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Abstract—This paper presents a shared-memory model, data-
race-free-1, that unifies four earlier models: weak ordering, re-
lease consistency (with sequentially consistent special operations),
the VAX memory model, and data-race-free-0. The most intu-
itive and commonly assumed shared-memory model, sequential
consistency, limits performance. The models of weak ordering,
release consistency, the VAX, and data-race-free-0 are based on
the common intuition that if programs synchronize explicitly and
correctly, then sequential consistency can be guaranteed with
high performance. However, each model formalizes this intuition
differently and has different advantages and disadvantages with
respect to the other models.

Data-race-free-1 unifies the models of weak ordering, release
consistency, the VAX, and data-race-free-0 by formalizing the
above intuition in a manner that retains the advantages of each
of the four models. A multiprocessor is data-race-free-1 if it
guarantees sequential consistency to data-race-free programs.
Data-race-free-1 unifies the four models by providing a program-
mer’s interface similar to the four models, and by allowing all
implementations allowed by the four models. Additionally, data-
race-free-1 expresses the programmer’s interface more explicitly
and formally than weak ordering and the VAX, and allows an im-
plementation not allowed by weak ordering, release consistency,
or data-race-free-0.

The new implementation proposal for data-race-free-1 differs
from earlier implementations mainly by permitting the execution
of all synchrenization operations of a processor even while pre-
vious data operations of the processor are in progress. To ensure
sequential consistency, two synchronizing processors exchange
information to delay later operations of the second processor that
conflict with an incomplete data operation of the first processor.

Index Terms—Data-race-free-0, data-race-free-1, memory mod-
el, release consistency, sequential consistency, shared-memory
multiprocessor, weak ordering.

1. INTRODUCTION

MEMORY model, or memory consistency model, for

a shared-memory multiprocessor system is a formal
specification of how memory operations in a program will
appear to execute to the programmer. In particular, a memory
model specifies the values that may be returned by read
operations executed on a shared-memory system. This paper
presents a new memory model, data-race-free-1, that unifies
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four earlier models.! Although the four models are very simi-
lar, each model has different advantages and disadvantages for
programmers and system designers. Data-race-free-1 unifies
the four models by retaining all the advantages of the four
models.

Most uniprocessors provide a simple memory model that
ensures that memory operations will appear to execute one at
a time, in the order specified by the program (program order).
Thus, a read returns the value from the last write (in program
order) to the same location. To improve performance, however,
uniprocessors often allow memory operations to overlap other
memory operations and to be issued and executed out of
program order. Uniprocessors use interlock logic to maintain
the programmer’s model of memory (that memory operations
appear to execute one at a time, in program order). This
model of uniprocessor memory, therefore, has the advantage of
simplicity and yet allows for high performance optimizations.

The most commonly (and often implicitly) assumed memory
model for shared-memory multiprocessor systems is sequential
consistency, formalized by Lamport [21] as follows.

Definition 1.1: [A multiprocessor system is sequentially
consistent if and only if] the result of any execution is the
same as if the operations of all the processors were executed
in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its
program.

In other words, a sequentially consistent multiprocessor
appears like a multiprogrammed uniprocessor [24].

Although sequential consistency retains the simplicity of
the uniprocessor memory model, it limits performance by
preventing the use of several optimizations. Fig. 1 shows
that in multiprocessor systems, both with and without caches,
common uniprocessor hardware optimizations, such as write
buffers, overlapped memory operations, out-of-order memory
operations, and lockup-free caches [20], can violate sequen-
tial consistency. These optimizations significantly improve

TAn earlier version of this work appears in the Proceedings of the 17th
Annual International Symposium on Computer Architecture, June 1990 [1].
The data-race-free-1 memory model developed in this paper extends the data-
race-free-0 model of [1] by distinguishing unpaired synchronization operations
from paired release and acquire synchronization operations. The definition of
data-race-free-1 in Section II uses the notions of how different operations
are distinguished, when the distinction is correct, the synchronization-order-1
and happens-before-1 relations, and data races. These notions are extensions
of similar concepts developed for data-race-free-0. Also, in parallel with our
work on this paper, we published a technique for detecting data races on a
data-race-free-1 system [2]. Consequently, [2] reviews data races and the data-
race-free-1 memory model, and contains the definitions (in slightly different
form) of Section II. This material is used in Section II with the permission of
the ACM.
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Initally X=Y=0
Py Py
X=1 Y=1
rn=Y =X

Result: 11=r2=0

Fig. 1. A violation of sequential consistency.” X and Y are shared variables
and rl and r2 are local registers. The execution depicted above violates
sequential consistency since no total order of memory operations consistent
with program order lets both P; and P> return O for their reads on Y and X.
Note that neither processor has data dependencies among its instructions;
therefore, simple interlock logic will not preclude either processor from
issuing its second instruction before the first. Shared-bus systems without
caches—The execution is possible if processors issue memory operations
out of order or allow reads to pass writes in write buffers. Systems with
general interconnection networks without caches— The execution is possible
even if processors issue memory operations in program order, if the operations
reach memory modules in a different order [21]. Shared-bus systems with
caches— Even with a cache coherence protocol [6], the execution is possible
if processors issue memory operations out-of-order or allow reads to pass
writes in write buffers. Systems with general interconnection networks and
caches— The execution is possible even if memory operations are issued and
reach memory modules in program order, if they do not complete in program
order. Such a situation can arise if both processors initially have X and Y in
their caches, and a processor issues its read before its write propagates to the
cache of the other processor.

performance and will become increasingly important in the
future as processor cycle times decrease and memory latencies
increase [13]. Gharachorloo et al. have described mechanisms
that allow these optimizations to be used with the sequential
consistency model, but the mechanisms require hardware
support for prefetching and rollback [12].

Alternate memory models have been proposed to improve
the performance of shared-memory systems. To be useful,
the new models should satisfy the following properties: 1)
the model should be simple for programmers to use, and
2) the model should allow high performance. The central
assumption of this work is that most programmers prefer to
reason with the sequential consistency model since it is a
natural extension of the well-understood uniprocessor model.
Therefore, one way in which a memory model can satisfy
the first property is to appear sequentially consistent to most
programs and to formally characterize this group of programs.
A memory model can satisfy the second property by allowing
all high performance optimizations that guarantee sequential
consistency for this group of programs.

