repeatedly run cluster simulations while decreasing
overall memory in 0.5% steps until the first VM is
rejected. The minimum amount of cluster memory

FIGURE 3. Pool size and latency tradeoffs. Small pools of 8–16 sockets add only 75–90 ns relative to NUMA-local DRAM. Latency

increases for larger pools that require retimers and a switch.

34 IEEE Micro March/April 2023

EMERGING SYSTEM INTERCONNECTS

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

corresponds to the “required overall DRAM” reported
below.

Figure 4 presents cluster DRAM requirements
when VMs are assigned either 10%, 30%, or 50% of
pool DRAM. As the pool size increases, the figure
shows that required overall DRAM decreases. How-
ever, this effect diminishes for larger pools. For exam-
ple, with a fixed 50% pool DRAM, a pool with 32
sockets saves 12% of DRAM while a pool with 64 sock-
ets saves 13% of DRAM. Note that allocating 50% of
VM memory to pool DRAM requires latency mitigation
techniques (see the “Discussion and Conclusion” sec-
tion). Besides low latency, feasible configurations also
must be ROI positive, as discussed next.

Pool Size Versus System Cost
System cost depends on many factors. We consider a
simplified model that focuses on key hardware com-
ponents: DRAM, memory controllers, cables, and the
memory blade enclosure/printed circuit board (PCB).
Our model ignores factors of time, scale, and market
competition. Specifically, our model calculates cost
relative to a nonpooled server’s bill of materials (BOM)
based on the following set of parameters.

› MC: cost of a typical 2�8 CXL memory controller
(e.g., 0.4%).

› MHD8: cost of an 8-headed memory controller
(e.g., 0.8%).

› MHD16: cost of a 16-headed memory controller
(e.g., 2.0%).

› Switch: cost of a 16-port CXL switch (e.g., 1.6%).
› Ret: cost of a CXL retimer (e.g., 0.02%).
› Infra: cost of the supporting memory enclosure,
PCBs, and cables expressed as a multiplier
applied to MHD or switch cost (e.g., 0.5–2�).

The exemplary values for the parameters are
roughly based on estimates of silicon area as well as
connectivity and infrastructure necessary to support
the memory pools. Note that there is significant room
for these parameters to change between companies,
server configurations, use cases, and over time.

Figure 5 presents cost overheads for pool sizes
from 2–64 sockets and for pools encompassing two
different capacity points relative to total system mem-
ory. The baseline for comparison is the full cost of a
non-pooled server, including CPU, DRAM, and other
standard infrastructure [e.g. network interface cards
(NICs), power delivery, management controllers,
boards, etc.]. Within this baseline, DRAM memory is
assumed to account for approximately half of the total
cost, with the CPU and other infrastructure splitting
the other half. All other modeled configurations hold
the total cost of the base system constant, but add
the costs of the extra components required for pool-
ing part of the memory. Our results are reported as a
percentage of cost uplift versus the baseline configu-
ration. We vary the infrastructure overhead cost to
show that the overall costs are very sensitive to the
ability for a design to cost-effectively provide connec-
tivity to the pool. The analysis also shows that over-
head for switch-based designs versus MHD designs is
significant. As an example, an 8-socket pool

FIGURE 5. Pool system cost tradeoffs. Both cost and savings

increase with pool size. Infrastructure overheads also play a

key factor in cost. Cost savings (black line) from Figure 4 are

workload dependent and may look significantly different for

other use cases. We advise practitioners to evaluate savings

for their workloads.

FIGURE 4. Impact of pool size. Small pools of 32 sockets are

sufficient to significantly reduce overall memory needs.

March/April 2023 IEEE Micro 35

EMERGING SYSTEM INTERCONNECTS

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

implemented with switches adds over two-and-a-half
times the cost of an 8-socket pool based on MHDs.

This overhead is important, as the system-level goal
is reaching a beneficial pooling configuration, which is
one where the cost uplift of moving memory into the
pool is less than the efficiency benefit of having flexible
memory as outlined in the savings analysis above. In
Figure 5, the black line plots the savings estimate from
the earlier analysis (Figure 4). Configurations below this
line are ROI positive, while those above the line are likely
ROI negative unless further optimizations can be made
to improve savings. Note in particular that most switch-
based configurations are ROI negative, while many
MHD-based configurations are ROI positive, especially
for smaller pool sizes.

