Proc. Tenth International Symposium on Computer Architecture, pp. 108-116 (June 1983).

ARCHITECTURE OF A VLSI INSTRUCTION CACHE FOR A RISC

David A. Patterson, Phil Garrison, Mark Hill, Dimitris Lioupis,
Chris Nyberg, Tim Sippel, and Korbin Van Dyke

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

INTRODUCTION

A cache was first used in a commercial com-
puter in 1968, ! and researchers have spent the
last 15 years analyzing caches and suggesting
improvements. In designing a VLSI instruction
cache for a RISC microprocessor we have
uncovered four ideas potentially applicable to
other VLSI machines. These ideas provide
expansible cache memory, increased cache
speed, reduced program code size, and
decreased manufacturing costs. These
improvements blur the habitual distinction
between an instruction cache and an instruction
fetch unit.

RISC stands for Reduced Instruction Set
Computer, an architectural philosophy promis-
ing higher performance using simpler hardware.
2 Examples of RISC's are the IBM 801, 3 the
Berkeley RISC I, + and the Stanford MIPS. ® RISC
Iis the first by-product of a new graduate curri-
culum in which students propose and evaluate
architectural concepts, learn Mead/Conway
VLSI design, form teams to build the system,
and then test their design. This 44,500 transis-
tor integrated circuit has one minor design
error, worked on the first good silicon, and runs
programs faster than commercial microproces-
Sors.

The by-product of the second offering of
these courses is a VL3I instruction cache. A
cache is a high-speed buffer between main
memory and the CPU. Each entry in the cache
contains an address tag as well as buffered data
in the cache block. Each memory access is
mapped to a cache entry; the comparison of the
address to the tag determines if there is a hit.
The popular organizations either map a memory

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/ or specific permission.

© 1983 ACM 0149-7111/83/0600/0108%01.00

word onto only one cache block (direct
mapped), allow a memory word to map onto any
cache block (fully associative), or map a
memory word onto a small number of blocks in
the cache (set associative). All caches also
need a bit per block to tell whether the data in
the block is valid or not. Generally, cache
invalidations occur only on startup and on pro-
cess switches. We will assume that the cache
receives non-virtual addresses, although these
ideas work well with a virtual address cache.
Writing causes difficulties in caches, but an
instruction cache avoids those problems
because code is read-only. An excellent survey
of cache issues was written by Smith. 7

The instruction cache is designed to work
with a more efficient implementation of RISC I,
called RISC II. 8 RISC II has more registers, uses
less area, and should have higher performance
than RISC 1. It also has the minor changes
needed for this instruction cache.

Qur long-term goal is to design a single chip
that combines the CPU with an instruction
cache, as this combination reduces off-chip
references. The silicon processing available to
us precludes an on-chip cache. Thus this
separate cache chip should be considered a
research prototype rather than a potential
commercial product.

The next four sections present the four
architectural ideas, followed by a section on
performance evaluation of each idea. We then
describe the implementation of the cache and
finally surnmarize the results.

Interestingly, the first architectural idea is
possible only because we cannot fit the cache
and the CPU on the same chip.

EXPANSIBLE CACHE

Designers must select a cache memory size
large enough for a wide range of applications
and small enough so most customers can afford
it. Just as a customer buys varying amounts of
main memory depending on his budget and
application, he should be able to buy only the
amount of cache he needs. Custom VLSI designs
differ from. traditional hardware in their high

design costs but low replication costs. Thus, the
ideal VLSI cache would consist of one or more
identical chips, the number being determined
by the desired cache size.

The RISC II instruction cache is such a chip.
The controller of each chip just checks the chip
select line to see if it is enabled; if so, it services
the memory access. This approach requires a
cached memory location appear only in one
chip. An external decoder generates the chip-
select signals, implementing a direct mapped
cache — a word is always cached in the same
chip (Figure 1).