One group of programs for which it is possible to guarantee
sequential consistency and still use many optimizations is
programs that explicitly distinguish between synchronization
memory operations (operations used to order other operations)
and data memory operations (operations used to read and
write data). This dichotomy between memory operations is
the motivation behind the four models of weak ordering
[9], release consistency with sequentially consistent special
operations (henceforth called release consistency) [11], the
VAX [8], and data-race-free-0 (originally called weak ordering
with respect to data-race-free-0) [1].

Although the four memory models are very similar, small
differences in their formalization lead to differences in the
way they satisfy the above two propertics. Weak ordering

2Fig. 1 is a modified version of Fig. 1 in [1] and is presented with the
permission of the IEEE.

[9] and release consistency [11] restrict hardware to actu-
ally execute specific memory operations in program order.
For programmers, the authors of weak ordering later stated
that mutual exclusion should be ensured for each access
to a shared variable by using constructs such as critical
sections, which are implemented with hardware-recognizable
synchronization operations [10], [26]. The authors of release
consistency formalize a group of programs called properly
labeled programs, for which release consistency ensures se-
quential consistency. A properly labeled program distinguishes
its memory operations depending on their use. For example,
it distinguishes synchronization operations from ordinary data
operations. The VAX and data-race-free-0 models differ from
weak ordering and release consistency by avoiding explicit
restrictions on the actual order of execution of specific mem-
ory operations. In the VAX architecture handbook [8], the
data sharing and synchronization section states the following.
“Accesses to explicitly shared data that may be written must
be synchronized. Before accessing shared writable data, the
programmer must acquire control of the data structure. Seven
instructions are provided to permit interlocked access to a
control variable.” Data-race-free-0 [1] states that sequential
consistency will be provided to data-race-free programs. A
data-race-free program (discussed formally in Sections II and
IIT) distinguishes between synchronization operations and data
operations and ensures that conflicting data operations do not
race (i.e., cannot execute concurrently). For programs that
contain data races, data-race-free-0 does not guarantee the
behavior of the hardware.

The different formalizations of the four models result in
some models satisfying the simplicity or the high-performance
property better than other models; however, no model satisfies
both properties better than all other models. For example,
the VAX imposes the least restrictions on hardware, but
its specification is less explicit and formal than the other
models. Consider the statement, “before accessing shared
writable data, the programmer must acquire control of the
data structure.” Does this allow concurrent readers? Further,
how will hardware behave if programs satisfy the specified
conditions? Although it may be possible to answer these
questions from the VAX handbook, a more explicit and formal
interface would allow a straightforward and unambiguous
resolution of such questions. Release consistency, on the other
hand, provides a formal and explicit interface. However, as
Section IV will show, the hardware requirements of release
consistency are more restrictive than necessary.

This paper defines a new model, data-race-free-1, which
unifies the weak ordering, release consistency, VAX, and data-
race-free-0 models in a manner that retains the advantages
of each of the models for both the programmer and the
hardware designer. The following summarizes how data-race-
free-1 unifies the four models and how it overcomes specific
disadvantages of specific models.

For a programmer, data-race-free-1 unifies the four models
by explicitly addressing two questions: a) when is a program
correctly synchronized? and b) how does hardware behave for
correctly synchronized programs? Data-race-free-1 answers
these questions formally, but the intuition behind the answers
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is simple: a) a program is correctly synchronized if none of
its sequentially consistent executions have a data race (i.e.,
conflicting data operations do not execute concurrently), and
b) for programs that are correctly synchronized, the hardware
behaves as if it were sequentially consistent. This viewpoint
is practically the same as that provided by release consistency
and data-race-free-0. However, it is more explicit and formal
than weak ordering and the VAX (e.g., it allows concurrent
readers because they do not form a data race).

For a hardware designer, data-race-free-1 unifies the four
models because (as will be shown in Section IV) implementing
any of the models is sufficient to implement data-race-free-
1. Furthermore, data-race-free-1 is less restrictive than either
weak ordering, release consistency, or data-race-free-0 for
hardware designers since there exists an implementation of
data-race-free-1 that is not allowed by weak ordering, release
consistency, or data-race-free-0. The new implementation (de-
scribed in Section IV) differs from implementations of weak
ordering and release consistency by allowing synchronization
operations to execute even while previous data operations
of the synchronizing processors are incomplete. To achieve
sequential consistency, processors exchange information at the
time of synchronization that ensures that a later operation that
may conflict with an incomplete data operation is delayed until
the data operation completes. The new implementation differs
from implementations of data-race-free-0 by distinguishing
between different types of synchronization operations.

The rest of the paper is organized as follows. Section II de-
fines data-race-free-1. Sections IIl and IV compare data-race-
free-1 with the weak ordering, release consistency, VAX, and
data-race-free-0 models from the viewpoint of a programmer
and hardware designer respectively. Section V relates data-
race-free-1 to other models. Section VI concludes the paper.

II. THE DATA-RACE-FREE-1 MEMORY MODEL

Section II-A first clarifies common terminology that will be
used throughout the paper and then informally motivates the
data-race-free-1 memory model. Section II-B gives the formal
definition of data-race-free-1. Data-race-free-1 is an extension
of our earlier model data-race-free-0 [1].

A. Terminology and Motivation for Data-Race-Free-1

The rest of the paper assumes the following terminology.
The terms system, program, and operations (as in Definition
1.1 of sequential consistency) can be used at several levels.
This paper discusses memory models at the lowest level,
where the system is the machine hardware, a program is
a set of machine-level instructions, and an operation is a
memory operation that either reads a memory location (a read
operation) or modifies a memory location (a write operation) as
part of the machine instructions of the program. The program
order for an execution is a partial order on the memory
operations of the execution imposed by the program text [27].
The result of an execution refers to the values returned by
the read operations in the execution. A sequentially consistent
execution is an execution that could occur on sequentially
consistent hardware. Two memory operations conflict if at least
one of them is a write and they access the same location [27].

The motivation for data-race-free-1, which is similar to that
for weak ordering, release consistency, the VAX model, and
data-race-free-0, is based on the following observations made
in [1].> Assuming processors maintain uniprocessor data and
control dependencies, sequential consistency can be violated
only when two or more processors interact through memory
operations on common locations. These interactions can be
classified as data memory operations and synchronization
memory operations. Data operations are usually more frequent
and involve reading and writing of data. Synchronization
operations are usually less frequent and are used to order con-
flicting data operations from different processors. For example,
in the implementation of a critical section using semaphores,
the test of the semaphore and the unset or clear of the
semaphore are synchronization operations, while the reads and
writes in the critical section are data operations.

