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Abstract
Cloud providers seek to deploy CXL-based memory to in-

crease aggregate memory capacity, reduce costs, and lower
carbon emissions. However, CXL accesses incur higher la-
tency than local DRAM. Existing systems use software to
manage data placement across memory tiers at page granu-
larity. Cloud providers are reluctant to deploy software-based
tiering due to high overheads in virtualized environments.
Hardware-based memory tiering could place data at cacheline
granularity, mitigating these drawbacks. However, hardware
is oblivious to application-level performance.

We propose combining hardware-managed tiering with
software-managed performance isolation to overcome the
pitfalls of either approach. We introduce Intel® Flat Memory
Mode, the first hardware-managed tiering system for CXL.
Our evaluation on a full-system prototype demonstrates that
it provides performance close to regular DRAM, with no
more than 5% degradation for more than 82% of workloads.
Despite such small slowdowns, we identify two challenges
that can still degrade performance by up to 34% for “outlier”
workloads: (1) memory contention across tenants, and (2)
intra-tenant contention due to conflicting access patterns.

To address these challenges, we introduce Memstrata, a
lightweight multi-tenant memory allocator. Memstrata em-
ploys page coloring to eliminate inter-VM contention. It im-
proves performance for VMs with access patterns that are
sensitive to hardware tiering by allocating them more local
DRAM using an online slowdown estimator. In multi-VM
experiments on prototype hardware, Memstrata is able to iden-
tify performance outliers and reduce their degradation from
above 30% to below 6%, providing consistent performance
across a wide range of workloads.

1 Introduction
Memory tiering is a promising approach to scale memory
capacity and reduce the total cost of ownership (TCO) in
datacenters. In public clouds, virtual machine (VM) memory
sizes are increasing, with typical configurations of 4–32GB
per virtual CPU [6, 7, 12]. However, the DRAM capacity
accessible via DDR channels is lagging the rapid growth in
available cores, due to physical limitations associated with

scaling the capacity of DDR DIMMs [73, 91, 92]. To this end,
cloud providers are increasingly adding a capacity memory
tier to augment regular locally-accessed DRAM, which we
refer to as the performance tier [61, 72, 78, 84, 99].

The recent Compute Express Link (CXL) standard [8, 91]
offers a new mechanism to access DRAM or non-volatile
memory (NVM) over the PCIe bus, potentially expanding
memory capacity significantly. In addition, CXL can re-
duce TCO and carbon emissions [83, 98] by provisioning
it with decommissioned DRAM or NVM. This has led
to broad investment in CXL memory by dozens of ven-
dors [9, 10, 15, 25, 27, 28, 37]. The CXL standard envisions a
variety of configurations. In this paper, we focus on the basic
use case where a CXL memory device is locally attached and
dedicated to a single host [91,98]. This use case is deployable
today, and extends to future memory pools [46, 77, 78].

Most prior work on memory tiering assumes software (e.g.,
the hypervisor or the OS) has full control over data placement,
i.e., whether a particular page resides in the capacity tier or
the performance tier [45, 61, 70, 74, 78, 84, 89, 90, 99, 100].
We term this software-managed memory tiering. Software-
managed tiering needs to track memory accesses to identify
frequently-accessed data to place in the performance tier.
Since the hypervisor/OS is not involved in most memory
accesses, it must rely on page table operations management
(e.g., scanning access bits [61, 84, 100] or PTE poisoning [45,
70,84]) or instruction sampling (e.g., Intel PEBS sampling [61,
74, 89] and AMD IBS [4]) to track memory accesses.

However, in our experience at Microsoft Azure, these ap-
proaches face severe limitations in virtualized environments
(§2). For example, instruction sampling is not supported for
VMs and has privacy implications. Fine-grained page table
operations consume excessive host CPU cycles [44,79]. In ad-
dition, with software-managed tiering, the hypervisor/OS can
only manage memory at page granularity. This leads to subop-
timal decisions [76] for the common case where a mix of hot
and cold data resides on the same page. This is particularly
problematic for hypervisors that use larger page sizes (e.g.,
2 MB and 1 GB) to reduce overheads. All of these drawbacks
make deploying software-based memory tiering techniques



unattractive in general-purpose cloud environments.
This paper addresses these issues by introducing a

hardware-managed memory tiering solution for CXL and
a system that combines hardware-managed tiering with
software-managed multi-tenant isolation. We introduce Intel®

Flat Memory Mode as the first cache-line granular, hardware-
managed memory tiering solution for CXL. Intel® Flat Mem-
ory Mode transparently manages data placement between the
two tiers at cache-line granularity within the processor mem-
ory controller (MC). It exposes the aggregate capacity of both
local DRAM and CXL memory to software by placing data
exclusively at either of the tiers. The hardware promotes the
most recently accessed lines to local DRAM by “swapping”
them with the lines that used to occupy local DRAM.

To reduce the performance degradation of CXL memory,
Intel® Flat Memory Mode supports a mixed mode which re-
serves a certain number of dedicated pages that are guaranteed
to reside in local memory, while cache lines associated with
the remaining pages may be placed in either local or CXL
memory, based on whether they were recently accessed.

Intel® Flat Memory Mode should not be confused with
the hardware-managed memory tiering solution for Intel®

OptaneTM NVDIMMs, known as 2LM or memory mode [18,
65]. Such systems employ DRAM as an inclusive cache for
non-volatile memory, which means the performance tier does
not add capacity visible to software. The inclusive cache
design makes them less useful for expanding memory capacity
and reducing TCO. Additionally, 2LM only supports non-
volatile memory, not CXL.

We describe Intel® Flat Memory Mode’s design and eval-
uate it on a real CXL hardware prototype with a set of 115
workloads, comparing it to running fully on local DRAM. We
find that 82% of workloads experience small (no more than
5%) slowdown in mixed mode. The remaining “outlier” work-
loads experience slowdowns up to 34%. We also observe that
when VMs are co-located naïvely on the same server, they
may interfere by “stealing” local DRAM from each other.

To address these challenges, we implement Memstrata,
the first multi-tenant memory management software stack
for hardware-managed tiered memory. Memstrata prevents
inter-VM interference by identifying pages with conflicting
cache lines, allocating them to the same VM using page col-
oring. In addition, Memstrata leverages a lightweight on-
line slowdown estimator to assess the overhead incurred
by tiered memory misses for each VM. It dynamically al-
locates dedicated local memory pages across VMs to improve
the performance of those that are most sensitive to mem-
ory latency. Intel® Flat Memory Mode will be available in
the Intel® Xeon® 6 Processor. We open source Memstrata at
https://bitbucket.org/yuhong_zhong/memstrata.

We implement a full system prototype on a preproduction
Intel® Xeon® 6 Processor that supports Intel® Flat Memory
Mode. Memstrata is implemented within the Linux/KVM
hypervisor and a new user-space management process. Our

evaluation covers common workload and VM mixes observed
in production at Azure. We find that Memstrata effectively
prevents cross-VM interference and mitigates the tail in all
scenarios. Specifically, the worst-case performance slowdown
is reduced from 35% to less than 6% in realistic multi-VM
experiments. Across all experiments, the maximum CPU over-
head of Memstrata is 4% of a single core, which is less than
1% of a single core per VM.
We make the following contributions:
1. We introduce Intel® Flat Memory Mode, the first

hardware-managed memory tiering mechanism for CXL.
We evaluate it on a real CXL system, and show that for
most applications it exhibits small slowdowns.

2. We design Memstrata, the first software multi-tenant man-
agement system for hardware-managed CXL that ensures
performance isolation and minimizes VM slowdowns.

3. We study a wide range of workloads, and demonstrate that
Intel® Flat Memory Mode combined with Memstrata elim-
inates almost all performance outliers, exhibiting minimal
performance degradation compared to regular DRAM.

2 Background and Motivation
This section motivates hardware-managed memory tiering for
CXL in virtualized environments.

2.1 Memory Tiering in Public Clouds
Current compute servers, which host customer VMs, use
locally-attached DDR5 memory. With CPU core counts of 60-
96 [66, 94] and Simultaneous Multithreading (SMT), achiev-
ing at least 4-8GB per virtual core requires 8-12 expensive
dual-rank DIMMs (e.g., 64GB or 96GB). These DIMMs are
the single biggest contributor to server cost [78,99]. For large-
memory VM sizes [6] or 128-288 core-count-CPUs [2,14,57],
cloud providers need to use DIMMs with 3D stacking, which
adds a multiplicative factor to per-GB memory cost [32].
Additionally, DIMMs make up 41% of a server’s embodied
carbon at Azure [49, 63, 83, 87, 98].

A second tier of memory can effectively reduce this cost.
In modern servers, this second tier will use CXL [8, 91] to ex-
pand server memory capacity and bandwidth. This saves cost
because cloud providers can use multiple smaller and cheaper
DIMMs. Cost can be further reduced by reusing memory from
decomissioned servers. Without CXL, DDR4 memory would
be incompatible with modern servers. Instead of discarding
DDR4 DIMMs, they can be repurposed for CXL memory.
DDR4 reuse is supported today and has significant industry
momentum [3, 26, 49, 83, 98]. This pattern can continue in
future generations of DRAM, e.g., when DDR6 will be de-
ployed, DDR5 can be reused with CXL. A third option is
denser memory media [17, 38]. Both reusing old memory
and using denser memory significantly cuts costs and car-
bon emissions. For example, attaching 40% of memory by
reusing DDR4 can save over 20% of server embodied carbon
emissions [83]. In this paper, we focus on this use case.

https://bitbucket.org/yuhong_zhong/memstrata


The downside of CXL memory is its latency overhead.
CXL.mem customizes the PCIe link and transaction layers
for low latency [91]. CPUs can natively access CXL memory
via cacheable loads and stores, without involving page faults
or DMAs. While an order of magnitude faster than RDMA,
CXL is still slower than local DRAM as it essentially converts
a parallel bus into a serial one. Depending on the specific
memory controller, we measure that CXL memory has 2.02×
the load-to-use latency of local DDR5 on the 5th Gen Intel®

Xeon® Processor. A bidirectional ×8-CXL port at a typical 2:1
read:write-ratio matches a DDR5-4800 channel. In practice
we use at least four ×8 ports.

