
Page 1

UPC Ph.D. Course on
Parallel Computer Architecture

Symmetric Multiprocessors Part 1 (Chapter 5)

Copyright 2003 Mark D. Hill
University of Wisconsin-Madison

Slides are derived from work by
Sarita Adve (Illinois), Babak Falsafi (CMU),

Alvy Lebeck (Duke), Steve Reinhardt (Michigan),
and J. P. Singh (Princeton). Thanks!

UPC Parallel Computer Architecture 2
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Outline

• Motivation

• Coherence

• Coherence Tradeoffs

• Memory Consistency

• Synchronizaton

UPC Parallel Computer Architecture 3
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

What is (Hardware) Shared Memory?

• Take multiple (micro-)processors

• Implement a memory system with
a single global physical address space (usually)

• Minimize memory latency (co-location & caches)

• Maximize memory bandwidth (parallelism & caches)

Page 2

UPC Parallel Computer Architecture 4
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Some Memory System Options

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

UPC Parallel Computer Architecture 5
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Why Shared Memory?

• Pluses
– For applications looks like multitasking uniprocessor
– For OS only evolutionary extensions required
– Easy to do communication without OS
– Software can worry about correctness first then performance

• Minuses
– Proper synchronization is complex
– Communication is implicit so harder to optimize
– Hardware designers must implement

• Result
– Symmetric Multiprocessors (SMPs) are

the most success parallel machines ever
– And the first with multi-billion-dollar markets

UPC Parallel Computer Architecture 6
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

In More Detail

• Efficient Naming
– virtual to physical using TLBs
– ability to name relevent portions of objects

• Ease and efficiency of caching
– caching is natural and well understood
– can be done in HW automatically

• Communication Overhead
– low since protection is built into memory system
– easy for HW to packetize requests / replies

• Integration of latency tolerance
– demand-driven: consistency models, prefetching, multithreaded
– Can extend to push data to PEs and use bulk transfer

Page 3

UPC Parallel Computer Architecture 7
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Symmetric Multiprocesors (SMP)

• Multiple (micro-)processors

• Each has cac he (today a cache hierarchy)

• Connect with log ical bus (totally-ordered broadcast)

• Implement Snoop ing Cache Coherence Protocol
– Broadcast all cache “ misses” on bu s
– All caches “ snoop ” bus and may act
– Memory respond s otherwise

UPC Parallel Computer Architecture 8
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Cache Coherence Prob lem (Step 1)

P1 P2

x

Interconnection Network

Main Memory

T
im

e

ld r2, x

UPC Parallel Computer Architecture 9
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Cache Coherence Prob lem (Step 2)

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

T
im

e

ld r2, x

Page 4

UPC Parallel Computer Architecture 10
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Cache Coherence Problem (Step 3)

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1T

im
e

ld r2, x

UPC Parallel Computer Architecture 11
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Snoopy Cache-Coherence Protocols

• Bus provides serialization point (more on this later)

• Each cache controller “snoops” all bus transactions
– relevant transactions if for a block it contains
– take action to ensure coherence

» invalidate
» update
» supply value

– depends on state of the block and the protocol

• Simultaneous Operation of Independent Controllers

UPC Parallel Computer Architecture 12
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Snoopy Design Choices

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

• Controller updates state of
blocks in response to processor
and snoop events and
generates bus xactions

• Often have duplicate cache tags
• Snoopy protocol

– set of states
– state-transition diagram
– actions

• Basic Choices
– write-through vs. write-back
– invalidate vs. update

Cache

Page 5

UPC Parallel Computer Architecture 13
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

The Simple Invalidate Snoop ing Protocol

• Write-through,
no-write-
allocate cache

• Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd / --

UPC Parallel Computer Architecture 14
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

A 3-State Write-Back Invalidation Protocol

• 2-State Protocol
+ Simple hardware and p rotocol
– Bandwidth (every write goes on bu s!)