Additionally, synchronization operations can be character-
ized as paired acquire and release synchronization operations
or as unpaired synchronization operations as follows. (The
characterization is similar to that used for properly labeled
programs for release consistency [11]; Section III discusses
the differences.) In an execution, consider a write and a
read synchronization operation to the same location, where
the read returns the value of the write, and the value is
used by the reading processor to conclude the completion
of all memory operations of the writing processor that were
before the write in the program. In such an interaction,
the write synchronization operation is called a release, the
read synchronization operation is called an acquire, and the
release and acquire are said to be paired with each other.
A synchronization operation is unpaired if it is not paired
with any other synchronization operation in the execution. For
example, consider an implementation of a critical section using
semaphores, where the semaphore is tested with a test&set
instruction and is cleared with an unset instruction. The write
due to an unset is paired with the test that returns the unset
value; the unset write is a release operation and the test read
is an acquire operation because the unset value returned by
the test is used to conclude the completion of the memory
operations of the previous invocation of the critical section.
The write due to a set of a test&set and a read due to the test
of a test&set that returns the set value are unpaired operations;
such a read is not an acquire and the write is not a release
because the set value does not communicate the completion
of any previous memory operations.

As will be illustrated by Section IV, it is possible to
ensure sequential consistency by placing most hardware re-
strictions only on the synchronization operations. Further, of
the synchronization operations, the paired operations require
more restrictions. Thus, if hardware could distinguish the
type of an operation, it could complete data operations faster
than all the other operations, and unpaired synchronization
operations faster than the paired synchronization operations,
without violating sequential consistency. A data-race-free-1
system gives programmers the option of distinguishing the
above types of operations to enable higher performance.

3 The observations are paraphrased from [1] with the permission of the
IEEE.
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B. Definition of Data-Race-Free-1

Section II-A informally characterized memory operations
based on the function they perform, and indicated that by
distinguishing memory operations based on this characteriza-
tion, higher performance can be obtained without violating
sequential consistency. This section first discusses how the
memory operations can be distinguished based on their char-
acterization on a data-race-free-1 system, and then gives the
formal criterion for when the operations are distinguished
correctly for data-race-free-1. The section concludes with the
definition of the data-race-free-1 memory model.

Data-race-free-1 does not impose any restrictions on how
different memory operations may be distinguished. One op-
tion for distinguishing data operations from synchronization
operations is for hardware to provide different instructions
that may be used for each type of operation. For example,
only special instructions such as Test&Set and Unset may
be used to generate synchronization operations. Alternatively,
only operations to certain memory-mapped locations may
be distinguished as synchronization operations. One way of
distinguishing between paired and unpaired synchronization
operations is for hardware to provide special instructions for
synchronization operations and a static pairable relation on
those instructions; a write and a read in an execution are
distinguished by the hardware as paired release and acquire
if they are generated by instructions related by the pairable
relation, and if the read returns the value of the write. Fig.
2 gives examples of different instructions and the pairable
relation, and illustrates their use.

The following discusses when a programmer distinguishes
operations correctly for data-race-free-1. If the operations are
distinguished exactly according to their function outlined in
Section II-A, then the distinction is indeed correct. However,
data-race-free-1 does not require a programmer to distinguish
operations to match their function exactly. In the absence of
precise knowledge regarding the function of an operation, a
programmer can conservatively distinguish an operation as
a synchronization operation even if the operation actually
performs the function of a data operation. Sequential consis-
tency will still be guaranteed although the full performance
potential of the system may not be exploited. Henceforth, the
characterization of an operation will be the one distinguished
by the programmer (which may be different from that based
on the actual function the operation performs). For example,
an operation that is actually a data operation, but for which
the programmer uses a synchronization instruction, will be
referred to as a synchronization operation.

Intuitively, operations are distinguished correctly for data-
race-free-1 if sufficient synchronization operations are distin-
guished as releases and acquires. The criteria for sufficiency
is that if an operation is distinguished as data, then it should
not be involved in a race; i.e, the program should be data-
race-free. The notion of a data race is formalized by defining
a happens-before-1 relation for every execution of a program
as follows.

The happens-before-1 relation for an execution is a partial
order on the memory operations of the execution. Informally,

happens-before-1 orders two operations initiated by different
processors only if paired release and acquire operations ex-
ecute between them. Definition 2.2 formalizes this intuition
by using the program order and the synchronization-order-1
relations (Definition 2.1).

Definition 2.1: In an execution, memory operation S is
ordered before memory operation Sy by the synchronization-
order-1 relation if and only if Sy is a release operation, Sy is
an acquire operation and S; and Sy are paired with each other.

Definition 2.2: The happens-before-1 relation for an exe-
cution is the irreflexive transitive closure of the program order
and synchronization-order-1 relations for the execution.

The definitions of a data race, a data-race-free program and
the data-race-free-1 model follow.

Definition 2.3: A data race in an execution is a pair of
conflicting operations, at least one of which is data, that is
not ordered by the happens-before-1 relation defined for the
execution. An execution is data-race-free if and only if it
does not have any data races. A program is data-race-free
if and only if all its sequentially consistent executions are
data-race-free.

Definition 2.4: Hardware obeys the data-race-free-1 mem-
ory model if and only if the result of every execution of a
data-race-free program on the hardware can be obtained by an
execution of the program on sequentially consistent hardware.

Figs. 3(a) and (b) illustrate executions that respectively
exhibit and do not exhibit data races. The execution in Fig.
3(a) is an implementation of the critical section code in Fig.
2(a), except that the programmer used a data write operation
instead of the Unset synchronization operation for Fy’s write
on s. Therefore, happens-before-1 does not order Fy’s write
on z and P;’s read on . Since the write and read on x conflict
and are both data operations, they form a data race. For similar
reasons, Py’s data write on s forms a data race with P;’s
test, set and data write on s. Fig. 3(b) shows an execution
of the barrier code of Fig. 2(b). The execution is data-race-
free because happens-before-1 orders all conflicting pairs of
operations, where at least one of the pair is data.

Note that the execution of Fig. 3(b) does not use critical
sections and therefore data-race-free-1 does not require that
all sharing be done through critical sections. Also note that
in programs based on asynchronous algorithms [7], some
operations access data, but are not ordered by synchronization.
For such programs to be data-race-free, these operations also
need to be distinguished as synchronization operations.