2.2 Cloud Workload and Design Goals
Azure and other large cloud providers virtualize all workloads.
VMs are generally small. For example, in a typical compute
cluster at Azure, 40% of VMs use no more than two cores and
86% of VMs use no more than eight cores. Most modern hosts
thus run dozens of VMs at any given time. Production cluster
schedulers [47,64,97] increase utilization by mixing different
workloads with no (or few) co-location constraints. Some
constraints force similar workloads to be run across many
hosts and racks, e.g., for fault tolerance. This leads to typical
hosts running heterogeneous sets of workloads representing
many different workload behaviors.
We derive the following four first-order design goals:

1. Compatibility with unmodified virtual machines. Do not
assume guest cooperation.

2. Low host resource overheads. Cloud providers seek to
sell almost all cores [44, 79]. Hosts typically use large
2 MB or 1 GB page sizes to reduce overhead.

3. No additional sources of cross-VM interference com-
pared to running entirely on local memory.

4. Performance close to local memory for all workloads.
Limit slowdown to about 5%, similar to prior work [78].

As observed in prior work, CXL slowdowns can be high
for many workloads [78, 84]. This motivates managing data
placement in tiered memory, either in software or in hardware.

2.3 Software-Managed Tiering
Software-managed tiering usually represents tiers as NUMA
nodes [61,78,84]. Software explicitly allocates memory from
a NUMA node and migrates pages between nodes. The hy-
pervisor/OS typically tracks memory hotness to promote hot
capacity-tier pages to the performance tier and demote cold
pages to the capacity tier [61, 84, 89, 100]. Hotness tracking
often relies on page table operations such as scanning PTE
access bits [61, 84, 100] or temporarily unmapping entries to
trigger minor page faults when they are accessed [45, 70, 84].
Other software tiering systems use instruction sampling (e.g.,
Intel PEBS [61, 74, 89] or AMD IBS [4]) to sample memory
requests along with their associated memory addresses.
Problem 1: High host CPU cost. Tracking hotness at fine
granularity is challenging in a cloud environment. Instruction
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Figure 1: Memory access distribution of bc-web measured using
DAMON in (a) a fresh VM, (b) a VM that enables free page ran-
domization, and (c) a warm VM that has already run the workload
50 times. The right-hand y-axis represents the number of accesses
captured by DAMON.

sampling is typically unfeasible due to security and privacy
concerns. Thus, cloud platforms need to rely on page-table-
based approaches. We find that they can consume excessive
host CPU cycles, which runs counter to design goal #2.

We measure the CPU overhead of TPP [84], a state-of-
the-art software tiering system for guest kernels. We start
a VM with 7.5 GB of local DRAM and 2.5 GB of second-
tier memory. The VM runs YCSB A on FASTER [54], a
production in-memory key-value store. FASTER consumes
8.3 GB memory in total, which means its memory cannot fit
entirely in local DRAM. TPP devotes nearly an entire core to
track memory accesses and migrate pages. This is caused by
the frequent scanning of access bits in kswapd, which is used
by TPP to demote cold pages. Without frequent access-bit
scanning, TPP is unable to leave enough free space in local
DRAM to promote hot pages. Scaling to larger systems and
multiple VMs requires proportionally more CPU cycles.

The CPU overhead of page-table-based approaches can
be reduced by exploiting spatial locality [11]. Unfortunately,
spatial locality is limited in virtualized systems, which employ
an additional layer of page table indirection. Additionally, a
guest’s free pages may be randomized for security [21]. We
run the bc-web workload from the GAP benchmark suite [48]
in a fresh VM, a VM with free page randomization enabled,
and a warm VM that has already run the same workload
50 times. Figure 1 shows the memory access distribution
measured using DAMON in the three VMs. While there is
spatial locality in a fresh VM, locality disappears in both
the VM with free page randomization and the warm VM.
Approaches that scan guest page tables [90] may overcome
fragmentation but run counter to goals #1 and #2.
Problem 2: Coarse-grained data placement. Software
tiering moves entire pages, making a strong assumption about
access locality. Many applications have spatially-sparse ac-
cess patterns and thus perform poorly on software-managed
tiering systems [53, 76]. Commonly, only a fraction of each
page’s cachelines are hot; moving such pages to the perfor-
mance tier would be wasteful. This problem is exacerbated
as cloud platforms use larger 2 MB and 1 GB page sizes to
reduce page table depth and TLB misses [1, 34, 43, 45, 50].

To study how page size affects application performance, we
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Figure 2: Throughput of FASTER on YCSB A with a varying
DRAM ratio and different page sizes. The performance tier is DRAM
and the second tier is Intel® OptaneTM NVM.

run a VM with FASTER using the YCSB A workload. Since
FASTER has a simple and predictable memory access pattern
when running YCSB A, we analytically compute the popu-
larity of each of its pages and always place the most popular
pages in DRAM. Figure 2 shows that when FASTER’s resi-
dent set can fit into DRAM, using 2 MB instead of 4 KB as the
page size improves the throughput of FASTER by 18% thanks
to the reduced page table depth and TLB misses. However,
when only 25% of the resident set can fit into DRAM, a 2 MB
page size degrades throughput by 25% due to the coarser
data placement by software tiering. Google also reports that
huge pages make cold page identification and demotion more
challenging in their tiered memory production clusters [61].

2.4 Hardware-Managed Tiering
There are multiple variants of hardware memory tiering [68,
75, 85, 103]. They are typically implemented within the MC
on the CPU SoC and behave similar to on-die CPU caches.
Different memory tiers are typically invisible to software (no
NUMA node) and fine-grained cache operations are visible
only to the MC.

A well-known implementation of hardware tiering is “2LM”
or “memory mode” for Intel® OptaneTM NVDIMMs in the
2nd and the 3rd Gen Intel® Xeon® Scalable Processors [18,
65]. 2LM configures DRAM as a direct-mapped cache at
cacheline granularity. It thus has no hotness tracking overhead
and excels at managing workloads with limited locality [76],
regardless of the page size (Figure 2). A major downside of
using 2LM in the context of CXL is that the second tier is
inclusive of the performance tier. This is wasteful, especially
for the case of cloud providers who seek high performance
and thus provision a large first memory tier. For example,
provisioning 600 GB of DDR5 and 1000 GB of CXL memory
means that only 1000 GB of overall memory is available,
wasting 60% of CXL capacity.

3 Intel® Flat Memory Mode
In this section, we describe the hardware design of Intel® Flat
Memory Mode and present a performance study on a wide
range of applications.

3.1 Hardware Design
Intel® Flat Memory Mode overcomes the drawbacks of
software-managed memory tiering by implementing the data
placement within the MC. This allows it to manage data place-

ment at cacheline granularity without involving host CPU.
This design is especially useful in virtualized environments
because the data placement is independent of the page size,
and almost all the host CPU cores can be used to run VMs.
CXL memory ratio. To ensure minimal slowdown com-
pared to local memory1 (design goal #4), we assume a 1:1
ratio between the local memory and the CXL memory ca-
pacities. Other tiered memory deployments in industry also
use small capacity-tier ratios to minimize slowdown: 33%
at Meta [84] and 25% at Google [61]. With a 1:1 ratio, we
can reduce the amount of local memory provisioned by 50%,
which already significantly reduces memory cost. A higher
CXL memory percentage may lead to higher slowdowns [78].
Exclusive placement. The amount of physical memory ex-
posed to software is the aggregate capacity of both local
DRAM and CXL memory. This is in contrast to 2LM, where
the physical memory capacity is only as large as the size of
the capacity tier (i.e., non-volatile memory). This design fully
utilizes the capacity of both local DRAM and CXL memory
by placing data exclusively at either of them, but not both. For
example, once a cacheline is moved to local DRAM, it will
no longer occupy any space in CXL memory.
Associativity. The associativity between physical memory
and local memory is direct-mapped, which means each line in
the physical memory address space can only be cached at one
location in local memory. While direct-mapped associativity
may lead to more conflict misses, this effect happens only
after all the processor set-associative caches have missed. In
addition, a straightforward implementation of set associativity
would read multiple local DRAM lines to serve one main
memory access, causing substantial bandwidth amplification.
Mixed mode. To further reduce local memory misses and
improve the performance of workloads with cache-unfriendly
memory access patterns, Intel® Flat Memory Mode supports
adding dedicated local DRAM that is not hardware-tiered as
a separate range in the physical memory address space. This
dedicated local memory is exposed as a second NUMA node
alongside the first NUMA node which contains the hardware-
tiered memory. This dedicated NUMA node can be used for
workloads suffering from severe local memory misses, as
implemented in Memstrata (§4). We denote configurations
where both hardware-tiered and dedicated NUMA nodes are
present as mixed mode.
Mapping physical and local memory. In the hardware-
tiered NUMA node, the ratio between local DRAM and the
total physical memory capacity is 1:2. Thus, each line in local
DRAM has 2 physical memory lines that map to it. This
means that each 64 B line in the physical address space may
be at one of two locations: either in local memory or in CXL
memory. We use a modulo operation as the mapping function
between the physical memory and local DRAM with the size
of local DRAM (L GB) as the modulus. Figure 3 shows

1We use “local memory” and “local DRAM” interchangeably.
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line hit local memory.

the mapping between the physical address space and local
memory. This mapping halves the hardware-tiered physical
memory, where the top half conflicts with the bottom half. For
example, to hold physical memory addresses [0 GB,1 GB] in
local DRAM, the hardware needs to evict [L GB,L+1 GB]
to CXL memory.
Read and write operations. A memory access (i.e., Last
Level Cache (LLC) miss) for a cache line in the hardware-
tiered NUMA node may result in a “hit” or a “miss”. The MC
first reads local memory and determines if the requested line
is in local memory. As only two physical memory lines can
be cached at a given local memory line, the hardware only
needs to maintain a single-bit tag to distinguish between them.
If the tag matches the read request, the data is sent to the core
that requested the line.