• 3-State Protocol (MSI)
– Modified

» one cache has valid/latest copy
» memory is stale

– Shared
» one or more caches have valid copy

– Invalid

• Must invalidate all other copies before entering
modified state

• Requires bus transaction (order and invalidate)

UPC Parallel Computer Architecture 15
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

MSI Process or and Bus Actions

• Processor:
– PrRd
– PrWr
– Writeback on replacement of modified b lock

• Bus
– Bus Read (BusRd) Read withou t intent to modify, data cou ld come

from memory or another cache
– Bus Read-Exclusive (BusRdX) Read with intent to modify, must

invalidate all other caches copies
– Writeback (BusWB) cache controller puts contents on bu s and

memory is upd ated
– Definition: cache-to-cache transfer occurs when another cache

satisfies BusRd or BusRdX request

• Let’s draw it!

Page 6

UPC Parallel Computer Architecture 16
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

MSI State Diagram

PrRd /--

M

BusRdX / BusWB
PrWr / BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

UPC Parallel Computer Architecture 17
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

An example

Proc Action P1 State P2 state P3 state Bus Act Data from
1. P1 read u S -- -- BusRd Memory

2. P3 read u S -- S BusRd Memory
3. P3 write u I -- M BusRdX Memory or not

4. P1 read u S -- S BusRd P3’s cache
5. P2 read u S S S BusRd Memory

• Single writer, multiple reader protocol
• Why Modified to Shared?
• What if not in any cache?

– Read, Write produces 2 bus transactions!

UPC Parallel Computer Architecture 18
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

4-State (MESI) Invalidation Protocol

• Often called the Illinois protocol
• Modified (dirty)
• Exclusive (clean unshared) only copy, not dirty
• Shared
• Invalid
• Requires shared signal to detect if other caches have

a copy of block
• Cache Flush for cache-to-cache transfers

– Only one can do it though

• What does state diagram look like?

Page 7

UPC Parallel Computer Architecture 19
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

More Generally: MOESI

• [Sweazey & Smith ISCA86]
• M - Modified (dirty)
• O - Owned (dirty but shared) WHY?
• E - Exclusive (clean unshared) only copy, not dirty
• S - Shared
• I - Invalid

• Variants
– MSI
– MESI
– MOSI
– MOESI

O

M

E
S

I

ownership

validity

exclusiveness

UPC Parallel Computer Architecture 20
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Tradeoffs in Protocol Design

• New State Transitions
• What Bus Transactions
• Cache block size
• Workload dependence
• Compute bandwidth, miss rates, from state

transitions

UPC Parallel Computer Architecture 21
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Computing Bandwidth

• Why bandwidth?
• How do I compute it?
• Monitor State Transitions

– tells me bus transactions
– I know how many bytes each bus transaction requires

Page 8

UPC Parallel Computer Architecture 22
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

MESI State Transitions and Bandwidth

FROM/TO NP I E S M

NP -- -- BusRd
6+64

BusRd
6+64

BusRdX
6+64

I -- -- BusRd
6+64

BusRd
6+64

BusRdX
6+64

E -- -- -- -- --

S -- -- NA -- BusUpgr
6

M BusWB
6 + 64

BusWB
6+64

NA BusWB
6 + 64

--

UPC Parallel Computer Architecture 23
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Cache Block Size

• Block s ize is un it of t ransfer and of coherence
– Doesn’t have to be, cou ld have coherence smaller [Good man]

• Uniprocessor 3C’s
– (Compulsory, Capacity, Conflict)

• SM adds Coherence Miss Type
– True Sharing miss fetches data written by another processor
– False Sharing miss results from independent data in same

coherence block

• Increasing b lock s ize
– Usually fewer 3C misses but more bandwidth
– Usually more false sharing misses

• P.S. on increasing cache size
– Usually fewer capacity/conflict misses (& compulsory don ’t matter)
– No effect on true/false “coherence” misses (so may dominate)

UPC Parallel Computer Architecture 24
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

4-State Write-back Update Protocol

• Dragon (Xerox PARC)
• States

– Exclusive (E): one copy, clean, memory is up-to-date
– Shared-Clean (SC): cou ld be two or more copies, memory unknown
– Shared-Modified (SM): cou ld be two or more copies, memory stale
– Modified (M)

• Adds Bus Update Transaction
• Adds Cache Controller Update operation
• Must obtain bus before updating local copy
• What does s tate diagram look like?

– let’s look at the actions first

Page 9

UPC Parallel Computer Architecture 25
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Invalidate vs. Update

• Pattern 1:
for i = 1 to k

P1(write, x); // one write before reads
P2--PN-1(read, x);

end for i

• Pattern 2:
for i = 1 to k

for j = 1 to m
P1(write, x); // many writes before reads

end for j
P2(read, x);

end for i

UPC Parallel Computer Architecture 26
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Invalidate vs. Update, cont.