A simple improvement is to allow a word to
appear in any chip. Every chip tries to service
each address request;-but-only the chip with the
matching address supplies the data. To assure
that the same data does not appear in more
than one chip at the same time, a token
identifies the chip that fetches the data from
memory when there is a miss. The token is then
passed to the next cache chip. The implements
a set associative cache, with the number of sets
equal to the number of chips. In addition to giv-
ing higher hit ratios (due to fewer restrictions
on locations of cacheable data), this approach
works with any number of chips, whereas direct
mapping works best with 2' chips.

Associative mapping requires a smarter
cache controller, a bit of memory to hold the
token, a few pins to pass the token, plus one pin

select

Cache

elect

Cache

elect

Cache

select

Cache

e/

say

2.1 ¢

RISC II CPU

Figure 1. Direct Mapped Cache Chips.

109

to determine where to start the token on sys-
tem initialization. Figure 2 shows associatively-
mapped cache chips connected in a ring. Note
that in general a set associative cache can be
expanded either wider, by increasing the
number of sets, or deeper, by increasing the
number of blocks per set. The former is more
general and thus has a higher hit rate at the
cost of more comparators. Since a compartor
must be included in each chip, Figure 2 uses the
wide option.

A fully associative mapping over multiple
cache chips, where a memory word could be
located in any block on any chip, is achieved by
the organization in Figure 2 if each cache chip
uses fully associative mapping internally.

FAULT TOLERANCE

The semiconductor industry is sometimes
called the "jelly bean” industry because of its
high volume manufacturing techniques. Usually
a majority of the chips manufactured at such a
rate are faulty. Chips are discarded even if only
one transistor fails out of tens of thousands.
Rather than dwell on failure, manufacturers
accentuate the positive by measuring yield.
Yield is a function of the size of the chip and the
density of the circuits inside the chip. The yield
of the chip affects the manufacturing costs and,
indirectly, limits the size of the chip.

pass token

1

sfart

token
Cache —>
Cache —

y

Cache

RISC II CPU

Figure 2. Associatively Mapped Cache Chips.

The RISC II cache includes a minor architec-
tural change that improves yield. Most of the
chip area comprises the memory for the
address tag and cache data (illustrated in Fig-
ure 3). As mentioned above, each cache block
must have an invalid bit. Alan Paeth of Xerox
PARC suggested we add a second invalid bit, the

Jault tolerant bit, that can permanently invali-
date a cache block. The result of an access to a
bad block is simply a miss; the data is then sup-
plied from main memory. Each chip would be
tested to determine functioning words, and on
power up, each chip would be loaded with the
proper fault tolerant bits. We chose to provide
initialization by connecting the fault tolerant
bits as a shift register, so the fault pattern is
shifted in one bit per block.

Bad blocks effect performance depending
on the mapping strategies. In fully associative
mapping an N word cache with a single bad word
becomes an N-1 word cache, which for practical
purposes is as effective as before. At first
glance direct mapping should not work with a
chip with "broken'” cache blocks; memory words
can be found only in one cache entry, so a bro-
ken cache block means the corresponding data
would never be in the cache. However, because
caches improve performance statistically
rather than absolutely, a direct mapped cache
can still perform acceptably even if it con-
sistently misses on a few addresses. Moreover,
multiple cache chips connected associatively
will lock out addresses only if all chips have a
defect in the same word.

pads | ads
ault rpe
valid
mux
d
e
c
pla
b tag | data data a
d
a e
T
d
< cmpr mux r
pad s

Figure 3. Chip Plan of RISC II Cache.

110

Note that this redundancy does not cover all
single bit memory errors. Chips with faults in
the fault tolerant or valid bits will be discarded.
Also, we have relied on the availability of a path
around the instruction cache to access memory
when we have a fault. Some cache organizations
require blocks to be loaded into the cache
before they are read by the CPU, and are
incompatible with our ideas for direct mapped
caches.