Observation 4: Positive ROI requires pool designers
to navigate a complex tradeoff between pool size,
topology, and savings, which is workload dependent.
Infrastructure overheads may become a major hurdle
to adopting CXL-based pooling as expensively
designed configurations will not achieve beneficial ROI.

RELATEDWORK
Low memory resource utilization and stranding has
been observed at Google16 and Microsoft.17 This moti-
vated at least three lines of prior research on memory
pooling prior to CXL.

Hypervisor/OS level approaches such as in Gu et al.3

rely on page faults and access monitoring to maintain
the working set in local DRAM. In the context of general-
purpose cloud computing, these OS-based approaches
bring toomuch overhead and jitter. They are also incom-
patible with virtualization acceleration (e.g., DDA).

Runtime-based disaggregation designs4,18 proposed
customized application programming interfaces for
remote memory access. While effective, this approach
requires developers to explicitly use these mechanisms
at the application level.

Hardware-based memory disaggregation have
served as an inspiration for CXL but prior approaches
were not available on commodity hardware.10,19 Prior
analysis of requirements for disaggregation are related
to our goals. However, network-based disaggregation20

lead to a different design space, e.g., with latency con-
sidered in the range of 1–40 ms, whereas we consider
latencies lower by an order of magnitude.

DISCUSSION AND CONCLUSION
CXL-based memory pooling promises to reduce DRAM
needs for general-purpose cloud platforms. This paper
outlines the design space formemory pooling and offers
a framework to evaluate different proposals.

WEHIGHLIGHT THAT SMALL POOLS,
SPANNING UP TO 16 SOCKETS, CAN
LEAD TO SIGNIFICANT DRAM
SAVINGS. THIS REQUIRES KEEPING
INFRASTRUCTURE COST OVERHEADS
LOW,WHICH REINFORCES THE NEED
FOR STANDARDIZATION OF POOLING
INFRASTRUCTURE.

As cloud datacenters are quickly evolving, some
key parameters will differ significantly even among
cloud providers and over time. The fraction of VM
memory that can be allocated on CXL pools depends
largely on the type of latency mitigation employed. For
example, the recent Pond2 system can allocate
an average of 35%–44% of DRAM on CXL pools while
satisfying stringent cloud performance goals. Future
techniques for performance management may lead
to significantly higher CXL pool usage. Another differ-
ence comes from server and infrastructure cost break-
downs, which lead to entirely different cost curves
(Figure 5).

Regardless of the variability in system and cost
parameters, we believe that Observations 1-4 broadly
apply to general-purpose clouds. We highlight that
small pools, spanning up to 16 sockets, can lead to sig-
nificant DRAM savings. This requires keeping infra-
structure cost overheads low, which reinforces the
need for standardization of pooling infrastructure.
Latency and cost increase quickly for larger pool sizes,
while the efficiency benefits fall off, which may make
large pools counterproductive in many scenarios.

Our savingsmodel focuses on pooling itself, e.g., aver-
aging peak DRAMdemand across the pool, and for Azure
specific workloads. CXL also enables other savings
including using cheaper media behind a CXL controller,
such as reusing DDR4 from decommissioned servers. We
advise practitioners to create a savings model for their
specific use cases, whichmight differ fromours.

CXL reopens memory controller architecture as a
research frontier. With memory controllers decoupled
from CPU sockets, new controller features can be more
quickly explored and deployed. Cloud providers need
improved reliability, availability, and serviceability (RAS)
capabilities includingmemory error correction, manage-
ment, and isolation. Tighter integration between mem-
ory chips, modules, and controllers can enable
improvements along the Pareto frontier of RAS,memory
bandwidth, and latency.

36 IEEE Micro March/April 2023

EMERGING SYSTEM INTERCONNECTS

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
1. S. Shiratake, “Scaling and performance challenges of

futureDRAM,” inProc. IEEE Int.MemoryWorkshop, 2020,

pp. 1–3.