• What about real workloads?
– Update can generate too much traffic
– Must limit (e.g., competitive snooping)

• Current Assessment
– Update very hard to implement correctly

(c.f., consistency discussion coming next)
– Rarely done

• Future Assessment
– May be same as current or
– Chip multiprocessors may revive update protocols

» More intra-chip bandwidth
» Easier to have predictable timing paths?

UPC Parallel Computer Architecture 27
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Qualitative Sharing Patterns

• [Weber & Gupta, ASPLOS3]
• Read-Only
• Migratory Objects

– Maniputalated by one processor at a time
– Often protected by a lock
– Usually a write causes only a single invalidation

• Synchronization Objects
– Often more processors imply more invalidations

• Mostly Read
– More processors imply more invalidations, but writes are rare

• Frequently Read/Written
– More processors imply more invalidations

Page 10

UPC Parallel Computer Architecture 28
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Coherence vs. Consistency

• Intuition says loads should return latest value
– what is latest?

• Coherence concerns only one memory location
• Consistency concerns apparent ordering for all

locations
• A Memory System is Coherent if

– can serialize all operations to that location such that,
– operations performed by any processor appear in program order

» program order = order defined by program text or assembly
code

– value returned a read is value written by last store to that location

UPC Parallel Computer Architecture 29
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Why Coherence != Consistency

/* initial A = B = flag = 0 */
P1 P2

A = 1; while (flag == 0); /* spin */
B = 1; print A;
flag = 1; print B;

Intuition says printed A = B = 1
Coherence doesn’t say anything, why?
Consider coalescing write buffer

UPC Parallel Computer Architecture 30
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Sequential Consistency

• Lamport 1979
“A multiprocessor is sequentially consistent if the

result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program”

Page 11

UPC Parallel Computer Architecture 31
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

The Memory Model

P1 P2 Pn

switch randomly set
after each memory op

sequential
processors
issue
memory ops
in program
order

Memory

UPC Parallel Computer Architecture 32
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Definitions and Sufficient Conditions

• Sequentially Consistent Execution
– result is same as one of the possible interleavings on uniprocessor

• Sequentially Consistent System
– any possible execution corresponds to some possible total order

UPC Parallel Computer Architecture 33
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Sufficient Conditions for Sequential Consistency

• Every processor issues memory ops in program
order

• Processor must wait for store to complete before
issuing next memory operation

• After load, issuing proc waits for load to complete,
and store that produced value to complete before
issuing next op

• Easily implemented with shared bus.

Page 12

UPC Parallel Computer Architecture 34
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Synchronization

• Mutual Exclusion (critical sections)
– Lock & Unlock

• Event Notification
– point-to-point (producer-consumer, flags)
– global (barrier)

• LOCK, BARRIER
– How are these implemented?

UPC Parallel Computer Architecture 35
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Anatomy of A Synchronization Operation

• Acquire Method
– method for trying to obtain the lock, or proceed past barrier

• Waiting Algorithm
– Spin or busy wait
– Block (suspend)

• Release Method
– method to allow other processes to proceed past synchronization

event

UPC Parallel Computer Architecture 36
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

HW/SW Implementation Tradeoffs

• User wants high level (ease of programming)
– LOCK(lock_variable), UNLOCK(lock_variable)
– BARRIER(barrier_variable, Num_Procs)

• Hardware
– The Need for Speed (it’s fast)

• Software
– Flexible

• Want
– low latency
– low traffic
– Scalability
– low storage overhead
– fairness

Page 13

UPC Parallel Computer Architecture 37
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

How Not To Implement Locks

• LOCK
while(lock_variable == 1);
lock_variable = 1;

• UNLOCK
lock_variable = 0;

• Implementation requires Mutual Exclusion!
– Can have two processes successfully acquire the lock

UPC Parallel Computer Architecture 38
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Atomic Read-Modify-Write Operations

• Test&Set(r,x)
r = m[x]
m[x] = 1

• Swap(r,x)
r = m[x], m[x] = r

• Compare&Swap(r1,r2,x)
if (r1 == m[x]) then

r2 = m[x], m[x] = r2

• Fetch&Op(r,x,op)
r = m[x], m[x] = op(m[x])