As discussed in Section II-A, the definition of data-race-
free-1 assumes a program that uses machine instructions
and hardware-defined synchronization primitives. However,
programmers using high-level parallel programming languages
can use data-race-free-1 by extending the definition of data-
race-free to high-level programs (as discussed for data-race-
free-0 in [1]). The extension is straightforward, but requires
high-level parallel languages to provide special constructs
for synchronization, e.g., semaphores, monitors, fork-joins,
and task rendezvous. Data-race-free-1 does not place any
restrictions on the high-level synchronization mechanisms. It
is the responsibility of the compiler to ensure that a program
that is data-race-free at the high-level compiles into one that



ADVE AND HILL: UNIFIED FORMALIZATION OF FOUR SHARED-MEMORY MODELS 617

Test of /* code for critical setion */ PO P1
Test&Set .
while (Test&Set,s) {;} Test&Set,s
Unset x DataWrite
L . X
data ops in critical section Test&Sets
Set of release Unset,s Unset,s
Test&Set
Test&Set,s
—>
acquire DataRead,x
Unset,s
(@
Po P1
Sync- Fetch of data ops before barrier .
Read Fetch&Inc DataWrite,x DataWrite,y
/* code for barrier */
Fc:tch&lnc,coux,]t\.F
SyncWritel X local_flag = !(local_flag); etch&Inc,count
Inc of release if (Fetch&Inc,count == N) { DataWrite,count
Fetch&Inc x 3 SyncRead,flag
DataWrite,count = 1;
yncWrite, flag
" SyncWrite,flag = local_flag; SyncRead,fla,
acquire
) else DataWrite,y DataRead x

while(SyncRead,flag != local_flag) {;}
data ops after barrier
(b)

Fig. 2. Synchronization instructions and the pairable relation for different systems. (a) and (b) represent two systems with different sets of instructions that
can be used for synchronization operations. For each system, the figure shows the different synchronization operations and the pairable relation, along with
programs and executions that use these operations. The table in each figure lists the read synchronization operations (potential acquires) horizontally, and the
write synchronization operations (potential releases) vertically. A “x” indicates that the synchronization operations of the corresponding row and column are
pairable; they will be paired in an execution if the read returns the value written by the write in that execution. The executions occur on sequentially consistent
hardware and their operations execute in the order shown. op,x denotes an operation op on location x. DataRead and DataWrite denote data operations. The
Test&Set and Fetch&Inc [17] instructions are defined to be atomic instructions. Their read and write operations are represented together as Test&Set,x or
Fetch&Inc,x. Paired operations are connected with arrows. (a) shows a system with the Test&Set and Unset instructions, which are useful to implement a
critical section. A Test&Set atomically reads a memory location and updates it to the value 1. An Unset updates a memory location to the value 0. A write
due to an Unset and a read due to a Test&Set are pairable. The figure shows code for a critical section and its execution involving two processors. (b)
shows a system with the Fetch&Inc [17], SyncWrite, and SyncRead instructions, which are useful to implement a barrier. Fetch&Inc atomically reads and
increments a memory location, SyncWrite is a synchronization write that updates a memory location to the specified value, and SyncRead is a synchronization
read of a memory location. A write due to a Fetch&Inc is pairable with a read due to another Fetch&Inc and a write due to a SyncWrite is pairable with
a read due to a SyncRead. Also shown is code where N processors synchronize on a barrier [23], and its execution for N = 2. The variable local_flag
is implemented in a local register of the processor and operations on it are not shown in the execution.

central assumption of this work is that most programmers

PO P1 PO P1 . ; .
prefer to reason with sequential consistency. For such pro-
TestdeSets Daaweiex DataWrite,y grammers, data-race-free-1 provides a simple model: if the
po po . .
' Fetch&Inc,count _go; ¢ program is data-race-free, then hardware will appear sequen-
DataWrite,x l > Fetch&Inc,count tially consistent
po Lpo .
po .
D mvi' DataWrite,count Both weak ordering and the VAX memory model state that
al Tite,s . ..
Test&Sets SyncRead flag [ programs have to obey certain conditions for hardware to be
I e Svnewiite well-behaved. However, sometimes further interpretation may
ncwrite,fla; .
DataRead,x SyncRead,flag et % ¢ be needed to deduce whether a program obeys the required
po o . .
DataWaite.s Data “me’y DataRead x conditions (as in the concurrent readers case of Section I),
® and how the hardware will behave for programs that obey
(@)

the required conditions. Data-race-free-1 expresses both these
aspects more explicitly and formally than weak ordering and
the VAX: data-race-free-1 states that a program should be
data-race-free, and hardware appears sequentially consistent
to programs that are data-race-free.

Data-race-free-0 and release consistency provide a formal
interface for programmers. Data-race-free-1 provides a sim-
ilar interface with a few minor differences. The programs

po = program order, sol = synchronization-order-1

Fig. 3. Executions that (a) exhibit and (b) do not exhibit data races.

is data-race-free at the machine-level, ensuring sequential
consistency to the programmer.

[II. DATA-RACE-FREE-1 VERSUS WEAK ORDERING,
RELEASE CONSISTENCY, THE VAX MODEL,

AND DATA-RACE-FREE-0 FOR PROGRAMMERS

This section compares the data-race-free-1 memory model
to weak ordering, release consistency, the VAX, and data-race-
free-0 from a programmer’s viewpoint. As stated earlier, the

for which data-race-free-0 ensures sequential consistency are
also called data-race-free programs [1]. The difference is
that data-race-free-0 does not distinguish between different
synchronization operations; it effectively pairs all conflicting
synchronization operations depending on the order in which
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they execute. This distinction does not significantly affect
programmers, but can be exploited by hardware designers.

The programs for which release consistency ensures sequen-
tial consistency are called properly labeled programs [11]. All
data-race-free programs are properly labeled, but there are
some properly labeled programs that are not data-race-free (as
defined by Definition 2.4) [15]. The difference is minor and
arises because properly labeled programs have a less explicit
notion of pairing. They allow conflicting data operations to
be ordered by operations (nsyncs) that correspond to the
nonpairable synchronization operations of data-race-free-1.
Although a memory model that allows all hardware that
guarantees sequential consistency to properly labeled programs
has not been formally described, such a model would be
similar to data-race-free-1 because of the similarity between
data-race-free and properly labeled programs.