Otherwise, the requested line was a miss in local memory.

Figure 4 shows how the MC handles a miss. The MC first
fetches the data from CXL memory, and then sends the data
to the core that requested the line. Meanwhile, the MC swaps
the cache lines. Specifically, the MC writes the other line
that used to occupy local memory to CXL memory. The MC
writes the newly requested line to local memory.

When the MC receives a write request, just like the read
flow, it needs to first locate and read the line into the processor
caches. When the write is evicted from the processor caches
(since writes are posted), the data is written to local memory.
Request interleaving. To achieve maximum bandwidth,
we interleave local memory requests across memory channels
and interleave CXL memory requests across CXL devices at
cache line granularity within the same NUMA node.

3.2 Application Performance
Adding CXL memory capacity can provide clear performance
benefits to memory-hungry applications, due to reduced pag-
ing to disk, and higher page-cache hit rates. However, these
benefits depends heavily on the specific workloads and the
total amount of memory available to them. To conservatively
evaluate Intel® Flat Memory Mode, we compare it with X
local memory and Y CXL memory to a baseline configured
with X +Y local memory. We evaluate the performance using
a wide range of applications on a prototype CPU that sup-
ports Intel® Flat Memory Mode. The detailed hardware setup
is described in §6. We use 115 workloads in total, including:

• Web: DaCapo [51], Renaissance [88], Ruby YJIT [39],
and DeathStarBench benchmarks [62]

• Database: TPC-C [41] on Silo [96] and TPC-H [42] on
PostgreSQL [33]

• Machine learning (ML): DLRM benchmark [67, 86]
• Key-value (KV) store: YCSB [58] on FASTER [54],

Redis [36], and memcached [23]
• Big data: HiBench [13] on Spark [104]
• Graph processing: GAP benchmark [48]
• Scientific computing: SPEC CPU 2017 [40]
We measure the performance of each workload running

inside a VM on Linux/KVM. The VM memory size is chosen
by rounding up the workload’s peak resident set size to the
nearest common VM memory size on public cloud platforms
(2 GB, 4 GB, 8 GB, 16 GB, 32 GB, and 64 GB) [6,7,12]. We
run each workload in four different settings: (1) local DRAM
only, (2) CXL memory only, (3) hardware-tiered memory
only, and (4) a mixed mode with 33% dedicated local DRAM
and 67% hardware-tiered memory.

When allocating hardware-tiered memory pages to a VM,
we allocate pairs of conflicting pages so that half of the allo-
cation can be cached in local DRAM. As a result, our mixed
mode configuration consists of 67% local DRAM (33% dedi-
cated + half of 67% hardware-tiered) and 33% CXL memory.
We conservatively choose 67% as the percentage of hardware-
tiered memory as this configuration can already reduce the
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Figure 5: Slowdowns of 115 workloads when using only CXL memory, 100% hardware-tiered memory, or a mixed mode with 33% dedicated
memory and 67% hardware-tiered memory. The error bars represent the standard deviations of slowdowns across three runs.

provisioned local memory by 33%. We randomly assign the
dedicated local pages across a VM’s address space. Each VM
sees a uniform address space, as this is the default configura-
tion on cloud platforms.

Figure 5 presents the results, categorizing workloads by
their types, and ordering them by their relative slowdowns
of hardware tiering. We refer to applications that experience
slowdowns above 5% (see goal #4 in §2.2) as outliers. Web
workloads experience negligible slowdowns even with CXL
memory only, indicating their insensitivity to main memory
latency. In contrast, database and Spark workloads have some
outliers with slowdowns of up to 20% when using only CXL
memory. Hardware tiering reduces the slowdowns for most
outliers to close to or lower than 5%, although a few out-
liers still exhibit around 10% degradation. Other categories
have more outliers with CXL memory only, with slowdowns
of up to 58%. Hardware tiering significantly alleviates the
performance degradation for these outliers. For example, the
slowdown of FASTER with uniform YCSB C is reduced
from 25% to 4%. However, even with reduced degradation,
some outliers still experience slowdowns of up to 50% with
hardware-tiered memory due to cache-unfriendly memory
access patterns and the associated high local memory miss ra-
tios. The most severe outlier, 649.fotonik3d_s, suffers from
a 41% miss ratio due to its large working set and scan-like
memory access pattern.

The mixed mode with 33% dedicated local memory im-
proves the performance of these outliers thanks to the reduc-
tion in the number of pages that conflict on local DRAM.
Overall, with only hardware-tiered memory, 73% of the work-
loads experience no more than 5% slowdown, and 86% expe-

rience no more than 10% slowdown. In the mixed mode, the
percentage of workloads with no more than 5% slowdown
increases to 82%, and 95% of the workloads experience no
more than 10% slowdown. These results are encouraging:
despite the non-negligible slowdown of CXL compared to
local DRAM, most applications have small slowdowns in the
mixed mode. However, even in the mixed mode, some ap-
plications experience non-trivial degradation of up to 34%.
This observation motivates the use of software to dynamically
allocate dedicated memory pages across VMs to consistently
achieve minimal slowdown, because the hardware is oblivious
to which VMs suffer from local memory misses.

3.3 Noisy Neighbors
In Intel® Flat Memory Mode, two conflicting physical mem-
ory lines compete for the same local DRAM line, and only
the most recently accessed one can be cached in local DRAM.
Therefore, when conflicting pages are allocated to different
VMs, they may contend for local memory, resulting in perfor-
mance interference.

We study this inter-VM interference due to local DRAM
conflicts by running two VMs: a normal VM and a noisy
neighbor VM. In the normal VM, we run one of the work-
loads from our workload set, while in the noisy-neighbor VM,
we always run a 6-thread Intel® Memory Latency Checker
(MLC) [19], which scans its memory in a busy loop. We al-
ways scale MLC to have the same memory size as the normal
VM. We configure MLC to use only 6 threads so that neither
the local DRAM bandwidth nor the CXL memory bandwidth
is saturated. Running MLC as the workload in the noisy neigh-
bor VM allows us to estimate the worst-case interference, as
MLC is optimized to be memory intensive.
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Figure 6: Slowdown caused by the noisy neighbor due to local
DRAM conflicts.

-10%
10%
30%
50%
70%

sp
ark

_w
ord

co
un
t

tpc
h_
1

sp
ark

_a
ls

da
ca
po
_to

mc
at

65
7.x
z_s

de
ath

sta
rbe

nc
h_
me

dia

me
mc

ac
he
d_
ycs

b_
a

sp
ark

_te
ras

ort

61
9.l
bm

_s

tpc
h_
9

tpc
h_
21

64
9.f
oto

nik
3d
_s

bfs
-w
eb

cc
-w
eb

bc
-ur
an
d

sil
o_
tpc

c

fas
ter
_yc

sb
_a

60
2.g

cc
_s

fas
ter
_u
nif
orm

_yc
sb
_a

dlr
m_
rm
2_
1_
low

dlr
m_
rm
2_
1_
hig
h

red
is_
ycs

b_
a

Sl
ow

do
w

n 
vs

. P
ar

tit
io

ne
d 

LL
C,

 
Lo

ca
l M

em
 Is

ol
at

ed

Shared LLC, Local Mem Isolated Partitioned LLC, Local Mem Conflicting
Shared LLC, Local Mem Conflicting

499%

Figure 7: Inter-VM interference caused by LLC contention and
local DRAM contention.

The experiments are conducted in two settings:
1. Isolated. Allocate conflicting pages to the same VM to

ensure each VM only conflicts with itself.
2. Conflicting. Allocate conflicting pages to different VMs.

This setting measures the worst-case interference since
the noisy neighbor VM might monopolize local DRAM.

Figure 6 shows the slowdown of conflicting compared to
isolated with a sampled set of representative workloads from
each category. 73% of the workloads experience more than
10% slowdown because of local DRAM conflicts. The mas-
sive slowdown of Redis is because we use p95 latency as its
performance metric. Redis always has some requests with ex-
treme latency (4× higher than the median), and the contention
causes the percentage of these requests to exceed 5%, which
translates to a 480% slowdown in p95 latency. The results in-
dicate that without any software management to isolate local
DRAM conflicts, VMs running on the same host could cause
significant performance interference to each other.

Besides local DRAM contention, other sources of interfer-
ence in multi-tenant environments include contention in the
LLC and power. We also study how LLC contention compares
to local memory contention in Intel® Flat Memory Mode. We
again use a normal VM and a noisy neighbor VM to measure
interference. Besides configuring how the two VMs conflict
with each other in local memory, we configure the LLC in
two settings: (1) sharing LLC across two VMs, or (2) parti-
tioning LLC evenly between two VMs. We use Intel’s Cache
Allocation Technology [20] to partition the LLC.

When the LLC is partitioned and local DRAM conflicts are
isolated, there will be no interference caused by either LLC or
local memory contention. When the LLC is shared but local
DRAM conflicts are still isolated, we will only observe LLC
interference. Similarly, we can only observe local memory
interference if the LLC is partitioned and the two VMs are

conflicting in local DRAM. Finally, to measure both LLC and
local memory interference, we can share the LLC and also let
the two VMs are conflicting in local memory.

Figure 7 shows the slowdowns caused by either LLC or
local memory interference, as well as the slowdowns when
both types of interference exist. Compared to LLC interfer-
ence, local memory interference is typically larger. In addi-
tion, the workloads that suffer from LLC interference also
suffer from local memory interference. When both LLC and
local memory interference exist, those workloads experience
higher slowdowns than when there is a single source of inter-
ference. These results again indicate that we should isolate
local DRAM conflicts to achieve design goal #3.

