
Page 1

UPC Ph.D. Course on
Parallel Computer Architecture

Parallel Programming (Chapters 2, 3, & 4)

Copyright 2003 Mark D. Hill
University of Wisconsin-Madison

Slides are derived from work by
Sarita Adve (Illinois), Babak Falsafi (CMU),

Alvy Lebeck (Duke), Steve Reinhardt (Michigan),
and J. P. Singh (Princeton). Thanks!

UPC Parallel Computer Architecture 2
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Parallel Programming

To understand and evaluate
design decisions in a parallel machine,
we must get an ideaof the software

that runs on a parallel machine.

--Introduction to Culler et al.’s Chapter 2,
beginning 192 pages on software

UPC Parallel Computer Architecture 3
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Outline

• Review

• Applications

• Creating Parallel Programs

• Programming for Performance

• Scaling

Page 2

UPC Parallel Computer Architecture 4
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Review: Separation of Model and Architecture

• Shared Memory
– Single shared address space
– Communicate, synchronize using load / store
– Can support message passing

• Message Passing
– Send / Receive
– Communication + synchronization
– Can support shared memory

• Data Parallel
– Lock-step execution on regular data structures
– Often requires global operations (sum, max, min...)
– Can support on either SM or MP

UPC Parallel Computer Architecture 5
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Review: A Generic Parallel Machine

• Separation of
programming
models from
architectures

• All models
require
communication

• Node with
processor(s),
memory,
communication
assist

Interconnect

CA

Mem
P

$
CA

Mem
P

$

CA

Mem
P

$
CA

Mem
P

$

Node 0 Node 1

Node 2 Node 3

UPC Parallel Computer Architecture 6
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Review: Fundamental Architectural Issues

• Naming: How is communicated data and/or partner
node referenced?

• Operations: What operations are allowed on named
data?

• Ordering: How can producers and consumers of data
coordinate their activities?

• Performance
– Latency: How long does it take to communicate in a protected

fashion?
– Bandwidth: How much data can be communicated per second?

How many operations per second?

Page 3

UPC Parallel Computer Architecture 7
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Applications

• N-Body Simulation: Barnes-Hut
• Ocean Current Simulation: Ocean
• VLSI Routing: Locus Route
• Ray Tracing

– Shoo t Ray through three dimensional scene (let it boun ce off
ob jects)

• Data Mining
– find ing associations
– Consumers that are college students, and b uy beer, tend to bu y

chips

UPC Parallel Computer Architecture 8
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Barnes-Hut

• Computing the mutual interactions of N bod ies
– n-bod y prob lems
– stars, planets, molecules…

• Can approximate influence of distant bod ies

UPC Parallel Computer Architecture 9
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Ocean

• Simulate ocean currents
• discretize in space and time

Ocean Basin

Page 4

UPC Parallel Computer Architecture 10
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Example: Ocean

• Equation Solver
– kernel = small piece of important code (Not OS kernel…)

• Update each po int based on NEWS neighbo rs
– Gauss-Seidel (upd ate in p lace)

• Compute average difference per element
• Convergence when d iff small => exit

UPC Parallel Computer Architecture 11
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Equation Solver Decomposition

while !converged
for

for

• The loops are not independent!
• Exploit properties of problem

– Don’t really need up-to-date values (approximation)

– May take more steps to converge, but exposes parallelism

• Red-Black
– like checkerboard update of Red point depends only on Black points
– alternate iterations over red, then black

• Asynchronous
– Each processor updates its region independent of other’s values
– Global synch at end of iteration, to keep things somewhat up-to-date

UPC Parallel Computer Architecture 12
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

The FORALL Statement

while !converged
forall

forall

• Can execute the iterations in parallel
• Each grid point computation (n2 parallelism)
while !converged

forall
for

• Computation for rows is independent (n parallelism)
– less overhead

Page 5

UPC Parallel Computer Architecture 13
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Equation Solver Assignment

• Each process gets a contiguous block of rows

P0

P1

P2

UPC Parallel Computer Architecture 14
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

PARMACS

• Macro Package, runtime system must implement
– portability

CREATE(p,proc,args) Create p processes executing proc(args)

G_MALLOC(size) Allocate shared data of size bytes
LOCK(name)

UNLOCK(name)
BARRIER(name,number) Wait for number processes to arrive

WAIT_FOR_END(number) Wait for number processes to terminate
WAIT(flag) while(!flag);

SIGNAL(flag) flag = 1;

UPC Parallel Computer Architecture 15
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Equation Solver: The Ugly Code

main()
parse_arguments();