REMOTE PROGRAM COUNTER

One design goal of VLSI machines is to
reduce off-chip accesses. This goal motivated
Manolis Katevenis’ SAMOS architecture, 9 in
which copies of pointer-registers are kept with
the memory chips, rather than only in the CPU.
The best example of such a pointer is the Pro-
gram Counter (PC). Subsequent values of the PC
— sent out of the CPU over the address bus —
contain little new information, since they are
usually just the previous value plus a small
offset. The RISC II instruction cache uses a
Remote Program Counter (RPC), inspired by
the SAMOS architecture, to take advantage of
the predictable nature of PC addresses.

Figure 4 shows the timing of the RPC cache
compared to a normal cache. It nearly doubles
the time available to read the cache data and
address tag, the critical path of a cache.

Predicting the next PC value is easy for
sequential execution, but obviously the next
instruction address is not always the next
sequential address. Rather than compare the
tag to the RPC, every cache access compares to
the real PC to assure access of the correct
word. If there is no match, we take another full
cycle to see if the correct address is in the
cache. Thus the number of cache misses as well
as the number of mispredicted addresses affect
the performance of the RISC II instruction
cache.

There are two reasons for non-sequential
addresses — interrupts and jumps. Interrupts
are completely unpredictable but, fortunately,
they are infrequent. Jumps, on the other hand,
are predictable. RISC I and RISC II include PC-
relative addressing for jumps and calls,
accounting for almost all non-sequential
addresses. Since there is a copy of the PC on
the cache chip, we can calculate jump
addresses from the instruction in the chip. If it
is a jump, then we add the offset to the RPC as
the new predicted address. Thus the cache
properly predicts sequential instruction
accesses and unconditional PC-relative jumps
and calls. This RPC requires the addition of a
register, adder, and multiplexer to a cache
chip.

Conditional jumps are another matter.
Designers have invented many ways to predict
conditional jumps, and any would work with this
proposal. 1911 We have defined an unused bit of

the jump instruction to help predict conditional
jumps. This bit is named likely, meaning the
RPC will be loaded with with the jump address if
the bit is set and loaded with the next sequen-
tial address otherwise. This allows the compiler
to give clues to the cache. 1R For example, the
branches associated with loops would be
marked likely while branches that exit a loop
would be marked unlikely. We have not yet
modified the compiler to supply this informa-
tion so we always set the likely bit.

COMPACTION

In RISC I all instructions are 32-bits, simpli-
fying instruction fetch and decode, thereby
improving the performance of RISC 1. Many
have argued that smaller programs mean better
performance. Although no experimental evi-
dence has been presented to support this claim,
the arguments are that smaller programs mean
fewer cache faults and fewer page faults.
Rather than add variable length instructions to
RISC I CPU, Phil Garrison and Korbin Van Dyke

e Iy R~

\'/] {RPC addresses cache}
‘ CPU gets instruction
R CPU starts instruction
CPU address thru pads
[Cache Teads it thru pads
R A : ,
Read tag and instruction
E
A - {Increment RPC}
il
D
\/f \//
Match tag to CPU oddress
Normel {RPC]}
Cache sends instruction
{RPC addresses cache}
CPU gets instruction
- 5 , CPU starts instruction
i 1

Figure 4. This timing diagram compares a nor-
mal cache to the RPC cache. The arrow on the
left illustrates the time available for a read with
a normal cache. The words on the right side of
the figure in italics show the steps that occur
when sending an instruction to the CPU in the
normal case. The arrow on the right shows the
increased time for reading the tag and data
with the RPC cache. The words on the right in
in curly brackets and bold type show the extra
steps that occur for this case.

Il

investigated uses of the cache to transform
compact code from main memory into 32-bit
RISC I instructions. 13

Having the cache handle variable length
instructions has the potential of maintaining
the high performance of simple instruction
fetch and decode while obtaining the potential
advantages of reduced code size in fewer cache
and page faults. A similar idea has been used
by the S-1 Mark II. It increases the instruction
cache entry from 36 to 56 bits to reduce
instruction decoding time.

