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What is (Hardware) Shared Memory?

• Take multiple (micro-)processors

• Implement a memory system with
a single global physical address space (usually)

• Minimize memory latency (co-location & caches)

• Maximize memory bandwidth (parallelism & caches)
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Some Memory System Options
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Why Shared Memory?

• Pluses
– For applications looks like multitasking uniprocessor
– For OS only evolutionary extensions required
– Easy to do communication without OS
– Software can worry about correctness first then performance

• Minuses
– Proper synchronization is complex
– Communication is implicit so harder to optimize
– Hardware designers must implement

• Result
– Symmetric Multiprocessors (SMPs) are

the most success parallel machines ever
– And the first with multi-billion-dollar markets
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In More Detail

• Efficient Naming
– virtual to physical using TLBs
– ability to name relevent portions of objects

• Ease and efficiency of caching
– caching is natural and well understood
– can be done in HW automatically

• Communication Overhead
– low since protection is built into memory system
– easy for HW to packetize requests / replies

• Integration of latency tolerance
– demand-driven: consistency models, prefetching, multithreaded
– Can extend to push data to PEs and use bulk transfer
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Symmetric Multiprocesors (SMP)

• Multiple (micro-)processors

• Each has cac he (today a cache hierarchy)

• Connect with log ical bus (totally-ordered broadcast)

• Implement Snoop ing Cache Coherence Protocol
– Broadcast all cache “ misses” on bu s
– All caches “ snoop ” bus and may act
– Memory respond s otherwise
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Cache Coherence Prob lem (Step 1)
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Cache Coherence Prob lem (Step 2)
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Cache Coherence Problem (Step 3)
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Snoopy Cache-Coherence Protocols

• Bus provides serialization point (more on this later)

• Each cache controller “snoops” all bus transactions
– relevant transactions if for a block it contains
– take action to ensure coherence

» invalidate
» update
» supply value

– depends on state of the block and the protocol

• Simultaneous Operation of Independent Controllers
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Snoopy Design Choices

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

• Controller updates state of 
blocks in response to processor 
and snoop events and 
generates bus xactions

• Often have duplicate cache tags
• Snoopy protocol

– set of states
– state-transition diagram
– actions

• Basic Choices
– write-through vs. write-back
– invalidate vs. update

Cache



Page 5

UPC Parallel Computer Architecture 13
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

The Simple Invalidate Snoop ing Protocol

• Write-through, 
no-write-
allocate cache

• Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / --
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A 3-State Write-Back Invalidation Protocol

• 2-State Protocol
+ Simple hardware and p rotocol
– Bandwidth (every write goes on bu s!)

• 3-State Protocol (MSI)
– Modified

» one cache has valid/latest copy
» memory is stale

– Shared
» one or more caches have valid copy

– Invalid

• Must invalidate all other copies before entering 
modified state

• Requires bus transaction (order and invalidate)
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MSI Process or and Bus Actions

• Processor:
– PrRd 
– PrWr
– Writeback on replacement of modified b lock

• Bus
– Bus Read (BusRd) Read withou t intent to modify, data cou ld come 

from memory or another cache
– Bus Read-Exclusive (BusRdX) Read with intent to modify, must 

invalidate all other caches copies
– Writeback (BusWB) cache controller puts contents on bu s and 

memory is upd ated
– Definition: cache-to-cache transfer occurs when another cache 

satisfies BusRd or BusRdX request

• Let’s draw it!
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MSI State Diagram

PrRd /--

M

BusRdX / BusWB
PrWr / BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

UPC Parallel Computer Architecture 17
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

An example

Proc Action P1 State P2 state P3 state Bus Act Data from
1. P1 read u        S               -- -- BusRd      Memory

2. P3 read u        S               -- S BusRd      Memory
3. P3 write u        I                -- M BusRdX    Memory or not

4. P1 read u        S               -- S BusRd      P3’s cache
5. P2 read u        S               S               S BusRd      Memory

• Single writer, multiple reader protocol
• Why Modified to Shared?
• What if not in any cache?

– Read, Write produces 2 bus transactions!
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4-State (MESI) Invalidation Protocol

• Often called the Illinois protocol
• Modified (dirty)
• Exclusive (clean unshared) only copy, not dirty
• Shared
• Invalid
• Requires shared signal to detect if other caches have 

a copy of block
• Cache Flush for cache-to-cache transfers

– Only one can do it though

• What does state diagram look like?
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More Generally: MOESI

• [Sweazey & Smith ISCA86]
• M - Modified (dirty)
• O - Owned (dirty but shared)     WHY?
• E - Exclusive (clean unshared) only copy, not dirty
• S - Shared
• I - Invalid

• Variants
– MSI
– MESI
– MOSI
– MOESI

O

M

E
S

I

ownership

validity

exclusiveness
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Tradeoffs in Protocol Design