A potential disadvantage of data-race-free-1 relative to
weak ordering and release consistency is for programmers
of asynchronous algorithms that do not rely on sequential
consistency for correctness [7]. Weak ordering and release
consistency provide such programmers the option of rea-
soning with their explicit hardware conditions and writing
programs that are not data-race-free, but work correctly and
possibly faster. Data-race-free-1 is based on the assumption
that programmers prefer to reason with sequential consistency.
Therefore, it does not restrict the behavior of hardware for a
program that is not data-race-free. Nevertheless, for maximum
performance, programmers of asynchronous algorithms could
deal directly with specific implementations of data-race-free-
1. This would entail some risk of portability across other
data-race-free-1 implementations, but would enable future
faster implementations for the other, more common pro-
grams.

To summarize, for programmers, data-race-free-1 is similar
to release consistency and data-race-free-0, but provides a
more explicit and formal interface than weak ordering and
the VAX model. Previous work discusses how the require-
ment of data-race-free programs for all the above models
is not very restrictive for programmers [1], {11], and how
data races [2] or violations of sequential consistency due
to data races [14] may be dynamically detected with these
models.

IV. DATA-RACE-FREE-1 VERSUS WEAK ORDERING,
RELEASE CONSISTENCY, THE VAX MODEL, AND
DATA-RACE-FREE-0 FOR HARDWARE DESIGNERS

This section compares data-race-free-1 to weak ordering,
release consistency, the VAX model, and data-race-free-0 from
a hardware designer’s viewpoint. It first shows that data-race-
free-1 unifies the four models for a hardware designer because
any implementation of weak ordering, release consistency,
the VAX model, or data-race-free-0 obeys data-race-free-1
(Section IV-A). It then shows that data-race-free-1 is less
restrictive than weak ordering, release consistency, and data-
race-free-0 for a hardware designer because data-race-free-1
allows an implementation not allowed by weak ordering,
release consistency, or data-race-free-0 (Section IV-B).

A. Data-Race-Free-1 Unifies Weak Ordering,
Release Consistency, the VAX Model, and
Data-Race-Free-0 for Hardware Designers

For a hardware designer, data-race-free-1 unifies release
consistency, data-race-free-0, weak ordering, and the VAX
model because any implementation of any of the four models
obeys data-race-free-1. Specifically,

« all implementations of release consistency obey data-
race-free-1 because, as discussed in Section III, all im-
plementations of release consistency ensure sequential
consistency to all data-race-free programs;

« all implementations of data-race-free-0 obey data-race-
free-1 because, again as discussed in Section III, all im-
plementations of data-race-free-0 ensure sequential con-
sistency to all data-race-free programs;

* all implementations of weak ordering obey data-race-free-
1 because our earlier work shows that all implementations
of weak ordering obey data-race-free-0 [1], and from the
above argument, all implementations of data-race-free-0
obey data-race-free-1;

» data-race-free-1 formalizes the VAX model; therefore, all
implementations of the VAX model obey data-race-free-1.

B. Data-Race-Free-1 is Less Restrictive than
Weak Ordering, Release Consistency, or
Data-Race-Free-0 for Hardware Designers

Data-race-free-1 is less restrictive for a hardware designer
to implement than either weak ordering, release consistency,
or data-race-free-0 because data-race-free-1 allows an im-
plementation that is not allowed by weak ordering, release
consistency, or data-race-free-0. Fig. 4 motivates such an
implementation. The figure shows part of an execution in
which two processors execute the critical section code of Fig.
2(a). Processors Py and P; Test&Set s until they succeed,
execute data operations (including one on location ), and
finally Unset s. The critical section code is data-race-free;
therefore, its executions on a data-race-free-1 implementation
should appear sequentially consistent. In the execution of Fig.
4, Py’s Test&Set succeeds first. Therefore, P;’s Test&Set
succeeds only when it returns the value written by Fy’s Unset.
Thus, to appear sequentially consistent, P;’s data read of
x should return the value written by Py’s data write of z.
Fig. 4 shows how implementations of weak ordering, release
consistency, and data-race-free-1 can achieve this.

Both weak ordering and release consistency require Py
to delay the execution of its Unset until FPy’s data write
completes (i.e., is seen by all processors). However, this
delay is not necessary to maintain sequential consistency (as
also observed by Zucker [28]), and it is not imposed by the
implementation proposal for data-race-free-1 described next.
Instead, the implementation maintains sequential consistency
by requiring that Py’s data write on = completes before P;
executes its data read on z. It achieves this by ensuring that
i) when P; executes its Test&Set, Py notifies P; about its
incomplete write on x, and ii) P; delays its read on z until
Py’s write on z completes.
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PO P1
Test&Set,s
[po
[po
DataWrite,x
[po
WO stalls PO until DataWrite completes lpo Test&Set,s
RC delays Unset until DataWrite completes — Unset,s
DRF1 need never stall PO nor delay its operations l w‘ "
Y per po Test&Sets — WO, RC stall P1 for Unset and (therefore for) DataWrite
o i DRF1 stalls P1 only for Unset
|po
DataRead,x — DRFI delays DataRead until DataWrite completes
lpo
lpo
Unset,s
Jpo

Ppo = program order, sol = synchronization-order-1

WO = weak ordering, RC = release consistency, DRF1 = data-race-free-1

Fig. 4.

With the new optimization, Py can execute its Unset earlier
and P;’s Test&Set can succeed earlier than with weak ordering
or release consistency. Thus, P;’s reads and writes following
its Test&Set (by program order) that do not conflict with pre-
vious operations of P, will also complete earlier. Operations
such as the data read on z that conflict with previous operations
of Py may be delayed until Py’s corresponding operation
completes. Nevertheless, such operations can also complete
earlier than with weak ordering and release consistency. For
example, if P;’s read on z occurs late enough in the program,
Py’s write may already be complete before P; examines
the read; therefore, the read can proceed without any delay.
Recently, an implementation of release consistency has been
proposed that uses a rollback mechanism to let a processor
conditionally execute its reads following its acquire (such
as P;’s Test&Set) before the acquire completes [12]; our
optimization will benefit such implementations also because
it allows the writes following the acquire to be issued and
completed earlier, and lets the reads following the acquire to
be committed earlier.

The data-race-free-1 implementation differs from data-race-
free-0 implementations because data-race-free-1 distinguishes
between the Unset and Test&Set synchronization operations
and can take different actions for each; data-race-free-0 does
not make such distinctions.

Section IV-B1 describes a sufficient condition for im-
plementing data-race-free-1 based on the above motivation.
Section IV-B2 gives a detailed implementation proposal based
on these conditions.