This raises three questions:

1. Should instruction lengths be bit-variable or
byte-variable?

2. Should instructions be expanded ‘on-the-fly’
between the cache and the CPU, or ‘on-the-
miss’ between cache and memory?

3. What can be done to avoid the problems
caused by variable length instructions that
span cache and page boundaries?

1. Instruction length. The first decision
involves density versus simplicity. Huffman
encoded, bit-variable instructions will result in
the smallest programs, but at what cost?
Huffman encoding of the RISC I instruction set
resulted in instructions varying from 4 bits to
87 bits. As each field of the instruction is
separately encoded in 2 to 17 bits (see Table 1),
practical implementations of instruction expan-
sion required one clock step per field. This
means 5 clock steps for most RISC I instruc-
tions. Bit variable instructions imply a bit-
addressable PC in the CPU plus the ability to
add bit offsets of 4 to 87 to access the next
instruction. The cache/CPU interface then
needs 7 (loggy 87) more bits to pass the correct
PC bit increment along with the expanded 32-bit
instruction. The wider PC affects branch
instructions — either the offsets are considered
bit offsets, reducing the addressing range by a
factor of 8, or branch targets are padded to
byte boundaries.

An alternative is instructions lengths that
are multiples of bytes, removing the problems
of the PC and branches. Garrison and Van Dyke
proposed 11 new instructions and 5 new instruc-
tion formats to support 8-, 16-, and 24-bit
instructions (see Table 2). Most new instruc-
tions occurred by having the opcode specify the
use of register 0, a register that always contains
a hardwired 0. The cache still needs to tell the
CPU the size of the instruction, but only 2 bits
are necessary to distinguish 8-, 16-, 24-, and 32-
bit instructions.

2. Expansion. Figure 5 illustrates the two
alternatives on instruction expansion. The on-
the-fly scheme has the disadvantage of expand-
ing the instructions during the access,
lengthening the cache cycle. Since the main
purpose of cache is fast access, long expansion
time means an ineffective cache.

Table 1. Huffrman encoding sizes
Field Length (bits) Avg Freq | Savings
Min Max Avg (RISCI) per Instr
Opcode 3 17 4.02 (8) 1 12.5%
No Immediate 0 - - (8) .25 10.7%
Shorter Constants 5 9 69 (13718) .87 8.4%
Register Specification 2 14 4.1 (5) 1.98 6.1%
Condition Code Field 2 11 24 (5) .15 1.2%
Operand Class in Opcode 0 0 o0 (1) .44 1.4%
Fewer Operands (# regs) 0 3 13 {(1/2/3) - 8.4%
Byte Alignment Padding 1 7 4 (0) .20 -2.5%
Byte Alignment Start Bit 1 11 (0) 1 -3.1%
Total Savings 43%
Table 2. Original Proposal for Byte-Variable Short Instructions
Special Instru%tion RISC I equivalent Length | % Savings
(const < +2°) (r0 = 0) (bits)
move rN,rM add rN,r0,rM 16 7.1%
jmprs const jmpr const 16 5.2%
1dshi rN,const 1dhi rN,const 16 3.9%
clrrN add r0,r0,rN 8 3.9%
nop add r0,r0,r0 8 3.9%
compare rN,rM sub rN,rM,r0,{c! 16 3.7%
rets rN ret 8(rN) 8 1.7%
moveimm const,rN add r0,const, rN 16 1.7%
add1l rN add #1,rN,rN 8 1.5%
noimmop rN,rM,rP noimmop rN,rM,rP 24 1.1%
__add2imm const.rN add const rN.rN 16 1.0%
TOTAL 34.8%
Memory Memory
Expander Cache
Cache Expander
RISC II CPU RISC II CPU

Figure 5(a). Expander using 'On-the-miss’ Expansion. Figure 5(b). Expander using ‘On-the-fly’ Expansion

112

In on-the-miss expansion, an instruction in
memory changes size when in the cache. Thus
the cache must be able to store a full 32-bit
expanded instruction for every location that
can contain an instruction. The straightforward
implementation for byte-variable instructions is
an on-the-miss cache memory four times the
size of an on-the-fly cache, with most of that
extra memory usually empty.