• New State Transitions
• What Bus Transactions
• Cache block size
• Workload dependence
• Compute bandwidth, miss rates, from state 

transitions
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Computing Bandwidth

• Why bandwidth?
• How do I compute it?
• Monitor State Transitions

– tells me bus transactions
– I know how many bytes each bus transaction requires
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MESI State Transitions and Bandwidth

FROM/TO NP I E S M

NP -- -- BusRd
6+64

BusRd
6+64

BusRdX
6+64

I -- -- BusRd
6+64

BusRd
6+64

BusRdX
6+64

E -- -- -- -- --

S -- -- NA -- BusUpgr
6

M BusWB
6 + 64

BusWB
6+64

NA BusWB
6 + 64

--
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Cache Block Size

• Block s ize is un it of t ransfer and of coherence
– Doesn’t have to be, cou ld have coherence smaller [Good man]

• Uniprocessor 3C’s
– (Compulsory, Capacity, Conflict)

• SM adds Coherence Miss Type
– True Sharing miss fetches data written by another processor
– False Sharing miss results from independent data in same 

coherence block

• Increasing b lock s ize
– Usually fewer 3C misses but more bandwidth
– Usually more false sharing misses

• P.S. on increasing cache size
– Usually fewer capacity/conflict misses (& compulsory don ’t matter)
– No effect on true/false “coherence” misses (so may dominate)
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4-State Write-back Update Protocol

• Dragon (Xerox PARC)
• States

– Exclusive (E): one copy, clean, memory is up-to-date
– Shared-Clean (SC): cou ld be two or more copies, memory unknown
– Shared-Modified (SM): cou ld be two or more copies, memory stale
– Modified (M)

• Adds Bus Update Transaction
• Adds Cache Controller Update operation
• Must obtain bus before updating local copy
• What does s tate diagram look like?

– let’s look at the actions first
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Invalidate vs. Update

• Pattern 1: 
for i = 1 to k

P1(write, x);         // one write before reads
P2--PN-1(read, x);

end for i

• Pattern 2:
for i = 1 to k

for j = 1 to m
P1(write, x);   // many writes before reads

end for j
P2(read, x);

end for i
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Invalidate vs. Update, cont.

• What about real workloads?
– Update can generate too much traffic
– Must limit (e.g., competitive snooping )

• Current Assessment
– Update very hard to implement correctly

(c.f., consistency discussion coming next)
– Rarely done

• Future Assessment
– May be same as current or
– Chip multiprocessors may revive update protocols

» More intra-chip bandwidth
» Easier to have predictable timing paths?
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Qualitative Sharing Patterns

• [Weber & Gupta, ASPLOS3]
• Read-Only
• Migratory Objects

– Maniputalated by one processor at a time
– Often protected by a lock
– Usually a write causes only a single invalidation

• Synchronization Objects
– Often more processors imply more invalidations

• Mostly Read
– More processors imply more invalidations, but writes are rare

• Frequently Read/Written
– More processors imply more invalidations
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Coherence vs. Consistency

• Intuition says loads should return latest value
– what is latest?

• Coherence concerns only one memory location
• Consistency concerns apparent ordering for all 

locations
• A Memory System is Coherent if

– can serialize all operations to that location such that,
– operations performed by any processor appear in program order

» program order = order defined by program text or assembly 
code

– value returned a read is value written by last store to that location 
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Why Coherence != Consistency

/* initial A = B = flag = 0 */
P1 P2

A = 1; while (flag == 0); /* spin */
B = 1; print A;
flag = 1; print B;

Intuition says printed A = B = 1
Coherence doesn’t say anything, why?
Consider coalescing write buffer

UPC Parallel Computer Architecture 30
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Sequential Consistency

• Lamport 1979
“A multiprocessor is sequentially consistent if the 

result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each 
individual processor appear in this sequence in the 
order specified by its program”
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The Memory Model

P1 P2 Pn

switch randomly set
after each memory op

sequential 
processors
issue 
memory ops
in program 
order

Memory
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Definitions and Sufficient Conditions

• Sequentially Consistent Execution
– result is same as one of the possible interleavings on uniprocessor

• Sequentially Consistent System
– any possible execution corresponds to some possible total order
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Sufficient Conditions for Sequential Consistency

• Every processor issues memory ops in program 
order

• Processor must wait for store to complete before 
issuing next memory operation

• After load, issuing proc waits for load to complete, 
and store that produced value to complete before 
issuing next op

• Easily implemented with shared bus.
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Synchronization

• Mutual Exclusion (critical sections)
– Lock & Unlock

• Event Notification
– point-to-point (producer-consumer, flags)
– global (barrier)

• LOCK, BARRIER
– How are these implemented?
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Anatomy of A Synchronization Operation