1) Sufficient Conditions for Data-Race-Free-1: Hardware
obeys the data-race-free-1 memory model if the result of
any execution of a data-race-free program on the hardware
can be obtained by a sequentially consistent execution of the

Implementations of memory models.

program. The result of an execution is the set of values its
read operations return (Section I1I-A). The value returned by a
read is the value from the write (to the same location) that was
seen last by the reading processor. Thus, the value returned by
a read depends on the order in which the reading processor
sees its read with respect to writes to the same location; i.e.,
the order in which a processor sees conflicting operations.
Thus, hardware is data-race-free-1 if it obeys the following
conditions.

Data-Race-Free-1 Conditions: Hardware is data-race-
free-1 if for every execution, E, of a data-race-free
program on the hardware, i) the operations of execution
E are the same as those of some sequentially consistent
execution of the program, and ii) the order in which
two conflicting operations are seen by a processor in
execution E is the same as in that sequentially consistent
execution.

(A processor sees a write when a read executed by the
processor to the same location as the write will return the value
of that or a subsequent write. A processor sees a read when
the read returns its value. These notions are similar to those of
“performed with respect to a processor” and “performed” [9].)

The following gives three requirements (data, synchroniza-
tion, and control) that are together sufficient for hardware to
satisfy the data-race-free-1 conditions, and therefore to obey
data-race-free-1.

The data requirement pertains to all pairs of conflicting
operations of a data-race-free program, where at least one
of the operations is a data operation. In an execution on
sequentially consistent hardware, such a pair of operations is
ordered by the happens-before-1 relation of the execution, and
is seen by all processors in that happens-before-1 order. The
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data requirement for an execution on data-race-free-1 hardware
is that all such pairs of operations continue to be seen by
all processors in the happens-before-1 order of the execution.
This requirement ensures that in Fig. 4, P; sees P;’s write of z
before the read of . Based on the discussion of Fig. 4, the data
requirement conditions below meet the data requirement for a
pair of conflicting operations from different processors. For
conflicting operations from the same processor, it is sufficient
to maintain intra-processor data dependencies. The conditions
below assume these are maintained.

In the rest of this section, preceding and following refer to
the ordering by program order. An operation, either synchro-
nization or data, completes (or performs [9]) when it is seen
(as defined above) by all processors.

Data Requirement Conditions: Let Rel and Acq be
release and acquire operations issued by processors P.;
and P, respectively. Let Rel and Acq be paired with
each other.

Pre-Release Condition—When P,.; issues Rel, it re-
members the operations preceding Rel that are incom-
plete.

Release-Acquire Condition—i) Before Acq completes,
P, transfers to P,., the addresses and identity of all
its remembered operations. ii) Before Acqg completes,
Rel completes and all operations transferred to Py.e; (on
P,ci’s acquires preceding Rel) complete.

Post-Acquire Condition—1Let Acq precede Y (by pro-
gram order) and let the operation X be transferred to
P, on Acq. i) Before Y is issued, Acg completes. ii) If
X and Y conflict, then before Y is issued, X completes.

The data requirement conditions can be proved correct by
showing that they ensure that if X and Y are conflicting
operations from different processors and happens-before-1
orders X before Y, then X completes before any processor
sees Y. This implies that all processors see X before Y,
meeting the data requirement. For the execution in Fig. 4,
the pre-release condition ensures that when P, executes its
Unset, it remembers that DataWrite,x is incomplete. The
release-acquire condition ensures that when P; executes its
successful Test&Set, Py transfers the address of x to P;. The
post-acquire condition ensures that P, detects that it has to
delay DataRead,x until DataWrite,x completes and enforces
the delay. Thus, DataRead,x returns the value written by
DataWrite,x.

Besides the data requirement, the data-race-free-1 condi-
tions also require that the order in which two conflicting
synchronization operations are seen by a processor is as on
sequentially consistent hardware. This is the synchronization
requirement. The data and synchronization requirements would
suffice to satisfy the data-race-free-1 conditions if they also
guaranteed that for any execution, F, on hardware that obeyed
these requirements, there is some sequentially consistent exe-
cution with the same operations, the same happens-before-1,
and the same order of execution of conflicting synchronization
operations as E. In the absence of control flow operations
(such as branches), the above is automatically ensured. In
the presence of control flow operations, however, an extra

requirement, called the control requirement, is needed to
ensure the above [3].

Weak ordering, release consistency, and all proposed im-
plementations of data-race-free-0 satisfy the synchronization
requirement explicitly and the control requirement implicitly
(by requiring “uniprocessor control dependencies” to be main-
tained). Since the key difference between implementations
of the earlier models and the new implementation of data-
race-free-1 is in the data requirement, the following describes
an implementation proposal only for the data requirement
conditions. In [3], we formalize the above three requirements
and give explicit conditions for the synchronization and control
requirements. A conservative way to satisfy the synchroniza-
tion requirement is for a processor to also stall the issue of
a synchronization operation until the completion of preceding
synchronization operations and the write operations whose val-
ues are returned by preceding synchronization read operations.
A conservative way to satisfy the control requirement is for a
processor to also block on a read that controls program flow
until the read completes.

Note that further optimizations on the data requirement
conditions and on the implementation of the following section
are possible [3]. For example, for the release-acquire condition,
the acquire can complete even while operations transferred to
the releasing processor are incomplete, as long as the releasing
processor transfers the identity of those incomplete operations
to the acquiring processor. For the post-acquire condition, it is
not necessary to delay an operation (Y') following an acquire
until a conflicting operation (X) transferred to the acquiring
processor completes. Instead, it is sufficient to delay Y only
until X is seen by the acquiring processor, as long as a
mechanism (such as a cache-coherence protocol) ensures that
all writes to the same location are seen in the same order by
all processors. Thus, the releasing processor can also transfer
the values to be written by its incomplete writes. Then reads
following an acquire can use the transferred values and need
not be delayed.

2) An Implementation Proposal for Data-Race-Free-1
that does not obey Weak Ordering, Release Consistency, or
Data-Race-Free-0: This section describes an implementation
proposal for the data requirement conditions. The proposal
assumes an arbitrarily large shared-memory system in which
every processor has an independent cache and processors are
connected to memory through an arbitrary interconnection
network. The proposal also assumes a directory-based,
writeback, invalidation, ownership, hardware cache-coherence
protocol, similar in most respects to those discussed by
Agarwal et al. [4]. One significant feature of the protocol is
that invalidations sent on a write to a line in read-only or
shared state are acknowledged by the invalidated processors.