4 Memstrata
Memstrata leaves the heavy lifting of fine-grained memory
management to the hardware-managed tiering layer at the
MC. It provides consistent performance by integrating a
lightweight software stack with the virtualization host. This
achieves the first two design goals (§2.2).

To provide performance isolation (design goal #3), Mem-
strata adapts page coloring [69, 105], a classic technique for
partitioning CPU caches, to the CXL setting. Memstrata iden-
tifies all conflicting pages and allocates conflicting pairs to
the same VM, ensuring no inter-VM conflicts (§4.1).

To improve the performance of outliers (design goal #4),
Memstrata dynamically allocates dedicated local memory
pages across VMs to reduce the outliers’ local memory miss
rates. Our key insight is that many workloads exhibit low slow-
downs even without any dedicated local memory. Therefore,
if the hypervisor can identify outlier VMs and move dedicated
local memory pages to them, it can limit their slowdowns.

However, the hypervisor has limited visibility into the work-
loads running inside VMs, making it challenging to identify
outliers. Although monitoring local DRAM miss rates seems
attractive for detecting outliers, we cannot directly measure
per-core or per-VM miss rates because data placement is im-
plemented in the MC, so hardware performance counters can
report only the system-wide local memory miss rate.

To tackle these challenges, we analyze numerous perfor-
mance events measured during our application performance
study (§3.2) and propose a proxy to estimate per-VM miss
rates. By combining the estimated miss rate with other perfor-
mance metrics, we can accurately predict the slowdown of a
VM using a simple online ML model (§4.2). This model is
used by a dynamic page allocator to migrate dedicated local
memory pages across VMs, minimizing slowdowns across
all workloads with negligible CPU overhead (§4.3). Figure 8
shows an overview and the workflow of Memstrata.

4.1 Page Coloring
Page coloring is a software technique that has been widely
used to partition shared processor caches (e.g., the LLC) in a
modern CPU [80,93,95,102,105]. CPU caches are commonly
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pages. 3©: The dynamic page allocator uses the exchange_pages

syscall to migrate dedicated pages to an outlier. 4©: The hardware-
tiered pages of the outlier are exchanged with the dedicated pages of
a non-outlier VM.

organized in a set-associative (or direct-mapped) manner, in
which each physical memory address is mapped to the index
of a single set in the cache. If the indexing function is known,
then software can determine the subset of cache indices as-
sociated with a given memory page, referred to as its page
color. Since main memory is much larger than the cache,
many memory pages have the same color, which means that
they compete for the same limited cache space.

System software can control the amount of cache space
that may be used by different applications by allocating pages
to them with particular colors. For example, a hypervisor can
allocate host-physical pages so that each VM uses distinct
colors that are disjoint from other VMs.

Similar to shared processor caches, in Intel® Flat Memory
Mode, local memory is shared among all VMs within the
same NUMA node.2 Physical memory lines that are mapped
to the same local memory line compete for the same local
memory space, which will contain the one accessed most
recently. Therefore, we can adopt page coloring to partition
local memory pages across different VMs to avoid inter-VM
local memory conflicts.

We implement page coloring in the context of a virtualized
system configured with Intel® Flat Memory Mode. The im-
plementation consists of changing the free-page management
logic and the page allocator in the host Linux kernel. We
modify Linux’s free-page management to group the physical
pages that map to the same local DRAM page.

To avoid performance interference due to inter-VM con-
flicts, the page allocator always allocates the physical pages
that map to the same local memory page to the same VM.
This isolates each VM, ensuring that it can conflict only with

2For clarity, we only discuss the hardware-tiered memory without ded-
icated local memory in this subsection. Dedicated local memory is con-
tained in a distinct NUMA node from the local memory associated with the
hardware-tiered memory.
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Figure 9: Correlation between performance metrics.

itself, eliminating the possibility of conflicts with other VMs.
Isolating local memory conflicts within VMs also prevents
their use as inter-VM side channels, similar to those exploited
in other caching systems to leak memory access patterns and
to exfiltrate data across trust boundaries [71, 81, 82].

While one might expect this to cause poor performance,
there are, in fact, many cold or unused cache lines. This means
that we actually observe relatively low local memory miss
rates (§3.2).

4.2 Identifying Outliers
To improve the performance of outlier workloads, we first
need to determine which VMs suffer from high slowdowns
because of local DRAM misses. Since the workloads running
inside VMs are opaque to the hypervisor, we cannot rely on
application-level performance metrics for outlier detection.

Fortunately, modern processors provide performance coun-
ters that can be used to infer VM performance characteristics
with low overhead [5, 16, 31, 35, 101]. Our prototype CPU
also supports various performance events. In our large-scale
performance study of Intel® Flat Memory Mode using 115
workloads (§3.2), we configured the CPU to count all perfor-
mance events for each workload by time-multiplexing them,
yielding 151 performance metrics based on raw event counts.
MPKI and its proxy. Among all the performance metrics,
local memory miss rate seems promising for detecting outliers,
since the local memory is treated as a cache. Specifically, we
examine MPKI, which measures the number of local memory
misses per thousand instructions. Figure 9a shows that MPKI
is correlated (r2 = 0.73) with application slowdown.

Estimating slowdown for a single VM requires per-VM
miss rates. As each VM is pinned to a set of exclusive CPU
cores, this suggests aggregating the miss rates across its asso-
ciated cores to compute the VM-level miss rate. Unfortunately,
since cacheline promotions and demotions are handled in the
MC, it is not easy to track per-core misses, and the system-
wide miss rate is insufficient for outlier detection. Although
future hardware may support measuring per-core miss rates,
this is not implemented in the current prototype.

To work around this limitation, we analyze other perfor-
mance metrics that can be tracked with per-core granularity
to find a proxy for the per-core miss rate. As shown in Fig-
ure 9b, we find that the L3 miss latency3 of demand loads
event has a strong linear correlation (r2 = 0.87) with the local

3Figure 9b omits the y-axis latency scale for confidentiality.



memory miss ratio (not MPKI), defined as the percentage of
main memory requests that miss in local memory. This is
not surprising, as Intel® Flat Memory Mode exhibits stable
hit and miss latencies unless the memory bandwidth is satu-
rated. We leverage this observation by fitting a linear model
to estimate the local memory miss ratio from demand load L3
miss latency. The estimated miss ratio is translated to MPKI
by multiplying it with the main memory request count and
then dividing by the instruction count. We use this estimated
MPKI as a proxy for the actual MPKI.

A limitation of this approach is that demand loads repre-
sent only a portion of main memory requests. Other sources
include read-for-ownership (RFO) requests, non-temporal
stores, CPU cache writebacks, and CPU cache prefetches.
However, we find that the estimated MPKI works well in
practice. When combined with other metrics, it can be used
to predict VM slowdown accurately.
Using a model to detect outliers. Although MPKI strongly
correlates with application slowdown, we find that MPKI
alone is not sufficient to identify outliers because applications
can have different sensitivities to memory latency. Therefore
we use an online random forest binary classifier [52] to deter-
mine whether a VM will experience more than 5% slowdown.
We choose a random forest classifier because it performs well
with low-level performance metrics [78], is lightweight, and
does not require a GPU. The input to the classifier includes the
estimated MPKI along with four additional per-VM metrics
that also exhibit useful correlations, selected by computing
the relative importance of features during classifier training:
(a) L3 miss latency of demand loads, (b) L2 miss latency of de-
mand loads, (c) data TLB load miss latency, and (d) L2 MPKI
of demand loads. We evenly split the workloads into training
and validation sets, and configure the random forest with 100
decision-tree estimators. The classifier achieves 100% accu-
racy on the training set and 88% accuracy on the validation
set, demonstrating the ability to detect outliers across a di-
verse set of workloads. In contrast, using MPKI as the only
feature achieves only 63% accuracy on the validation set.

4.3 Dynamic Page Allocator
The Memstrata dynamic page allocator manages how dedi-
cated local memory pages are allocated across VMs. It uses
the ML model to detect outlier VMs, and migrates dedicated
local memory pages accordingly to achieve minimum slow-
down across all workloads. Within each VM, the page alloca-
tor assigns dedicated local memory pages to guest physical
pages randomly. We also implemented an alternative hotness-
based approach that prioritizes popular guest physical pages,
but found that its overhead typically exceeds its benefit.
Inter-VM page allocation. The dynamic page allocator al-
locates dedicated pages to each VM based on its performance
events and slowdown predictions from the ML model. It starts
by measuring the events needed by the ML model for a given
time interval (10 seconds, by default), and runs the model

def comparator(vm1, vm2):

if vm1.isOutlier != vm2.isOutlier:

return vm2.isOutlier

return vm1.avgMissCount < vm2.avgMissCount

def migrate(vms, timeInterval, ewma, stepRatio):

while systemIsRunning():

sleep(timeInterval)

updatePerfMetrics(vms, ewma)

predictSlowdown(vms)

sort(vms, comparator)

donor = 0

for borrower in range(len(vms) - 1, 0, -1):

if not vms[borrower].isOutlier:

break

toBorrow = vms[borrower].pages * stepRatio

while donor < borrower and toBorrow > 0:

toDonate = (vms[donor].pages * stepRatio

- vms[donor].donated)

toMigrate = min(toBorrow, toDonate)

doMigrate(borrower, donor, toMigrate)

toBorrow -= toMigrate

vms[donor].donated += toMigrate

if toDonate == toMigrate:

donor += 1

Listing 1: Inter-VM page migration algorithm.

to predict if the slowdown for each VM is greater than 5%.
The 10-second interval enables the page allocator to react
quickly to changes, while averaging out noise associated with
low-level event counts. To reduce the effect of short-term vari-
ations, we employ an exponentially weighted moving average
(EWMA) to smooth the performance metrics derived from
the event counts (EWMA constant α = 0.2, by default).