• Acquire Method
– method for trying to obtain the lock, or proceed past barrier

• Waiting Algorithm
– Spin or busy wait
– Block (suspend)

• Release Method
– method to allow other processes to proceed past synchronization 

event
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HW/SW Implementation Tradeoffs

• User wants high level (ease of programming)
– LOCK(lock_variable), UNLOCK(lock_variable)
– BARRIER(barrier_variable, Num_Procs)

• Hardware
– The Need for Speed (it’s fast)

• Software
– Flexible

• Want 
– low latency
– low traffic
– Scalability 
– low storage overhead
– fairness
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How Not To Implement Locks

• LOCK
while(lock_variable == 1);
lock_variable = 1;

• UNLOCK
lock_variable = 0;

• Implementation requires Mutual Exclusion!
– Can have two processes successfully acquire the lock
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Atomic Read-Modify-Write Operations

• Test&Set(r,x)
r = m[x]
m[x] = 1

• Swap(r,x)
r = m[x], m[x] = r

• Compare&Swap(r1,r2,x)
if (r1 == m[x]) then 

r2 = m[x], m[x] = r2

• Fetch&Op(r,x,op)
r = m[x], m[x] = op(m[x])

• r is register

• m[x] is memory location x
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Load-Locked Store-Conditional

• Pair of Instructions
• Load-Locked sets flag and address
• Store-Conditional fails if flag clear
• Flag is cleared on

– invalidation
– replacement
– context switch

lock: ll r1, location

sc location, r2

beqz r2, lock

ret

unlock: st location, #0

ret
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Alpha test & set Bit in 32-bit word

t_and_set: # arg reg a0 holds bit# to test
1: ldl_l t0, (a1) #get word to test

bis zero, 1, t1 # logical OR set t1=1
sll t1, a0, t2 # create bitmask
and t0, t2, t3 # isolate bit
bne t3, 2f # branch if already set
bis t0, t2, v0 # or in bit to be set
stl_q v0, (a1) # conditional store
beq v0, 3f # branch if store failed
mb # memory barrier
ret zero, (ra) # ret 1 (v0) if set success

2: bis zero,zero,v0 # ret 0 if bit already set
ret zero, (ra)

3: br zero, 1b # retry interlocked update
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Performance of Test & Set

LOCK
while (test&set(x) == 1);

UNLOCK
x = 0;

• High contention (many processes want lock)
• Remember the CACHE!
• Each test&set is a read miss and a write miss

– Not fair

• Problem is?
• Waiting Algorithm!
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Better Lock Implementations

• Two choices:
– Don’t execute test&set so much
– Spin without generating bus traffic

• Test&Set with Backoff
– Insert delay between test&set operations (not too long)
– Expenonential seems good (k*ci)
– Not fair

• Test-and-Test&Set
– Spin (test) on local cached copy until it gets invalidated, then issue 

test&set
– Intuition: No point in trying to set the location until we know that it’s 

not set, which we can detect when it get invalidated... 
– Still contention after invalidate
– Still not fair
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Better Lock Implementation, cont.

• Ticket Lock
LOCK

– Obtain number via fetch&inc
– Spin on now-serving counter

Unlock
– Increment now-serving counter

• Array based Lock
– Obtain location to spin on rather than value
– Slight increase in storage
– Put locations in separate cache blocks, else same traffic as t&t&s

• Linked-List Locks
– HW: QOLB
– SW: MCS Locks
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Point-to-Point Event Synchronization

• Often use normal variables as flags
a = f(x); while (flag == 0);
flag = 1; b = g(a);

• If we know a before hand
a = f(x) while (a == 0);

b = g(a);

• Assumes Sequential Consistency!!
• Full/Empty Bits

– Set on Write
– Cleared on Read
– Can’t write if set, can’t read if clear
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Implementing a Centralized Barrier

BARRIER(bar_name, p) {

LOCK(bar_name.lock);
if (bar_name.counter = 0)

bar_name.flag = 0;
bar_name.counter++;
UNLOCK(bar_name.lock);
if (bar_name.counter == p) {

bar_name.counter = 0;
bar_name.flag = 1;

}
else

while(bar_name.flag = 0) {}; /* busy wait */
}

• Does this work?
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Barrier With Sense Reversal

BARRIER(bar_name, p) {

local_sense = !(local_sense); /* toggle private state */
LOCK(bar_name.lock);
bar_name.counter++;
UNLOCK(bar_name.lock);
if (bar_name.counter == p) {

bar_name.counter = 0;
bar_name.flag = local_sense;

}
else

while(bar_name.flag != local_sense) {}; /* busy wait */
}
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Synchronization Algorithms

• Tournament Locks, SW Combining Tree

p1 p2 p3 p4

Pessimistic

Optimistic
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