The cache-coherence protocol ensures that a) all operations
are eventually seen by all processors, b) writes to the same
location are seen in the same order by all processors, and
c) a processor can detect when an operation it issues is
complete. For c), most operations complete when the issuing
processor receives the requested line in its cache. However,
a write (data or synchronization) to a line in read-only or
shared state completes when all invalidated processors send
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TABLE [
KEY BUFFERS FOR AGGRESSIVE IMPLEMENTATION OF DATA-RACE-FREE-1. (a) CONTENTS
AND PURPOSE OF BUFFERS. (b) INSERTION AND DELETION ACTIONS FOR BUFFERS

Buffer Contents Purpose
Incomplete Incomplete data operations Used to remember incomplete operations (of
(of this processor) this processor) preceding a release (of this pro-
cessor).

Reserve Releases (of this processor) Used to remember releases (of this processor)
for which there are incom- that may cause future paired acquires (of other
plete operations processors) to need special attention.

Special Incomplete operations  (of Used to identify if an operation (of this proces-
another processor) received sor) requires special action due to early comple-
on an acquire (by this proces- tion of acquire (of this processor).
sor)

@
Buffer Insertions Deletions
Event Entry Inserted Event Entry Deleted
Incomplete Data miss Address of data Data miss com- Address of data
operation pletes operation
Reserve Release issued Address of release Release com- Address of release
operation pletes, operations operation
preceding release
complete @.e.,
deleted from in-
complete buffer),
and special buffer
empties
Special Acquire completes Addresses e~ “Empty  special All entries
ceived on acquire buffer”” message
arrives

their acknowledgments. (Either the writing processor may
directly receive the acknowledgments, or the directory may
collect them and then forward a single message to the writing
processor to indicate the completion of the write.)

The implementation proposal involves adding the following
four features to a uniprocessor-based processor logic and the
base cache-coherence logic mentioned above. (Tables I and 11
summarize these features.)

+ Addition of three buffers per processor—incomplete,
reserve, and special (Table I).

+ Modification of issue logic to delay the issue of or stall
on certain operations [Table II(a)].

+ Modification of cache-coherence logic to allow a proces-
sor to retain ownership of a line in the processor’s reserve
buffer and to specially handle paired acquires to such a
line [Table II(b)].

* A new processor-to-processor message called “empty
special buffer” [Table II(c)].

The discussion below explains how the above features can
be used to implement the pre-release, release-acquire, and
post-acquire parts of the data requirement conditions. (Recall
that “preceding” and “following” refer to the ordering by
program order.)

For the pre-release condition, a processor must remember
which operations preceding its releases are incomplete. For
this, a processor uses its incomplete buffer to store the address
of all its incomplete data operations. A release is not issued

®)

until all preceding synchronization operations complete (to
prevent deadlock) and all preceding data operations are issued.
Thus, the incomplete buffer remembers all the operations
required by the pre-release condition. (To distinguish between
operations preceding and following a release, entries in the
incomplete buffer may be tagged or multiple incomplete
buffers may be used.)

For the release-acquire condition, an acquire cannot com-
plete until the following have occurred regarding the release
paired with the acquire: a) release is complete, b) all operations
received by the releasing processor on its acquires preced-
ing the release are complete, and c) the releasing processor
transfers to the new acquiring processor the addresses of all
incomplete operations preceding the release. For this purpose,
gvery processor uses a reserve buffer to store the processor’s
releases for which the above conditions do not hold. On a
release (which is a write operation), the releasing processor
procures ownership of the released line. The processor does
not give up its ownership while the address of the line is in
its reserve buffer. Consequently, the cache-coherence protocol
forwards subsequent requests to the line, including acquires
that will be paired with the release, to the releasing processor.
The releasing processor can now stall the acquires paired with
the release until conditions a), b), and c) above are met.

Table II(b) gives the details of how the base cache-coherence
logic can be modified to allow a releasing processor to retain
ownership of the released line in its reserve buffer, and to
service acquires paired with the release only when a), b),
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TABLE 11
AGGRESSIVE IMPLEMENTATION OF DATA-RACE-FREE-1. (a) MODIFICATION TO ISSUE LoGIC. (b) MODIFICATION
TO CACHE-COHERENCE LOGIC AT PROCESSOR. (€) NEW PROCESSOR-TO-PROCESSOR MESSAGE

and c) above are met. To retain ownership of a released
line, the releasing processor stalls release operations from
other processors to the same line and performs a remote
service for other external requests to the same line. The
remote service mechanism allows the releasing processor to
service the requests of other processors without allowing those
processors to cache the line. The mechanisms of stalling
operations for an external release and remote service for other
external operations are both necessary. This is because stalling
data operations can lead to deadlock and servicing external
release operations remotely would not let the new releasing
processors procure ownership of the line as required for the
release-acquire condition. Meeting conditions a), b), and ¢)
above requires the processor to wait for its release to complete

Operation Sp:g:lr;“ul;: 7 Action
Data or unpaired No Process as usual.
synchronization
Release No Issue after all previous operations are issued and
all previous synchronization operations complete.
Acquire No Issue after special buffer empties and stall until
acquire completes.
Any Yes Stall or delay issue of only this operation until
special buffer empties.
(a)
Address in .
Request Reserve Buffer? Action
Requests by this processor
Any No Process as usual.
Any read or write Yes Process as usual.
Cache line replace- Yes Stall processor until address is deleted from
ment reserve buffer.
Requests from other processors forwarded to this processor
Any No Process as usual.

Release Yes Stall request until address is deleted from reserve
buffer.

Acquire Yes Stall request until special buffer empties and
paired release (in reserve buffer) completes, send
to acquiring processor the released line and en-
tries of incomplete buffer tagged as preceding the
release, request acquiring processor to not cache
the line, inform directory that this processor is re-
taining ownership.

Data or unpaired Yes If read request, send line to other processor; if
synchronization write request, update line in this processor’s
cache and send acknowledgement to other pro-
cessor; request other processor to not cache the
line; inform directory that this processor is retain-
ing ownership.
(b)
Event Message
All  incomplete  buffer  entries Send ‘‘empty special buffer’”” mes-
corresponding to a release deleted sage to processors that executed ac-
quires paired with release.
©)

and its special buffer to empty, and to transfer contents of its
incomplete buffer to the acquiring processor.