2. H. Li et al., “Pond: CXL-Based memory pooling systems

for cloud platforms,” in Proc. Int. Conf. Archit. Support

Program. Lang. Oper. Syst., 2023, pp. 574–587.

3. J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin,

“Efficient memory disaggregation with INFINISWAP,”

in Proc. 14th USENIX Symp. Netw. Syst. Des.

Implementation, 2017, pp. 649–667.

4. Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay,

“AIFM: High-performance, application-integrated far

memory,” in Proc. 14th USENIX Conf. Oper. Syst. Des.

Implementation, 2020, pp. 315–332.

5. “CXL Specification,” 2020. Accessed: Dec. 2020.

[Online]. Available: https://www.computeexpresslink.

org/download-the-specification

6. H. Li et al., “LeapIO: Efficient and portable virtual NVMe

storage onARMSoCs,” inProc. 25th Int. Conf. Archit.

Support Program. Lang. Oper. Syst., 2020, pp. 591–605.

7. I. Lesokhin et al., “Page fault support for network

controllers,” in Proc. 22nd Int. Conf. Archit. Support

Program. Lang. Operating Syst., 2017, pp. 449–466.

8. O. Hadary et al., “Protean: VM allocation service at

scale,” in Proc. 14th USENIX Conf. Operating Syst. Des.

Implementation, 2020, pp. 845–861.

9. E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M.

Fontoura, and R. Bianchini, “Resource central:

Understanding and predicting workloads for improved

resource management in large cloud platforms,” in

Proc. 26th Symp. Oper. Syst. Princ., 2017, pp. 153–167.

10. C. Pinto et al., “ThymesisFlow: A Software-defined,

HW/SW co-designed interconnect stack for rack-scale

memory disaggregation,” in in Proc. 53rd Annu. IEEE/

ACM Int. Symp. Microarchit., 2020, pp. 868–880.

11. D. D. Sharma, “Compute express link: An open

industry-standard interconnect enabling

heterogenous data-centric computing,” in Proc. IEEE

Symp. High-Perform. Interconnects, 2020, pp. 5–12.

12. “Intel resource director technology (Intel RDT),” 2015.

Accessed: Sep. 2022. [Online]. Available: https://www.

intel.com/content/www/us/en/architecture-and-

technology/resource-director-technology.html

13. AsteraLabs Leo, “Memory connectivity platform for CXL

1.1 and 2.0,” 2022. Accessed: Aug. 2022. [Online]. Available:

https://www.asteralabs.com/wp-content/uploads/2022/

08/Astera_Labs_Leo_Aurora_Product_FINAL.pdf

14. L. Su, “AMD unveils workload-tailored innovations and

products at the accelerated data center premiere,”

Nov. 2021. [Online]. Available: https://www.amd.com/

en/press-releases/2021-11-08-amd-unveils-workload-

tailored-innovations-and-products-the-accelerated

15. “CXL use-cases driving the need for low latency

performance retimers,” 2021. [Online]. Available:

https://www.microchip.com/en-us/about/blog/

learning-center/cxl–use-cases-driving-the-need-for-

low-latency-performance-reti

16. M. Tirmazi et al., “Borg: The next generation,” in Proc.

15th Eur. Conf. Comput. Syst., 2020, pp. 1–14.

17. Q. Zhang, P. A. Bernstein, D. S. Berger, and B.

Chandramouli, “Redy: Remote dynamic memory

cache,” Proc. VLDB Endowment, vol. 15, pp. 766–779,

2021.

18. I. Calciu et al., “Rethinking software runtimes for

disaggregated memory,” in Proc. 26th ACM Int. Conf.

Architectural Support Program. Lang. Oper. Syst.,

2021, pp. 79–92.

19. Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A

hardware-software co-designed disaggregated

memory system,” in Proc. 26th ACM Int. Conf. Archit.

Support Program. Lang. Oper. Syst., 2022, pp. 417–433.

20. X. Peter et al., “Network requirements for resource

disaggregation,” in Proc. 2th USENIX Conf. Operating

Syst. Des. Implementation, 2016, pp. 249–264.