A practical solution to the problem of a
cache that is four times the size of an on-the-fly
cache is to limit each on-the-miss cache entry
to a single instruction, instead of two. Tables 1
and R indicate that compact programs are
approximately 40 percent (35 to 43 percent)
smaller than expanded programs. We must
therefore increase the number of cache entries
by 40 percent to hold the same number of
instructions as the on-the-fly cache. This solu-
tion introduces a further cost: there is only a
single instruction per address tag in the cache,
instead of two instructions per tag, so fewer
instructions can share the address tag portion
of the cache. For the 32-bit RISC I address, an
on-the-miss cache containing the same number
of instructions as an on-the-fly cache of 64
blocks by 84 bits would need

1.4 *128 *(26+32)
64 *(23+64)

times more memory for tags and data. That is,
a new cache would contain 128 entries, each
consisting of 26 bits of address tag and 32 bits
of data memory per entry, instead of 64 entries
consisting of 23 bits of address and 64 bits of
data per entry. The cache also needed to be 40
percent larger, as noted above, to accommo-
date the equivalent number of instructions.

Tables 1 and 2 show that byte-variable
instructions reduce code size 35 percent while
bit-variable instructions condense code only 8
percent more. The complexity of bit-variable
instructions and the enlarged memory of the
on-the-miss cache led Garrison and Van Dyke to
recommend byte-variable instructions using an
on-the-miss expansion strategy.

3. Crossing Boundaries. Both schemes have
instructions that can span page boundaries;
thus, unlike RISC I, a valid starting PC address
does not guarantee uninterrupted instruction
fetch. Variable length instructions also allow
instructions to cross cache blocks. As in the
paging problem, the cache no longer always
delivers a complete instruction if the PC points
to alocation in the cache.

This difficulty can be avoided by requiring
the assembler to prevent instructions from
spanning cache blocks. Since the page size is a
multiple of cache blocks, this also means that
instructions cannot span page boundaries,
avoiding faults during an instruction fetch. The
consequences of that restriction is te pad
sequences with NOP's similar to the way 15-bit

=1.8

113

and 30-bit instructions pack inte 80-bit words
on the CDC 8600. In addition to reducing code
density, this approach reduces performance
because extra unnecessary NOP instructions
are executed. ‘

EVALUATION

This section evaluates the performance of
each of the four new ideas. RISC II is designed
to execute an instruction every 400 ns leaving
about 200 ns to fetch an instruction after the
address is valid. The performance of each idea
is measured by its impact on the effective
access time.

In each case we have measured RISC II exe-
cuting the Portable C Compiler, the largest C
program that we can run on our cache simula-
tors. We assume that a single chip is direct
mapped and contains 64 blocks with 64 bits per
block. A miss takes 1400 ns with a 600 ns main
memory.

Expansibility. Table 3 below shows how the
miss ratio decreases as we expand the number
of chips for the cache. Note that the number of
chips are doubled with each line in the table.

Table 3. Miss fraction for 2 Mappings
Number Miss Fraction Ratio
of Chips Associative Direct D/A

1 (124 124 1

2 .105 .099 1.06
4 .078 .082 1.05
8 .050 064 1.28

Fault Tolerance. We can calculate the
improvement in yield due to the fault tolerant
bit by using a formula to predict yield. AMI
forecasts the net dies per wafer (N) based on
the gross number of dies on the wafer (G), the
area per die (A), the defect density (D), and
number of critical mask layers (n) using the for-
mulal4

=G

(1 +4*D)"
Typical defect densities are 2 to 8 per square
inch. Using the AMI formula, the normal
number of dies for RISC II cache assuming a 4-

inch wafer, 5 critical layers, and 4 defects per
square inch is

118 -
(1+(.275)(.285) *4)°
dies, or 25% yield.