For the post-acquire condition, a processor must a) stall
on an acquire until it completes, and b) delay a following
operation until the completion of any conflicting operation
transferred to it on the acquire. For this purpose, a processor
uses a special buffer to save all the information transferred
to it on an acquire. If a following operation conflicts with an
operation stored in the special buffer, the processor can either
a) stall or b) delay only this operation, until it receives an
“empty special buffer” message from the releasing processor.
The releasing processor sends the “empty special buffer”
message when it deletes the address of the release paired with
the acquire from its reserve buffer. For simplicity, an acquir-
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ing processor can also stall on the acquire until its special
buffer empties to avoid the complexity of having to delay an
operation for incomplete operations of multiple processors.

This completes the implementation proposal for the data
requirement conditions, assuming a process runs uninterrupted
on the same processor. To handle context switches correctly, a
processor must stall before switching until the various buffers
mentioned above empty. Overflow of the above buffers can
also be handled by making a processor stall until an entry is
deleted from the relevant buffer.

The above proposal never leads to deadlock or livelock
as long as the underlying cache-coherence protocol is imple-
mented correctly, and messages are not lost in the network
(or a time-out that initiates a system clean-up is generated
on a lost message). Specifically, the above proposal never
stalls a memory operation indefinitely since i) the proposal
never delays the completion of issued data operations, and ii)
the proposal delays an operation only if certain issued data
operations are incomplete. Thus, the above proposal does not
lead to deadlock or livelock.

V. DATA-RACE-FREE-1 VERSUS OTHER MODELS

Previous sections have shown how the data-race-free-1
memory model unifies weak ordering, release consistency, the
VAX model; and data-race-free-0. This section first summa-
rizes other memory models proposed in the literature, and then
examines how data-race-free-1 relates to them.

The IBM 370 memory model [19] guarantees that except for
a write followed by a read to a different location, operations
of a single processor will appear to execute in program
order, and writes will appear to execute atomically. The
370 also provides serialization operations. Before executing
a serialization operation, a processor completes all operations
that are before the serialization operation according to pro-
gram order. Before executing any nonserialization operation,
a processor completes all serialization operations that are
before that nonserialization operation according to program
order. The processor consistency [11], [16], PRAM [22] and
total store ordering [25] models ensure that writes of a
given processor appear to execute in the same order to
all other processors. The models mainly differ in whether
a write appears to become visible to all other processors
simultaneously or at different times. The partial store ordering
model [25] is similar to total store ordering except that
it orders writes by a processor only if they are separated
by a store barrier operation. The model known as release
consistency with processor-consistent special operations [11]
is similar to release consistency with sequentially consistent
special operations except that it requires special operations
(syncs and nsyncs) to be processor-consistent. The concurrent-
consistency model [26] ensures sequential consistency to all
programs except those “which explicitly test for sequential
consistency or take access timings into consideration.” The
slow memory model [18] requires that a read return the value
of some previous conflicting write. After a value written by
(say) processor P; is read, the values of earlier conflicting
writes by P; cannot be returned. The causal memory model
[5], [18] ensures that any write that causally precedes a read is

observed by the read. Causal precedence is a transitive relation
established by program order or due to a read that returns the
value of a write.

Data-race-free-1 is based on the assumption that most
programmers prefer to reason with sequential consistency.
Concurrent consistency is the only model above that explicitly
states when programmers can expect sequential consistency;
however, the conditions that give sequential consistency seem
ambiguous and are difficult to relate directly to data-race-
free-1. The 370 model does not explicitly state when pro-
grammers can expect sequential consistency; however, the
previous sections on data-race-free-1 can be used to determine
a sufficient condition as follows. The serialization operations
are analogous to the synchronization operations of weak
ordering; therefore, the 370 appears sequentially consistent
to data-race-free programs where serialization operations that
access memory are interpreted as synchronization operations
and every write serialization operation is pairable with every
read serialization operation.

For the remaining models, it is difficult to determine exactly
when programmers can expect sequential consistency. If the
assumption that programmers prefer to reason with sequential
consistency is true, then as stated, the above models are harder
to reason with than data-race-free-1. In the future, we hope to
specify the above models using the approach of data-race-free-
1; i.e., specify the models in terms of a formal set of constraints
on programs such that the hardware appears sequentially
consistent to all programs that obey those constraints. We call
this approach the sequential consistency normal form. We will
investigate if such specifications provide greater insight and
lead to more unifications.

VI. CONCLUSIONS

Many programmers of shared-memory systems implicitly
assume the model of sequential consistency for the shared
memory. Unfortunately, sequential consistency restricts the
use of many high performance uniprocessor optimizations. For
higher performance, several alternate memory models have
been proposed. Such models should 1) be simple to reason
with and 2) provide high performance. We believe that most
programmers prefer to reason with sequential consistency.
Therefore, a way to satisfy the above properties is for a
model to appear sequentjally consistent to the most common
programs and to give these programs the highest performance
possible. The models of weak ordering, release consistency
(with sequentially consistent special operations), the VAX,
and data-race-free-0 are based on the common intuition that if
programmers distinguish their data and synchronization opera-
tions, then correct execution can be guaranteed along with high
performance. However, each model formalizes the intuition
differently, and has different advantages and disadvantages
with respect to the other models.

This paper proposed a memory model, data-race-free-1,
that unifies weak ordering, release consistency, the VAX
model, and data-race-free-0, and retains the advantages of
each of them. Hardware is data-race-free-1 if it appears
sequentially consistent to all programs that are data-race-
free. Data-race-free-1 unifies the four models by providing
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a programmer’s view that is similar to that of the four
models, and by permitting all hardware allowed by the four
models. Compared to weak ordering, data-race-free-1 provides
a more formal interface for programmers since it explicitly
states when a program is correctly synchronized (data-race-
free) and how hardware behaves for correctly synchronized
programs (sequentially consistent). Also, data-race-free-1 is
less restrictive than weak ordering for hardware designers
since it allows an implementation that weak ordering does
not allow. Compared to release consistency, data-race-free-
1 is less restrictive for hardware designers since it allows
an implementation that release consistency does not allow.
Compared to the VAX model, data-race-free-1 provides a more
formal interface since it explicitly states when a program
is correctly synchronized and how hardware behaves for
correctly synchronized programs. Compared to data-race-free-
0, data-race-free-1 is less restrictive for hardware designers
since it allows implementations to take different actions on
different types of synchronization operations.
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