DANIEL S. BERGER is a senior researcher in the Azure Systems

Research Group, Microsoft Azure, Redmond, WA, 98052, USA.

Berger received a Ph.D. degree in computer science from TU

Kaiserslautern. Contact him at daberg@microsoft.com.

DANIEL ERNST is a principal architect in the Leading Edge

Architecture Pathfinding (LEAP), Microsoft Azure, Redmond,

WA, 98052, USA. Ernst received a Ph.D. degree in computer

science and engineering from the University of Michigan.

Contact him at danernst@microsoft.com.

HUAICHENG LI is an assistant professor at Virginia Tech,

Blacksburg, VA, 24061, USA. Li received a Ph.D. degree in

computer science from the University of Chicago. Contact

him at huaicheng@cs.vt.edu.

PANTEA ZARDOSHTI is a research software development

engineer in the AzSR Group, Microsoft Azure, Redmond,

WA, 98052, USA. Zardoshti received a Ph.D. degree in com-

puter science from the Lehigh University. Contact her at

pzardoshti@microsoft.com.

MONISH SHAH is a senior principal hardware engineer

in the LEAP Group at Microsoft Azure, Redmond, WA,

98052, USA. Shah received an M.Sc. degree in electrical

engineering from Stanford University. Contact him at

monish.shah@microsoft.com.

March/April 2023 IEEE Micro 37

EMERGING SYSTEM INTERCONNECTS

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.asteralabs.com/wp-content/uploads/2022/08/Astera_Labs_Leo_Aurora_Product_FINAL.pdf
https://www.asteralabs.com/wp-content/uploads/2022/08/Astera_Labs_Leo_Aurora_Product_FINAL.pdf
https://www.amd.com/en/press-releases/2021-11-08-amd-unveils-workload-tailored-innovations-and-products-the-accelerated
https://www.amd.com/en/press-releases/2021-11-08-amd-unveils-workload-tailored-innovations-and-products-the-accelerated
https://www.amd.com/en/press-releases/2021-11-08-amd-unveils-workload-tailored-innovations-and-products-the-accelerated
https://www.microchip.com/en-us/about/blog/learning-center/cxl--use-cases-driving-the-need-for-low-latency-performance-reti
https://www.microchip.com/en-us/about/blog/learning-center/cxl--use-cases-driving-the-need-for-low-latency-performance-reti
https://www.microchip.com/en-us/about/blog/learning-center/cxl--use-cases-driving-the-need-for-low-latency-performance-reti

SAMIR RAJADNYA is a principal memory system engineer in

the LEAP Group, Microsoft Azure, Redmond, WA, 98052, USA.

Rajadnya received an M.Tech. degree in electrical engineering

from IIT Bombay. Contact him at srajadnya@microsoft.com.

SCOTT LEE is a principal software engineer lead at Microsoft,

Redmond, WA, 98052, USA. Lee received a B.Sc. degree in

computer engineering from the University of Washington.

Contact him at scolee@microsoft.com.

LISA HSU is a principal architect at Microsoft Azure, Red-

mond, WA, 98052, USA. Hsu received a Ph.D. degree in com-

puter science from the University of Michigan. Contact her at

lisa.hsu@microsoft.com.

ISHWAR AGARWAL is a senior principal engineer at Intel

Corporation, Santa Clara, CA, 95054, USA. Agarwal received

an M.Sc. degree in electrical and computer engineering from

Georgia Tech. Contact him at ishwar.agarwal@intel.com.

MARK D. HILL is a partner architect and leads the LEAP

Group at Microsoft Azure, Redmond, WA, 98052, USA and

also with the University of Wisconsin-Madison, Madison,

WI, 53715, USA. Hill received a Ph.D. degree in computer

science from UC Berkeley and served 32 years at Univer-

sity of Wisconsin Computer Science. Contact him at

markhill@microsoft.com.

RICARDO BIANCHINI is a distinguished engineer at Micro-

soft Azure, Redmond, WA, 98052, USA. Bianchini received

a Ph.D. degree in computer science from University of

Rochester. Contact him at ricardob@microsoft.com.

38 IEEE Micro March/April 2023

EMERGING SYSTEM INTERCONNECTS

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 05,2023 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