A = G_MALLOC(size of big array);
CREATE(nprocs-1,Solve, A);

Solve(A)
WAIT_FOR_END;

end main
Solve(A)

while !done
for i = my_start to my_end

for j = 1 to n
mydiff += abs(A[i,j] - temp);

LOCK(diff_lock);
diff += mydiff;

UNLOCK(diff_lock);
if (convergence_test) done =1

BARRIER

Page 6

UPC Parallel Computer Architecture 16
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Example: Programmer / Software

• LocusRoute (standard cell router)
while (route_density_improvement > threshold)
{

for (i = 1 to num_wires) do
{

rip old wire out
explore new route
place wire using best new route

}
}

UPC Parallel Computer Architecture 17
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Shared Memory Implementation

• Shared memory algorithm
– Divide cost array into regions

» logically assign regions to PEs
– Assign wires to PEs based on the region in which center lies
– Do load balancing using stealing when local queue empty

• Pros:
– Good load balancing
– Mostly local accesses
– High cache hit ratio

• Cons:
– non-deterministic
– potential hot spots
– amount of parallelism

UPC Parallel Computer Architecture 18
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Message Passing Implementations

• Method 1:
– Distribute wires and cost array regions as in SM implementation
– When wire-path crosses to remote region

» send computation to remote PE, or
» send message to access remote data

• Method 2:
– Distribute only wires as in SM implementation
– Fully replicate cost array on each PE

» one owned region, and potential stale copy of others
» send updates so copies are not too stale

– Consequences:
» waste of memory in replication
» stale data => poorer quality results or more iterations

• Both methods require lots of thought for programmer

Page 7

UPC Parallel Computer Architecture 19
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Programming for Performance

• Partition ing, Granularity, Communication, etc.

• Caches and Their Effects

UPC Parallel Computer Architecture 20
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Aside on Cost-Effective Computing

• Isn’t Speedup(P) < P ineff icient?
• If on ly throug hput matters, use P computers instead?

• But much of a computer’s cost is NOT in the
processor [Wood & Hill, I EEE Computer 2/95]

• Let Costup(P) = Cost(P)/Cost(1)
• Parallel computing cost-effective:
• Speedup (P) > Costup(P)
• E.g. for SGI PowerChallenge w/ 500MB:
• Costup(32) = 8.6

UPC Parallel Computer Architecture 21
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Where Do Programs Spend Time?

• Sequential
– Busy c omputing
– Memory sys tem stalls

• Parallel
– Busy c omputing
– Stalled for local memory
– Stalled for remote memory (communication)
– Synchronizing (load imbalance and o perations)
– Overhead

• Speedup (p) = time(1)/time(p)
– Amdahl’s Law
– Superlinear

Page 8

UPC Parallel Computer Architecture 22
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Speedup

max(Work + Synch Wait + Communication)
Speedup ≤

Sequential Work

max(Work on any processor)
Speedup ≤

Sequential Work

UPC Parallel Computer Architecture 23
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Partitioning for Performance

• Balance workload
– reduce time spent at synchronization

• Reduce communication
• Reduce extra work

– determining and managing good assignment

• These are at odds with each other

UPC Parallel Computer Architecture 24
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Data vs. Functional Parallelism

• Data Parallelism
– same ops on different data items

• Functional (control, task) Parallelism
– pipeline

• Impact on load balancing?
• Functional is more difficult

– longer running tasks

Page 9

UPC Parallel Computer Architecture 25
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Impact of Task Granularity

• Granularity = Amount of work associated with task
• Large tasks

– worse load balancing
– lower overhead
– less contention
– less communication

• Small tasks
– too much synchronization
– too much management overhead
– might have too much communication (affinity scheduling)

UPC Parallel Computer Architecture 26
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Impact of Concurrency

• Managing Concurrency
– load balancing

• Static
– Can not adpat to changes

• Dynamic
– Can adapt
– Cost of management increases
– Self-scheduling (guided self-scheduling)
– Centralized task queue

» contention
– Distributed task queue

» Can steal from other queues
» Arch: Name data associated with stolen task

UPC Parallel Computer Architecture 27
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Impact of Synchronization and Serialization

• Too coarse synchronization
– barriers instead of point-to-point synch
– poor load balancing

• Too many synchronization operations
– lock each element of array
– costly operations

• Coarse grain locking
– lock entire array
– serialize access to array

• Architectural aspects
– cost of synchronization operation
– synchronization name space

Page 10

UPC Parallel Computer Architecture 28
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Cache Coherent Shared Memory