Memory is 52 % of the area of the RISC II
cache chip (Figure 3). Recalculating the for-
mula assurning that only 48 % of the area can
have defects predicts 58 dies. All flaws in the
memory area cannot be corrected. If, for
example, we can recover from two-thirds of the
flaws then the formula predicts 50 dies, an
increase of 67 %. With 2 defects per square inch
the improvement is 30 % and 135 % for 8 defects

per square inch. Furthermore, this memory,
the densest part of the chip, corresponds to
more than 85 % of the transistors. We believe
the rest of the area is less sensitive to flaws, and
thus expect an even greater manufacturing
improvement.

The VLSI consequences of the fault tolerant
bit are minor. (We included this feature on the
chip within two days after Paeth’'s suggestion.)
The extra invalidate line increases the size of
the RISC II cache by 1 percent.

Remote Program Counter. Table 4 shows
the fraction of instructions that are successfully
predicted using the Remote Program Counter.
There are 4 small benchmarks plus the large
Portable C Compiler.

5 were the most popular instructions in that
study, and required most of the opcodes in the
single new format. The rest of the candidates
for short instructions reduced code density by
less than 1 percent or required another instruc-
tion format.

As mentioned above, we can solve the block
and page crossing problem with the assembler.
We can avoid padding with NOP's by remember-
ing that every 16-bit instruction has a
corresponding 32-bit instruction that is just as
fast. Using the 32-bit form of the final 16-bit
instruction in the cache block eliminates the
NOP. Figure 6 shows the packing of instruction
sequences for a 64-bit cache block.

L Table 4 Jump Prediction Accurecy 0ld Sequence (Size) New Sequence (Size)
acker(2,86) 894
benchE 912 MOVE RaRb (16) | ADD Ra,#0Rb (32)
sieve .915 LOAD RaX (32) | LOAD RaX (32)
towers(9) 875 LOAD RbYY (32) | LOAD Rb,Y (32)
PCC compiling benchE 925
The next instruction address is correctly LOAD RaX (32) LOAD RaX (32)
predicted 90 % of the time. When the instruc- | yovE Ra,Rb (16) | ADD Ra,#0,Rb (32)
tion cache mispredicts it takes an extra 400 ns LOAD RbY (32) | LOAD Rb,Y (32)
CPU cycle to fetch the correct instruction.
Thus we can can approximately double the time
for the reading the cache data at a cost of only MOVE RaRb (18) | MOVE Ra,Rb (16)
10 percent performance reduction. MOVE Rc:Rd (16) MOVE Rc:Rd (16)
The high prediction fraction suggests the MOVE Re,Rf (18) ADD Re,#0,Rf (32)
use of RPC provided it does not need too much LOAD RaX (32) LOAD RaX (32)
area. At first glance it would seem we would

need a 32-bit adder and 32-bit register to imple-
ment RPC. Because we compare the cache tag
to the PC address coming from the CPU rather
than from the RPC, the RPC need only be large
enough to address the on-chip cache memory.
The RISC II cache RPC is 7 bits, and less than 3
percent of the area of the chip.

Compaction. The "less is more" philosophy
that guided RISC has also guided the design of
the RISC II cache. We simplified the expansion
phase by limiting RISC II to only one short
instruction format. Table 5 shows that this 16-
bit format still reduces code size 30 %. The per-
centage savings shown in Tables 1, 2, and 5 is
based on the average static frequency of
instructions in a half-dozen large RISC I pro-
grams. 13 The seven 16-bit instructions in Table

Figure 6. Padding 64-bit Cache Blocks with
32-bit versions of the short instructions.
With an even number of short instructions
no padding is necessary. The MOVE instruc-
tion is 16-bit and LOAD is 32-bits. The 32-bit
version of MOVE Ra, kb is ADD Fa, #0, Rb.