Once the page allocator obtains the performance metrics
and slowdown prediction for each VM, it decides how ded-
icated local memory pages should be migrated across VMs.
Listing 1 presents the page migration algorithm. The page
allocator first ranks the VMs based on their predicted slow-
downs and the average number of local DRAM misses per
allocated hardware-tiered page. The average miss count is
computed by multiplying the estimated miss ratio with the
main memory request count, and dividing the result by the
number of hardware-tiered pages assigned to the VM. The
VMs predicted to have less than 5% slowdown receive lower
ranks than the outlier VMs. VMs that have the same slowdown
prediction are ordered based on their average miss count. The
intuition is that prioritizing VMs with higher average miss
counts minimizes system-wide local memory misses, since
they benefit more from a fixed amount of dedicated local
memory pages compared to others [56].

After the VMs are sorted according to their ranks, the allo-
cator repeatedly migrates dedicated pages from the VM with
the lowest rank to the VM with the highest rank. To prevent
large performance fluctuations, it never migrates more than a
fraction stepRatio of each VM’s pages (10%, by default) dur-
ing each step. Only VMs predicted to be outliers can receive
dedicated local memory pages from others.

To migrate dedicated local memory pages from VM 1 to



VM 2, the page allocator first selects a given number of ded-
icated pages from VM 1 and the same amount of hardware-
tiered pages from VM 2. It then exchanges the selected pages
between the two VMs. To avoid introducing inter-VM local
DRAM conflicts, conflicting pages are always migrated to-
gether. After one round of page migrations, the page allocator
stops migrating and measures performance events over the
next timeInterval before the next round of migration.
Launching and terminating VMs. In cloud environments,
running VMs may be terminated and new VMs may be
launched at any time. To avoid disruptions, the page allo-
cator first removes a terminating VM from the list of active
VMs that participate in page migration. The terminating VM
can then be shut down, causing its pages to be returned to the
free page pool maintained by the host kernel.

When a new VM is launched, its initial allocation consists
of existing free pages from the host kernel, which could be
any mix of hardware-tiered pages and dedicated local memory
pages. Since the dynamic page allocator does not have any
prior information about the new VM, once it is added to the
active VM list, the allocator migrates pages so that the new
VM contains the same percentage of dedicated pages as the
entire system. For example, if the overall system has a total
of 33% dedicated local memory and 67% hardware-tiered
memory, the new VM will also have 33% dedicated pages.
This initial migration is performed by taking (or giving) dedi-
cated pages to (or from) other existing VMs, each of which
contributes (or receives) the same number of dedicated pages.
Assigning dedicated memory. By default, the dynamic
page allocator assigns dedicated local memory pages to guest
physical pages randomly within each VM. We also exper-
imented with an alternative hotness-based page allocation
option, which prioritizes popular guest physical pages when
allocating dedicated pages. To identify popular guest physical
pages, we employ DAMON [11], a low-overhead memory ac-
cess tracking subsystem integrated into the mainstream Linux
kernel. We use DAMON’s default settings, but configure its
aggregation period to match the timeInterval used by the
allocator. After finishing inter-VM page migration, the alloca-
tor checks the per-region access counts reported by DAMON.
Using simple thresholds (cold = 0, hot ≥ 20, by default),
it exchanges any hardware-tiered pages in hot regions with
dedicated pages in cold regions. To avoid large performance
fluctuations, such intra-VM migrations are limited to a small
fraction (2%, by default) of the VM memory size.

However, we found that the overhead of this hotness-
based approach exceeds it benefit (§6.2). Similar to software-
managed tiering, it consumes significant CPU cycles to track
memory accesses (§2.3). Therefore, by default, Memstrata
simply assigns dedicated local pages randomly.

5 Memstrata Implementation
Memstrata’s implementation consists of implementing page
coloring and the page-exchange system call in the host Linux

kernel (v5.19, 2729 LOC), modifying QEMU (v6.2, 60 LOC)
to preallocate guest memory for VMs, and building the main
functionality of Memstrata as a privileged userspace process
that runs on the host (2190 LOC, C++). Like QEMU, Mem-
strata uses 2 MB as the page size at the host level.

The page-exchange system call exchange_pages(pid_1,
pid_2, page_arr_1, page_arr_2, num_pages) accepts
the PIDs of two processes, an array of linear addresses for
each process, and the number of pages to exchange. One can
exchange pages within a single process by specifying the
same value for pid_1 and pid_2. The syscall is implemented
in the host kernel based on the migrate_pages() function.
To exchange two physical pages, the kernel initially moves
the first page to a temporary physical page, then transfers
the second page to occupy the first page’s original location,
and finally relocates the temporary page to the second
page’s initial position. It uses a Linux MMU notifier [24] to
synchronize the secondary page table used by the VM and
the QEMU host-level page table.

We implement only the necessary mechanisms (i.e., page
coloring and page exchange) in the host kernel and run Mem-
strata as a privileged userspace process, facilitating debugging
and extensions. The userspace process configures and reads
performance events via the perf interface exposed by the
host Linux kernel. It uses the custom page-exchange syscall
to exchange pages between two VMs, or within a single VM.
We use ONNX [60] to run the ML model in the userspace
process. To synchronize Memstrata with VM launching and
termination, we use POSIX message queues to let the VM
scheduler communicate with Memstrata.

6 Evaluation
In this section we seek to answer the following questions:
1. How does Intel® Flat Memory Mode compare to software-

managed tiering? (§6.1)
2. Can Memstrata improve the performance of outliers with-

out impacting other applications? (§6.1)
3. How does dedicated memory page allocation affect appli-

cation performance? (§6.2)
4. Is Memstrata sensitive to its parameters? (§6.3)

Experimental setup. We use a pre-production Intel® Xeon®

6 Processor that implements Intel® Flat Memory Mode. Our
test server contains a single socket with 128GB DDR5 local
memory and 128GB DDR5 CXL memory. The CXL mem-
ory is attached via three CXL cards, which each hold two
DDR5-4800 DIMMs and offer an x16 PCIe5 CXL connec-
tion. We use a preproduction Astera Labs Leo CXL Smart
Memory Controller [22]. The idle latency of the CXL mem-
ory is roughly 200-220% the latency of the local memory,
and the max bandwidth per CXL card is around 50 GB/s [91].
Although we use DDR5-4800 DIMMs in the CXL cards, we
believe the results are transferable to DDR4 DIMMs because
the actual CXL bandwidth usage is always below the limit
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Figure 10: Application slowdown of TPP and hardware tiering with and without Memstrata using different workload combinations.
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Figure 11: Slowdown distribution of hardware-tiered memory and
TPP. TPP is configured with 50% local memory to match the local
memory ratio of hardware-tiered memory.

of DDR4 DIMMs. Since the CPU is pre-production, the core
count, frequency, and CPU cache sizes may not reflect those
of the final product. For confidentiality, we cannot share the
detailed technical specification. Similarly, these CXL cards
are pre-production and future versions may be faster.

We focus on end-to-end application performance to demon-
strate the performance benefits of Memstrata. Our software
stack comprises Ubuntu 22.04, modified Linux 5.19, and QE-
MU/KVM 6.2. Hyperthreading and CPU frequency scaling
are disabled. We pin each VM’s virtual cores to physical
cores in a 1:1 manner. We set the VM memory size of each
workload by rounding up its peak resident set size to the next
largest VM memory size offered on public cloud platforms.

We do not use public or Azure VM traces since they do
not label workloads for VMs. This is because public cloud
providers are not generally aware of workloads running in-
side VMs. Therefore, we rely on analyses of the composition
of 188 internal workloads over 100,000 VMs at Azure [98],
which reveal that web (31%), big data (32%), and ML (11%)
workloads constitute most of the VMs. The remaining work-
load categories include DevOps and real-time communication
workloads, which are challenging to run and have few open-
source representatives. Therefore, we focus on the web, big
data, and ML workload categories and reuse the set of work-
loads from §3.2 to match this composition. We exclude the
workloads that have unstable performance. With the prototype

system only offering 128 GB local memory, we also exclude
workloads that require more than 32 GB of memory, so that
we can measure a multi-VM local-only baseline.

We compare Intel® Flat Memory Mode without and with
Memstrata (referred to in the figures as “HW-Tiered” and
“HW-Tiered + Memstrata”, respectively). To emulate a set-
ting without Memstrata, we use a static allocation scheme in
which the percentage of dedicated pages in each VM remains
constant over time. In contrast, Memstrata dynamically mi-
grates dedicated pages across VMs to minimize slowdown.
All settings use page coloring to avoid inter-VM conflicts.

We also compare hardware tiering without Memstrata to
TPP [84], a state-of-the-art software-tiering approach. Since
TPP does not support virtualization, we run it within each one
of the isolated VMs, with a 2:1 ratio of local DRAM to CXL
memory, matching the default setting of hardware tiering.
Similar to hardware tiering without Memstrata, TPP does not
move memory across VMs. The open-sourced TPP has an
issue that wastes some local memory because it allocates local
memory only from the NORMAL memory zone [30]. We have
fixed this issue to enable TPP to perform better.

6.1 Performance Benefits
We assume a workload mix with about 1

6 of workloads being
outliers with hardware tiering, as our results show that 20%
of the web, big data, and ML workloads experience more than
5% slowdown with hardware tiering (§3.2). As our prototype
offers only 128 GB local memory, we must scale down the set
of workloads typical for a large server. We scale to six VMs,
typically with a single outlier workload4. We also consider
the less likely scenarios of 2/6 and 4/6 outliers, as well as

4If compute servers indeed were to only host six VMs, scenarios with
multiple outliers would be common. However, we seek to represent a scaled-
down typical compute server with large VM counts (§2.2). Due to large-
number effects most servers will thus have a 1

6 ratio of outlier workloads.
One can also integrate our slowdown estimator (§4.2) into the VM scheduler
to explicitly prevent colocating many outliers (§7).
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Figure 12: Application slowdown when the workload combination contains 2 or 4 outliers.

dynamic VM arrivals. We start each VM with 33% dedicated
local memory pages and 67% hardware-tiered pages.
Common cases. As web and data workloads are the dom-
inant workload categories at Azure [98], we choose the fol-
lowing workload mixes to evaluate Memstrata:
1. Web-heavy: 4 web, 1 data, and 1 outlier.
2. Data-heavy: 1 web, 4 data, and 1 outlier.
3. Balanced: 2 web, 2 data, 1 others, and 1 outlier.