P1 P2

x

Interconnection Network

Main Memory

T
im

e

UPC Parallel Computer Architecture 29
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Cache Coherent Shared Memory

P1 P2

x

Interconnection Network

Main Memory

T
im

e

ld r2, x

UPC Parallel Computer Architecture 30
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Cache Coherent Shared Memory

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

T
im

e

ld r2, x

Page 11

UPC Parallel Computer Architecture 31
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Cache Coherent Shared Memory

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1T

im
e

ld r2, x

UPC Parallel Computer Architecture 32
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Reorder Computation for Caches

• Exploit Temporal and Spatial Locality
– Temporal locality affects replication
– Touch too much data == capacity misses

• Computation Blocking

Naïve Computation Order Blocked Computation order

UPC Parallel Computer Architecture 33
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Reorder Data for Caches: Before

Elements on
Same Page

Elements on Same
Cache Block

Page 12

UPC Parallel Computer Architecture 34
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Reorder Data for Caches: With Blocking

Elements on
Same Page

Elements on Same
Cache Block

UPC Parallel Computer Architecture 35
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Scaling: Why Talk About it?

• Speedup: change in performance as system
parameter is scaled (e.g., number of processors, P)

• New problems on new machines
– problem scaling
– data set size
– algorithmic complexity

• Scaling is natural when simulating physical
phenomena

– Space is grid
– Refine grid size
– Larger grid

UPC Parallel Computer Architecture 36
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Questions in Scaling

• Fundamental Question:

Why to real users actually do when they
get access to larger parallel machines?

• Constant Problem Size
– Just add more processors

• Memory Constrained
– Scale data size linearly with # of processors
– Can significantly increase execution time

• Time Constrained
– Keep same wall clock time as processors are added
– Solve largest problem in same amount of time

Page 13

UPC Parallel Computer Architecture 37
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Problem Constrained Scaling

• User wants to solve same problem, only faster
– E.g., Video compression & VLSI routing

•
SpeedupPC(p) =

• Assessment
– Good : easy to do & explain
– May not be realistic
– Doesn’t work well for much larger machine

(c.f., Amdahl’s Law)

Time(1)
Time(p)

UPC Parallel Computer Architecture 38
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Time Constrained Scaling

• Execution time is kept fixed as system scales
– User has fixed time to use machine or wait for result

• Performance = Work/Time as usual, and time is fixed,
so

SpeedupT C(p) =

• Assessment
– Often realistic (e.g., best weather forecast over night)
– Must understand application to scale meaningfully

(would scientist scale grid, time step, error bound, or combination?)
– Execution time on a single processor can be hard to get

(no uniprocessor may have enough memory)

Work(p)
Work(1)

UPC Parallel Computer Architecture 39
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Memory Constrained Scaling

• Scale so memory usage per processor stays fixed
• Scaled Speedup: Is Time(1) / Time(p)?

Speedup MC(p) =

• Assessment
– Realistic for memory-constrained programs (e.g., grid size)
– Can lead to large increases in execution time if work grows faster

than linearly in memory usage
– e.g. matrix factorization

» 10,000-by 10,000 matrix takes 800MB and 1 hour on uniprocessor
» With 1,000 processors, can run 320K-by-320K matrix
» but ideal parallel time grows to 32 hours!

Work(p)
Time(p)

x
Time(1)
Work(1)

=
Increase in Work
Increase in Time

Page 14

UPC Parallel Computer Architecture 40
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Scaling Down

• Scale down to shorten evaluation time on h ardware
and especially on simulators

• “ Scale up” issues apply in reserve

• Must watch ou t if problem size gets too small
– Communication do minates computation

(e.g., all bound ary elements)
– Problem size gets too small for realistic caches,

yielding too many cache hits
» Scale caches down considering application working sets
» E.g., if a on a realistic prob lem a realistic cache could ho ld a

matrix row but not whole matrix
» Scale cache so it ho ld on ly row or scaled prob lem’s matrix

UPC Parallel Computer Architecture 41
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

The SPLASH2 Benchmarks

• Kernels
– Complex 1D FFT
– Blocked LU Factorization
– Blocked Sparse Cholesky Factorization
– Integer Radix Sort

• Applications
– Barnes-Hut: interaction o f bod ies
– Adaptive Fast Multipo le (FMM): interaction o f bod ies
– Ocean Simulation
– Hierarchical Radiosity
– Ray Tracer (Raytrace)
– Volume Renderer (Volrend)
– Water Simulation with Spatial Data Structrue (Water-Spatial)
– Water Simulation without Spatial Data Structure (Water-Nsquared)