• r is register

• m[x] is memory location x

UPC Parallel Computer Architecture 39
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Load-Locked Store-Conditional

• Pair of Instructions
• Load-Locked sets flag and address
• Store-Conditional fails if flag clear
• Flag is cleared on

– invalidation
– replacement
– context switch

lock: ll r1, location

sc location, r2

beqz r2, lock

ret

unlock: st location, #0

ret

Page 14

UPC Parallel Computer Architecture 40
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Alpha test & set Bit in 32-bit word

t_and_set: # arg reg a0 holds bit# to test
1: ldl_l t0, (a1) #get word to test

bis zero, 1, t1 # logical OR set t1=1
sll t1, a0, t2 # create bitmask
and t0, t2, t3 # isolate bit
bne t3, 2f # branch if already set
bis t0, t2, v0 # or in bit to be set
stl_q v0, (a1) # conditional store
beq v0, 3f # branch if store failed
mb # memory barrier
ret zero, (ra) # ret 1 (v0) if set success

2: bis zero,zero,v0 # ret 0 if bit already set
ret zero, (ra)

3: br zero, 1b # retry interlocked update

UPC Parallel Computer Architecture 41
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Performance of Test & Set

LOCK
while (test&set(x) == 1);

UNLOCK
x = 0;

• High contention (many processes want lock)
• Remember the CACHE!
• Each test&set is a read miss and a write miss

– Not fair

• Problem is?
• Waiting Algorithm!

UPC Parallel Computer Architecture 42
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Better Lock Implementations

• Two choices:
– Don’t execute test&set so much
– Spin without generating bus traffic

• Test&Set with Backoff
– Insert delay between test&set operations (not too long)
– Expenonential seems good (k*ci)
– Not fair

• Test-and-Test&Set
– Spin (test) on local cached copy until it gets invalidated, then issue

test&set
– Intuition: No point in trying to set the location until we know that it’s

not set, which we can detect when it get invalidated...
– Still contention after invalidate
– Still not fair

Page 15

UPC Parallel Computer Architecture 43
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Better Lock Implementation, cont.

• Ticket Lock
LOCK

– Obtain number via fetch&inc
– Spin on now-serving counter

Unlock
– Increment now-serving counter

• Array based Lock
– Obtain location to spin on rather than value
– Slight increase in storage
– Put locations in separate cache blocks, else same traffic as t&t&s

• Linked-List Locks
– HW: QOLB
– SW: MCS Locks

UPC Parallel Computer Architecture 44
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Point-to-Point Event Synchronization

• Often use normal variables as flags
a = f(x); while (flag == 0);
flag = 1; b = g(a);

• If we know a before hand
a = f(x) while (a == 0);

b = g(a);

• Assumes Sequential Consistency!!
• Full/Empty Bits

– Set on Write
– Cleared on Read
– Can’t write if set, can’t read if clear

UPC Parallel Computer Architecture 45
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Implementing a Centralized Barrier

BARRIER(bar_name, p) {

LOCK(bar_name.lock);
if (bar_name.counter = 0)

bar_name.flag = 0;
bar_name.counter++;
UNLOCK(bar_name.lock);
if (bar_name.counter == p) {

bar_name.counter = 0;
bar_name.flag = 1;

}
else

while(bar_name.flag = 0) {}; /* busy wait */
}

• Does this work?

Page 16

UPC Parallel Computer Architecture 46
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Barrier With Sense Reversal

BARRIER(bar_name, p) {

local_sense = !(local_sense); /* toggle private state */
LOCK(bar_name.lock);
bar_name.counter++;
UNLOCK(bar_name.lock);
if (bar_name.counter == p) {

bar_name.counter = 0;
bar_name.flag = local_sense;

}
else

while(bar_name.flag != local_sense) {}; /* busy wait */
}

UPC Parallel Computer Architecture 47
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Synchronization Algorithms

• Tournament Locks, SW Combining Tree

p1 p2 p3 p4

Pessimistic

Optimistic

UPC Parallel Computer Architecture 48
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Outline

• Motivation

• Coherence

• Coherence Tradeoffs

• Memory Consistency

• Synchronizaton