For each workload mix, we generate two workload combina-
tions from our workload set. Each combination starts the six
workloads simultaneously at the beginning.

Figure 10 shows the slowdown across the entire run. Under
TPP, there are significantly more outliers than with hardware
tiering, despite TPP having an unfair advantage: TPP has
visibility inside the VM, and knows which pages are being
used at the 4 KB granularity. Consequently, TPP can place
the entire working set into local DRAM if its size does not
exceed the local DRAM size. Such visibility assumes guest
cooperation and is not compatible with design goal #1 (§2.2).

Interestingly, TPP and hardware tiering sometimes have
different outliers. We observe that TPP achieves minimal
slowdown whenever the working set can fit into local memory
(e.g., SPEC’s 619.lbm_s and FASTER with uniform YCSB
A), which is the target use case of TPP [84]. However, if the
working set is too large, TPP experiences severe thrashing,
causing massive TLB invalidations and page faults due to fre-
quent page migration. For example, in an extreme case where
TPP causes pr-web to have a 295% slowdown (Figure 10a),
TPP migrates memory at 22 GB/s in a 32 GB VM.

This thrashing issue arises because TPP uses NUMA bal-
ancing hints [29] to choose promotion candidates and is not
aware of the global memory access distribution. We repeat the
single-application performance study in §3.2 with TPP. The
results show that 17% of the workloads experience more than
50% slowdown with TPP because of thrashing (Figure 11).
Although software tiering can measure the global access distri-
bution and only migrate pages when the distribution is skewed
to avoid thrashing, the CPU overhead of such global telemetry
is prohibitive without guest cooperation, due to the lack of
spatial locality in the guest physical memory address space
(§2.3). In addition, even with global telemetry, the larger page
sizes used with virtualization still make software tiering less
effective, as they may average out the skewness in memory
access distribution (§2.3).

In summary, the comparison with TPP matches the results
of recent work [76] indicating that hardware-based memory
tiering’s low overhead and cacheline-level granularity typi-
cally provide superior performance to software-based tiering.
Therefore, in the rest of our experiments we focus on compar-
ing Intel® Flat Memory Mode with and without Memstrata.

For all six experiments in Figure 10 Memstrata is able to
significantly reduce the slowdown experienced by the outlier
application to near 5% or less, with minimal impact to the
other non-memory-sensitive applications. The max CPU over-
head of Memstrata across all workload combinations is 4%
of a single core, including running the ML model. The max
memory overhead of Memstrata is 110 MB. The results show
that Memstrata can accurately identify the outlier VM and mi-
grate dedicated local memory pages to reduce its slowdown,
without affecting the performance of other VMs.

Higher outlier ratio. To understand the limits of Mem-
strata, we consider a server that hosts a disproportionate ratio
of outlier workloads. We consider two combinations: one
with two outliers (Figure 12a), and another with four outliers
(Figure 12b). In both experiments, Memstrata significantly
improves outlier performance. However, is not able to reduce
the slowdown for all outliers to below 5% when four outliers
exist. This is because 33% of dedicated local DRAM (i.e.,
26.4 GB) is insufficient to accommodate the memory needs
of four outlier VMs (56 GB). We verify this by repeating the
experiment with 67% dedicated local DRAM. In this configu-
ration Memstrata removes all the outliers (Figure 12c).

Dynamic VM arrivals. We evaluate Memstrata in a more
complex setting where VMs are continuously launched and
terminated. We again use the three workload combinations
described above. Whenever a workload of one type finishes,
we start a new VM with a workload selected from the same
type. The experiment keeps running until all the workloads
have been run at least once. We measure the application per-
formance with and without Memstrata. For the workloads
that have finished multiple times, we report its average per-
formance across all the completed runs.

Figure 13 shows that Memstrata can significantly reduce
the slowdown of the outliers in such dynamic environments
under all three workload mixes. The results demonstrate that
Memstrata’s online outlier detection can identify the outliers
on-the-fly and dynamically migrate dedicated local memory
pages to reduce their slowdown. We conclude that a combi-
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Figure 13: Application slowdown in realistic environments with
three different workload mixes.
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Figure 14: Slowdown of random and hotness-based page allocation.
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Figure 15: Distributions of (a) memory accesses and (b) dedicated
pages of 619.lbm_s in the guest physical address space with hotness-
based dedicated page allocation. In (a), the color represents #accesses
captured by DAMON; in (b), the density of dedicated pages.

nation of Intel® Flat Memory Mode and Memstrata enables
server memory capacity to be expanded by 1.5× using CXL
at a minimal performance impact to applications.

6.2 Dedicated Memory Page Allocation
To understand how the allocation of dedicated local memory
pages within a VM affects performance, we compare random

page allocation (the default) with a hotness-based approach.
We study a representative set of 22 workloads from different
categories. With random allocation, the 33% of dedicated
pages are randomly allocated to the VM when it is launched.
With the hotness-based approach, the dedicated pages are
also allocated randomly at launch, but Memstrata’s dynamic
allocator migrates them to hot guest physical regions based
on the information provided by DAMON [11]. To measure
the best-case performance of the hotness-based approach,
we preserve the guest memory’s spatial locality by always
starting in a fresh VM.

Figure 14 shows the slowdown of both random and hotness-
based page allocation. The hotness-based approach provides
only marginal benefits and even causes worse slowdowns for
some workloads because of its overhead. Figure 15 presents
the hotness information recorded by DAMON and how the
page allocator moves dedicated pages within the guest phys-
ical address space for 619.lbm_s. Although it migrates ded-
icated pages to the hot regions identified by DAMON, the
improvement is still limited. This is because to track memory
accesses, DAMON must clear PTE access bits, resulting in
expensive TLB shootdowns that offset its benefits.

6.3 Sensitivity Analyses
Memstrata has three parameters: timeInterval and stepRa-

tio, which control the aggressiveness of page migration, and
the EWMA constant, which smoothes short-term variations
of performance metrics. Figure 16 plots Memstrata’s sensi-
tivity to the three parameters using the same workloads as
Figure 10e. With a lower timeInterval or a higher stepRa-
tio, Memstrata migrates dedicated local memory pages to the
outlier VM more quickly and achieves lower slowdowns (Fig-
ure 16a and Figure 16b). The default parameters (i.e., 10 s
timeInterval and 10% stepRatio) have performance simi-
lar to the optimal one in this experiment, but are less aggres-
sive and can avoid large performance fluctuations. Memstrata
is not sensitive to the EWMA constant (Figure 16c).

7 Discussion
Non-virtualized environments. Most of Memstrata’s com-
ponents can be readily applied to non-virtualized environ-
ments. For example, per-process performance event tracking
is already supported by Linux, and page migration mecha-
nisms for both VMs and normal processes are also supported.

However, the page coloring implementation needs to be
modified for non-virtualized settings. Unlike VMs, whose
memory sizes do not typically change during their lifetimes,
processes commonly have dynamic memory footprints. Mem-
strata statically allocates a fixed number of colors during VM
creation, which is insufficient for processes with dynamic
memory demands. Therefore, we need to augment the page
coloring mechanism to support on-demand color allocation.
In addition, as a process continuously allocates and frees mem-
ory, allocated colors may have numerous unused pages (e.g.,
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Figure 16: Sensitivity analyses of Memstrata under a data-heavy workload combination.

if a process allocates a large amount of memory but then frees
half of it later). Such fragmentation can lead to insufficient
free colors for new memory allocations. We therefore need to
implement a compaction mechanism to reclaim colors from
processes exhibiting significant fragmentation.

Intel® Flat Memory Mode with other memory ratios. In
principle, Intel® Flat Memory Mode could support other ratios
between local memory and CXL memory such as 1:2 or 1:4.
We are not prepared to discuss whether such ratios will be
available in a future version. There are also associated costs
such as requiring more tag bits for bookkeeping.

Detecting outliers at the VM scheduler. Similar to
Pond [78], the VM scheduler can correlate historical perfor-
mance event measurements with a new VM allocation request
by matching the customer ID, VM type, and location. Based
on the historical information, the scheduler can perform an
initial outlier detection to decide the memory type for the new
VM. Additionally, the VM scheduler can also run online out-
lier detection after the VM is allocated and can live migrate
the VM if the initial outlier detection proves to be inaccurate.

Adapting to other slowdown thresholds. Adapting to
slowdown thresholds other than 5% requires retraining the
random forest model using the performance events and the
corresponding slowdowns of various workloads. Since the
random forest model is lightweight and does not require any
GPU, retraining the model incurs only minimal overhead and
can be completed within a few seconds.

8 Related Work
Most prior work relies on software to place data across mem-
ory tiers [45, 70, 99, 100, 100], whereas Memstrata com-
bines hardware tiering with a lightweight software layer.
HeMem [89] and MEMTIS [74] are recent systems that use
Intel PEBS to track memory accesses. Unfortunately, PEBS
is not compatible with virtualized environments. In addition,
unlike MEMTIS, which balances the TLB benefits of huge
pages with the granularity of data placement by dynamically
splitting huge pages, Memstrata achieves both low TLB cost
and fine-grained data placement without sacrificing either.
TPP [84] relies on LRU and NUMA balancing hints [29] to
track memory accesses, but incurs high slowdowns (§6.1) and
significant CPU overhead (§2.3).