The increase in code size due to the restric-
tion that instructions cannot cross block boun-
daries can be estimated by looking at all combi-
nations of 16-bit and 32-bit instruction
sequences and finding what fraction of
sequences require padding. For a 64-bit block,
5 sequences out of 16 will not fit. Thus on the
average we would expect

Table 5. hort uctions
Special Instru%tion RISC I equivalent | Length | % Savings

{const < +2%) (ro0 = 0) (bits)
move rN,rM add rN,r0,rM 16 12.3%
jmprs const jmpr const 16 5.2%
1dshi rN,const 1dhi rN,const 18 3.9%
compare rN,rM sub rN,rM,r0, {c} 16 3.7%
add2imm const,rN add const,rN,rN 16 2.0%
moveimm const, rN add r0,const,rN 16 1.7%
__rets const(rN) ret const(rN) 16 1.2%
TOTAL 30.0%

114

or 7.8 % padding. The assurnption of random
distribution with 128-bit blocks yields 3.9 % pad-
ding. We measured the impact on real pro-
grams by scanning through thousands of lines of
RISC II assembly language and found 7.6% and
3.8% padding for 64- and 128-bit blocks, respec-
tively. A more sophisticated scanner could
check semantics of code sequences to re-order
instructions to improve packing.

Such padding increases code size, but we
still expect RISC II programs to be 20 to 25 %
smaller than RISC 1 using compacted instruc-
tions that do not cross cache boundaries. Since
RISC I C programs are 10 to 30 % larger than the

PDP-11, # this should make RISC II programs
about the same size as PDP-11.

Compaction also improves cache perfor-
mance, as shown in Table 6. (By expanding
cache blocks from 8 bytes to 11 bytes we have
the same number of instructions in the simu-
lated cache as would be in a cache with com-
pacted instructions.) The 30% reduction in code
size not only increases hits, it increases the
bandwidth of the cache bus by bringing more
instructions on each miss.

Table 6. Miss fraction for Compacted Cache,
Number Miss Fraction Ratio
of Chips __compacted uncompacted U/C

1 .092 124 1.35
2 .078 .105 1.35
4 .056 .082 1.48
8 .040 .064 1.60

Short instructions have two VLSI conse-
quences: (1) the cache must supply 16-bit as
well as 32-bit data, and (2) the expansion logic
and time delay become a problem. Limiting to
one 16-bit format simplifies expansion
hardware, and we hope the comparison of the
tag to the real address during expansion hides
this delay.

IMPLEMENTATION

Mark Hill, Dimitris Lioupis, Chris Nyberg,
and Tim Sippel implemented the RISC II cache
chip in 4 micron NMOS using Mead/Conway
design style. 15 This 46,500 transistor chip
implements cache expansibility, fault tolerant
bit, Remote PC, and 16-bit instructions. This
chip uses a very conservative 7-transistor semi-
static memory cell, whose size limits us to
blocks each containing 64-bits. The chip uses
direct mapping to manage internal cache
blocks, allowing us to use the same memory cell
for tag and data.

The only idea presented in this paper that
was not implemented is the hardware that
expands the 16-bit short instructions into the
normal 32-bit RISC instructions.

115

The project began April 1982 and design was
completed in August. The chip is currently
being fabricated. Figure 3 shows the chip plan
of the cache.

SUMMARY

We believe that the four main ideas in the
RISC II instruction cache are of general interest
to computer designers. The fault-tolerant bit
should at least double the yield of cache at an
increase of only 1% of the chip area. The
Remote PC predicts 90% of all instruction
addresses effectively providing a fast cache
from slow memory elements for only 3 % of the
area. Given our block size and bus, loading the
cache with compact instructions significantly
improves the hit ratio and the memory-cache
bandwidth. The CPU can still execute easy-to-
decode RISC I instructions and the cache and
memory can contain programs that are 20% to
25 % smaller. There is clearly a spectrum of
decoding opportunities from all in the CPU to all
in the cache; we believe the partial decoding in
the cache to deliver equal sized instructions will
be of interest to other designers. A minor
architecture change to an off-chip cache allows
several chips to be connected to a CPU thereby
improving the hit ratio.