Three prior systems explore software-managed tiered mem-
ory in multi-tenant environments. Unfortunately, they are not
available for comparison. TMTS [61] is a memory tiering sys-
tem deployed in Google’s datacenters. We believe TMTS is
overly conservative and requires large amounts of local mem-
ory. Pond [78] statically places VMs into a CXL-based mem-
ory pool based on predictions of slowdowns. Pond uses VM
live migration to mitigate outliers, which impacts VM perfor-
mance and thus must be applied conservatively. vTMM [90]
is a dynamic software tiering memory management system
for VMs. We believe vTMM suffers from overheads similar to
other software-based systems (§2.3). Memstrata differs from
all three systems due to its unique combination of hardware
and software tiering in the same system.

2LM is a hardware-managed tiered memory system for
Intel® OptaneTM NVM, using DRAM as an inclusive direct-
mapped cache of NVM. In contrast, Intel® Flat Memory
Mode uses exclusive caching, and 2LM lacks the cross-
VM isolation provided by Memstrata. Other hardware ap-
proaches have been proposed for DRAM and high-bandwidth
memory [68, 75, 85, 103]; some Intel processors support a
hardware-managed “cache mode” that uses HBM as a cache
for DRAM [55, 59].

9 Conclusions
We presented a new hardware-based CXL tiering system,
Intel® Flat Memory Mode, combined with a software stack,
Memstrata. The combination provides performance similar to
local DRAM across a wide range of workloads. Consequently,
they enable expanding server memory capacity by 1.5× with
minimal impact to performance. We believe there remain
many open research challenges in deploying CXL in virtual-
ized environments, including fairness in inter-VM resource
allocation policies, guest cooperation for tiered memory, and
using device-side hotness tracking to reduce page conflicts.
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son. The GAP benchmark suite. arXiv preprint
arXiv:1508.03619, 2015.

[49] Daniel S. Berger, Daniel Ernst, Huaicheng Li, Pan-
tea Zardoshti, Monish Shah, Samir Rajadnya, Scott
Lee, Lisa Hsu, Ishwar Agarwal, Mark D. Hill, and Ri-
cardo Bianchini. Design tradeoffs in CXL-based mem-
ory pools for public cloud platforms. IEEE Micro,
43(2):30–38, 2023.

https://www.microchip.com/en-us/about/news-releases/products/cxl-smart-memory-controllers
https://www.microchip.com/en-us/about/news-releases/products/cxl-smart-memory-controllers
https://www.microchip.com/en-us/about/news-releases/products/cxl-smart-memory-controllers
https://www.micron.com/solutions/server/cxl
https://www.micron.com/solutions/server/cxl
https://www.montage-tech.com/Press_Releases/20220506
https://www.montage-tech.com/Press_Releases/20220506
https://lwn.net/Articles/849095/
https://lwn.net/Articles/849095/
https://lore.kernel.org/all/cover.1637778851.git.hasanalmaruf@fb.com/
https://lore.kernel.org/all/cover.1637778851.git.hasanalmaruf@fb.com/
https://lore.kernel.org/lkml/3ee15066-429e-b0f2-1255-aab100fad472@suse.cz/
https://lore.kernel.org/lkml/3ee15066-429e-b0f2-1255-aab100fad472@suse.cz/
https://gestaltit.com/all/stephen/pathfinding-cloud-architecture-for-cxl-with-dan-ernst-of-microsoft-azure-utilizing-tech-4x10/
https://gestaltit.com/all/stephen/pathfinding-cloud-architecture-for-cxl-with-dan-ernst-of-microsoft-azure-utilizing-tech-4x10/
https://gestaltit.com/all/stephen/pathfinding-cloud-architecture-for-cxl-with-dan-ernst-of-microsoft-azure-utilizing-tech-4x10/
https://gestaltit.com/all/stephen/pathfinding-cloud-architecture-for-cxl-with-dan-ernst-of-microsoft-azure-utilizing-tech-4x10/
https://www.postgresql.org/
https://www.postgresql.org/
https://lists.nongnu.org/archive/html/qemu-devel/2012-10/msg01012.html
https://lists.nongnu.org/archive/html/qemu-devel/2012-10/msg01012.html
https://learn.microsoft.com/en-us/windows-hardware/test/wpt/recording-pmu-events
https://learn.microsoft.com/en-us/windows-hardware/test/wpt/recording-pmu-events
http://redis.io
http://redis.io
https://semiconductor.samsung.com/news-events/news/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module/
https://semiconductor.samsung.com/news-events/news/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module/
https://semiconductor.samsung.com/news-events/news/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module/
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://github.com/Shopify/yjit-bench
https://www.spec.org/cpu2017/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://www.tpc.org/tpch/
https://www.tpc.org/tpch/
https://docs.vmware.com/en/VMware-vCloud-NFV-OpenStack-Edition/3.0/vmwa-vcloud-nfv30-performance-tunning/GUID-1F05987F-012B-4BC4-9015-CDE3C991C68C.html
https://docs.vmware.com/en/VMware-vCloud-NFV-OpenStack-Edition/3.0/vmwa-vcloud-nfv30-performance-tunning/GUID-1F05987F-012B-4BC4-9015-CDE3C991C68C.html
https://docs.vmware.com/en/VMware-vCloud-NFV-OpenStack-Edition/3.0/vmwa-vcloud-nfv30-performance-tunning/GUID-1F05987F-012B-4BC4-9015-CDE3C991C68C.html
https://docs.vmware.com/en/VMware-vCloud-NFV-OpenStack-Edition/3.0/vmwa-vcloud-nfv30-performance-tunning/GUID-1F05987F-012B-4BC4-9015-CDE3C991C68C.html


[50] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini,
and Srilatha Manne. Accelerating two-dimensional
page walks for virtualized systems. 42(2):26–35, mar
2008.

[51] Stephen M Blackburn, Robin Garner, Chris Hoff-
mann, Asjad M Khang, Kathryn S McKinley, Rotem
Bentzur, Amer Diwan, Daniel Feinberg, Daniel Framp-
ton, Samuel Z Guyer, et al. The DaCapo benchmarks:
Java benchmarking development and analysis. In Pro-
ceedings of the 21st annual ACM SIGPLAN conference
on Object-oriented programming systems, languages,
and applications, pages 169–190, 2006.

[52] Leo Breiman. Random forests. Machine learning,
45:5–32, 2001.

[53] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In ASPLOS, 2021.

[54] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. FASTER: A concurrent key-value store with
in-place updates. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, SIGMOD
’18, page 275–290, New York, NY, USA, 2018. Asso-
ciation for Computing Machinery.

[55] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi.
BATMAN: Techniques for maximizing system band-
width of memory systems with stacked-DRAM. In
Proceedings of the International Symposium on Mem-
ory Systems, pages 268–280, 2017.

[56] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh,
and Sachin Katti. Cliffhanger: Scaling performance
cliffs in web memory caches. In 13th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 16), pages 379–392, Santa Clara, CA,
March 2016. USENIX Association.

[57] Ampere Computing. AmpereOne 192-core CPU fam-
ily product brief. https://amperecomputing.com/
briefs/ampereone-family-product-brief. [Ac-
cessed 11/14/2023].

[58] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
cloud serving systems with YCSB. In SoCC, 2010.

[59] Daniel DeLayo, Kenny Zhang, Kunal Agrawal,
Michael A Bender, Jonathan W Berry, Rathish
Das, Benjamin Moseley, and Cynthia A Phillips.
Automatic HBM management: Models and algorithms.
In Proceedings of the 34th ACM Symposium on

Parallelism in Algorithms and Architectures, pages
147–159, 2022.

[60] ONNX Runtime developers. ONNX runtime. https:
//onnxruntime.ai/, 2021. Version: x.y.z.

[61] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Ra-
jwar, David Culler, Zhiyi Xu, Jianing Fan, Christopher
Kennelly, Bill McCloskey, Danijela Mijailovic, Brian
Morris, Chiranjit Mukherjee, Jingliang Ren, Greg The-
len, Paul Turner, Carlos Villavieja, Parthasarathy Ran-
ganathan, and Amin Vahdat. Towards an adaptable
systems architecture for memory tiering at warehouse-
scale. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ASP-
LOS 2023, page 727–741, New York, NY, USA, 2023.
Association for Computing Machinery.

[62] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-
source benchmark suite for microservices and their
hardware-software implications for cloud & edge sys-
tems. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
3–18, 2019.

[63] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon
Wei, Hsien-Hsin S Lee, David Brooks, and Carole-Jean
Wu. ACT: Designing sustainable computer systems
with an architectural carbon modeling tool. In Pro-
ceedings of the 49th Annual International Symposium
on Computer Architecture, pages 784–799, 2022.

[64] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek
Pan, Esaias E Greeff, David Dion, Star Dorminey,
Shailesh Joshi, Yang Chen, Mark Russinovich, and
Thomas Moscibroda. Protean: VM Allocation Ser-
vice at Scale. In USENIX Symposium on Operating
Systems Design and Implementation, 2020.

[65] Mark Hildebrand, Julian T. Angeles, Jason Lowe-
Power, and Venkatesh Akella. A case against hard-
ware managed DRAM caches for NVRAM based sys-
tems. In 2021 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS),
pages 194–204, 2021.

[66] Intel. 4th gen Intel Xeon scalable processors. https://
download.intel.com/newsroom/2023/data-center-
hpc/4th-Gen-Xeon-Scalable-Product-Brief.pdf,
2023.

[67] Rishabh Jain, Scott Cheng, Vishwas Kalagi, Vrushabh
Sanghavi, Samvit Kaul, Meena Arunachalam, Kiwan

https://amperecomputing.com/briefs/ampereone-family-product-brief
https://amperecomputing.com/briefs/ampereone-family-product-brief
https://onnxruntime.ai/
https://onnxruntime.ai/
https://download.intel.com/newsroom/2023/data-center-hpc/4th-Gen-Xeon-Scalable-Product-Brief.pdf
https://download.intel.com/newsroom/2023/data-center-hpc/4th-Gen-Xeon-Scalable-Product-Brief.pdf
https://download.intel.com/newsroom/2023/data-center-hpc/4th-Gen-Xeon-Scalable-Product-Brief.pdf


Maeng, Adwait Jog, Anand Sivasubramaniam, Mah-
mut Taylan Kandemir, and Chita R. Das. Optimizing
cpu performance for recommendation systems at-scale.
In Proceedings of the 50th Annual International Sympo-
sium on Computer Architecture, ISCA ’23, New York,
NY, USA, 2023. Association for Computing Machin-
ery.

[68] Djordje Jevdjic, Gabriel H Loh, Cansu Kaynak, and
Babak Falsafi. Unison cache: A scalable and effec-
tive die-stacked DRAM cache. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, pages 25–37. IEEE, 2014.

[69] R. E. Kessler and Mark D. Hill. Page placement al-
gorithms for large real-indexed caches. ACM Trans.
Comput. Syst., 10(4):338–359, nov 1992.

[70] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn.
Exploring the design space of page management for
multi-tiered memory systems. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 715–
728. USENIX Association, July 2021.

[71] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 1–19, 2019.

[72] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souh-
lal, Neha Agarwal, Radoslaw Burny, Shakeel Butt,
Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid
Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao,
and Parthasarathy Ranganathan. Software-defined far
memory in warehouse-scale computers. In Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2019.

[73] Seok-Hee Lee. Technology scaling challenges and
opportunities of memory devices. In 2016 IEEE Inter-
national Electron Devices Meeting (IEDM), pages 1–1.
IEEE, 2016.

[74] Taehyung Lee, Sumit Kumar Monga, Changwoo Min,
and Young Ik Eom. MEMTIS: Efficient memory tier-
ing with dynamic page classification and page size
determination. In Proceedings of the 29th Symposium
on Operating Systems Principles, pages 17–34, 2023.

[75] Yongjun Lee, Jongwon Kim, Hakbeom Jang, Hyung-
gyun Yang, Jangwoo Kim, Jinkyu Jeong, and Jae W
Lee. A fully associative, tagless DRAM cache. ACM
SIGARCH computer architecture news, 43(3S):211–
222, 2015.

[76] Baptiste Lepers and Willy Zwaenepoel. Johnny cache:
the end of DRAM cache conflicts (in tiered main mem-
ory systems). In 17th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
23), pages 519–534, Boston, MA, July 2023. USENIX
Association.

[77] Philip Levis, Kun Lin, and Amy Tai. A case against
CXL memory pooling. In Proceedings of the 22nd
ACM Workshop on Hot Topics in Networks, pages 18–
24, 2023.

[78] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
CXL-based memory pooling systems for cloud plat-
forms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASP-
LOS 2023, page 574–587, New York, NY, USA, 2023.
Association for Computing Machinery.

[79] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan RK Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S Gunawi, and
Anirudh Badam. LeapIO: Efficient and portable vir-
tual NVMe storage on arm SOCs. In Proceedings
of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 591–605, 2020.

[80] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xi-
aodong Zhang, and Ponnuswamy Sadayappan. Gaining
insights into multicore cache partitioning: Bridging the
gap between simulation and real systems. In 2008
IEEE 14th International Symposium on High Perfor-
mance Computer Architecture, pages 367–378. IEEE,
2008.

[81] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B Lee. Last-level cache side-channel attacks
are practical. In 2015 IEEE Symposium on Security
and Privacy, pages 605–622. IEEE, 2015.

[82] Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, An-
dreas Kogler, Daniel Gruss, and Samira Khan. Side-
channel attacks on Optane persistent memory. In 32nd
USENIX Security Symposium 2023. USENIX Associa-
tion, 2023.

[83] Jialun Lyu, Jaylen Wang, Kali Frost, Chaojie Zhang,
Celine Irvene, Esha Choukse, Rodrigo Fonseca, Ri-
cardo Bianchini, Fiodar Kazhamiaka, and Daniel S.
Berger. Myths and Misconceptions Around Reducing
Carbon Embedded in Cloud Platforms. In HotCarbon
Workshop, 2023.



[84] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. TPP: Transparent page
placement for CXL-enabled tiered-memory. In Pro-
ceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS 2023, page
742–755, New York, NY, USA, 2023. Association for
Computing Machinery.

[85] Sparsh Mittal and Jeffrey S Vetter. A survey of tech-
niques for architecting DRAM caches. IEEE Transac-
tions on Parallel and Distributed Systems, 27(6):1852–
1863, 2015.

[86] Maxim Naumov, Dheevatsa Mudigere, Hao-
Jun Michael Shi, Jianyu Huang, Narayanan Sundara-
man, Jongsoo Park, Xiaodong Wang, Udit Gupta,
Carole-Jean Wu, Alisson G. Azzolini, Dmytro
Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii,
Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu,
Volodymyr Kondratenko, Stephanie Pereira, Xianjie
Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong,
and Misha Smelyanskiy. Deep learning recommenda-
tion model for personalization and recommendation
systems. CoRR, abs/1906.00091, 2019.

[87] Dave Patterson. 10 lessons from a decade of TPUs and
ML’s carbon footprint. https://www.youtube.com/
watch?v=--z1cmq1BCw, 2023.

[88] Aleksandar Prokopec, Andrea Rosa, David
Leopoldseder, Gilles Duboscq, Petr Tuuma, Martin
Studener, Lubomir Bulej, Yudi Zheng, Alex Villazon,
Doug Simon, et al. Renaissance: A modern benchmark
suite for parallel applications on the JVM. In
Proceedings Companion of the 2019 ACM SIGPLAN
International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity,
pages 11–12, 2019.

[89] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan
Erez, and Simon Peter. HeMem: Scalable tiered mem-
ory management for big data applications and real
NVM. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, SOSP ’21,
page 392–407, New York, NY, USA, 2021. Association
for Computing Machinery.

[90] Sai Sha, Chuandong Li, Yingwei Luo, Xiaolin Wang,
and Zhenlin Wang. vTMM: Tiered memory manage-
ment for virtual machines. EuroSys ’23, page 283–297,
New York, NY, USA, 2023. Association for Computing
Machinery.

[91] Debendra Das Sharma, Robert Blankenship, and
Daniel S. Berger. An introduction to the Compute
Express Link (CXL) interconnect. ACM Computing
Surveys (CSUR), 2024.

[92] Shigeru Shiratake. Scaling and performance challenges
of future DRAM. In 2020 IEEE international memory
workshop (IMW), pages 1–3. IEEE, 2020.

[93] Livio Soares, David Tam, and Michael Stumm. Re-
ducing the harmful effects of last-level cache polluters
with an OS-level, software-only pollute buffer. In 2008
41st IEEE/ACM International Symposium on Microar-
chitecture, pages 258–269. IEEE, 2008.

[94] Lisa Su. Amd unveils workload-tailored innovations
and products at the accelerated data center pre-
miere. https://www.amd.com/en/press-releases/
2021-11-08-amd-unveils-workload-tailored-

innovations-and-products-the-accelerated,
November 2021.

[95] David Tam, Reza Azimi, Livio Soares, and Michael
Stumm. Managing shared L2 caches on multicore
systems in software. In Workshop on the Interaction
between Operating Systems and Computer Architec-
ture, pages 26–33, 2007.

[96] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[97] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes.
Large-scale cluster management at Google with Borg.
In Proceedings of the tenth european conference on
computer systems, pages 1–17, 2015.

[98] Jaylen Wang, Daniel S. Berger, Fiodar Kazhami-
aka, Celine Irvene, Chaojie Zhang, Esha Choukse,
Kali Frost, Rodrigo Fonseca, Brijesh Warrier, Chetan
Bansal, Jonathan Stern, Ricardo Bianchini, and Ak-
shitha Sriraman. Designing cloud servers for lower
carbon. In ISCA, June 2024.

[99] Johannes Weiner, Niket Agarwal, Dan Schatzberg,
Leon Yang, Hao Wang, Blaise Sanouillet, Bikash
Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang,
and Dimitrios Skarlatos. TMO: Transparent mem-
ory offloading in datacenters. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’22, page 609–621, New York, NY,
USA, 2022. Association for Computing Machinery.

https://www.youtube.com/watch?v=--z1cmq1BCw
https://www.youtube.com/watch?v=--z1cmq1BCw
https://www.amd.com/en/press-releases/2021-11-08-amd-unveils-workload-tailored-innovations-and-products-the-accelerated
https://www.amd.com/en/press-releases/2021-11-08-amd-unveils-workload-tailored-innovations-and-products-the-accelerated
https://www.amd.com/en/press-releases/2021-11-08-amd-unveils-workload-tailored-innovations-and-products-the-accelerated


[100] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Nimble page management for tiered
memory systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’19, page 331–345, New York, NY, USA, 2019.
Association for Computing Machinery.

[101] Ahmad Yasin. A top-down method for performance
analysis and counters architecture. In 2014 IEEE In-
ternational Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 35–44. IEEE,
2014.

[102] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li.
COLORIS: A dynamic cache partitioning system us-
ing page coloring. PACT ’14, page 381–392, New
York, NY, USA, 2014. Association for Computing Ma-
chinery.

[103] Xiangyao Yu, Christopher J Hughes, Nadathur Satish,
Onur Mutlu, and Srinivas Devadas. Banshee:
Bandwidth-efficient DRAM caching via software/hard-
ware cooperation. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, pages 1–14, 2017.

[104] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In USENIX NSDI, 2012.

[105] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. To-
wards practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM Euro-
pean conference on Computer systems, pages 89–102,
2009.


	Introduction
	Background and Motivation
	Memory Tiering in Public Clouds
	Cloud Workload and Design Goals
	Software-Managed Tiering
	Hardware-Managed Tiering

	Intel® Flat Memory Mode
	Hardware Design
	Application Performance
	Noisy Neighbors

	Memstrata
	Page Coloring
	Identifying Outliers
	Dynamic Page Allocator

	Memstrata Implementation
	Evaluation
	Performance Benefits
	Dedicated Memory Page Allocation
	Sensitivity Analyses

	Discussion
	Related Work
	Conclusions