ACKNOWLEDGMENTS

As mentioned above, this cache was
designed as part of CS 292R, the Experimental
Architecture class at Berkeley, and imple-
mented from scratch as part of CS 292X, the
VLSI Systems course. A preliminary version of
the cache was designed by David Buchanan, Gor-
don Hamachi, Mark Hill, Tom Quarles, and Barry
Roitblat in CS 248, the VLSI layout class taught
by John Ousterhout. We would like to thank
everyone involved in those classes for their
help.

People not involved in those classes helped
our design. The Remote Program Counter was
inspired by Manolis Katevenis’ SAMOS architec-
ture. Gaetano Borriello and Alan Paeth of Xerox
PARC reviewed the VLSI design of the cache
chip, and Paeth suggested the fault tolerant bit
during that visit.

Several people gave valuable suggestions
that improved the quality of this paper: Barbara
Borske, Doug Clark, Helen Davis, Dave Ditzel,
Jim Goodman, Paul Hansen, Manolis Katevenis,
John Ousterhout, and Carlo Séquin.

This research was sponsored by Defense
Advance Research Projects Agency (DoD), ARPA
Order No. 3803, monitored by Naval Electronic
System Command under Contract No. NOO039-
81-K-0251.

References

1.

J.S. Liptay, ‘‘Structural Aspects of the Sys-
tem /360 Model 85, Part II: The Cache,”” IBM
Systems Journal 7(1) pp. 15-21 (1968).

D.A. Patterson and D.R. Ditzel, *‘The Case for
the Reduced Instruction Set Computer,”
Computer Architecture News 8(6) pp. 25-33
(15 October 1980).

G. Radin, “The 801 Minicomputer,” Proc.
Symposium on Architectural Support for
Programming Languages and Operating
Systems, pp. 39-47 (March 1-3, 1982).

D.A. Patterson and C.H. Séquin, ""A VLSI
RISC,” Computer 15 (9) pp. 8-21 (September
1982).

J. Hennessy, N. Jouppi, F. Baskett, A. Strong,
T. Gross, C. Rowen, and J. Gill, *“The MIPS
Machine,” Proc. Compcon, (February 1982).

J.K. Foderaro, K.S. Van Dyke, and D.A.
Patterson, “Running RISC's,” VLSI Design
II(5) pp. 27-32 (September/October, 1982).

AJ. Smith, "Cache Memories,” Computing
Surveys 14(3) pp. 473 - 530 (September,
1982).

M.G.H. Katevenis, R.W. Sherburne, D.A.
Patterson, and C.H. Séquin, “The RISC II
Micro-Architecture,” Submitted to the VILST
83 Conference, (August 1983).

116

9.

10.

11.

12.

13.

14.

19.

M. Katevenis, SAMOS: a Smart MemOry
computer System (outline of first general
ideas), U.C.Berkeley Internal Working
Paper June 1981.

D. Morris and R.N. Ibbett, The MU-5 Com-
Dputer System, Springer-Verlag, 1979.

J.E. Smith, A Study of Branch Prediction
Stratagies,” Proc. Fighth [nternational
Symposium on Computer Architecture, pp.
135-148 (May 1981).

D.R. Ditzel and D.A. Patterson, ““Retrospec-
tive on High-Level Language Computer
Architecture,” Proc. Seventh Annual Inter-
national Symposium on Computer Architec-
ture, pp. 97-104 (May 6-8, 1980).

P. Garrison and K.S. Van Dyke, Compact
RISC, CS292R Final Report December 8,
1981.

S. McMinn, *‘Semiconductor Manufacturing
for VLSI Designers,” VLSI Design
II(4)(July 7/ August 1982).

M. Hill, D. Lioupis, C. Nyberg, and T. Sippel,
RISC Cache Project: Final Report on Archi-
tecture and Implementation of a VLSI
Cache Chip, CS292X Final Report

