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Review: Symmetric Multiprocesors (SMP)

• Multiple (micro-)process ors

• Each has cac he (today a cache hierarchy)

• Connect with logical bus (totally-ordered broadcast)

• Implement Snooping Cache Coherence Protocol
– Broadcast all cache “ misses” on bu s
– All caches “ snoop ” bus and may act
– Memory respond s otherwise
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Review: Snoopy Design Choices

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

• Controller upd ates s tate of 
blocks in respon se to process or 
and snoop events and 
generates bus xactions

• Often have dup licate cache tags
• Snoop y protocol

– set of states
– state-transition d iagram
– actions

• Basic Choices
– write-through vs. write-back
– invalidate vs. upd ate

Cache
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Review: MSI State Diagram

PrRd /--

M

BusRdX / BusWB
PrWr / BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --
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But in More Detail ...

• How does memory know another cache will respond 
so it need not?

• Is it okay a cache miss is not an atomic event
(check tags, queue for bus, get bus, etc.)?

• What about L1/L2 caches & split transactions buses?

• Is deadlock a problem?

• What happens on a PTE update with multiple TLBs?

• Can one use virtual caches in SMPs?
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Outline

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

• Deadlock, Livelock, & Starvation

• Case Studies

• TLB Coherence

• Virtual Cache Issues
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Snooping SMP Design Goals

• Goals
– Correctness
– High Performance
– Minimal Hardware => reduced complexity & cost

• Often at odds
– High Performance

=> multiple outstanding low-level events
=> more complex interactions
=> more potential correctness bugs 
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Base Cache Coherence Design

• Single-level write-back cache
• Invalidation protocol
• One outstanding memory request per processor
• Atomic memory bus transactions

– no interleaving of  transactions 

• Atomic operations within process
– one finishes before next in program order

• Examine write serialization, completion, 
atomicity

• Then add more concurrency and re-examine
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Cache Controller and Tags

• On a miss in uniprocessor:
– Assert request for bus
– Wait for bus grant
– Drive address and command lines
– Wait for command to be accepted by relevant device
– Transfer data

• In snoop-based multiprocessor, cache controller must: 
– Monitor bus and processor

» Can view as two controllers: bus-side, and processor-side
» With single-level cache: dual tags (not data) or dual-ported tag RAM
» synchronize on updates

– Respond to bus transactions when necessary



Page 4

UPC Parallel Computer Architecture 10
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Reporting Snoop Results: How?

• Collective response from caches must appear on b us
• Wired-OR signals

– Shared: asserted if any cache has a copy
– Dirty/Inhibit: asserted if some cache has a dirty copy

» needn’t know which, since it will do what’s necessary
– Snoop -valid: asserted when OK to check other two signals

• May require priority scheme for cache-to-cache 
transfers

– Which cache shou ld supp ly data when in shared state?
– Commercial implementations allow memory to provide data
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Reporting Snoop Results: When?

• Memory needs to know what, if anything, to do

• Fixed number of clocks from address appearing o n 
bus

– Dual tags required to reduce contention with process or
– Still must be conservative (upd ate both on write: E -> M)
– Pentium Pro, HP servers, Sun Enterprise

• Variable delay
– Memory ass umes cache will supp ly data till all say “sorry”
– Less c onservative, more flexible, more complex
– Memory can fetch data early and ho ld (SGI Challenge)

• Immediately: Bit-per-block in memory
– H/W complexity in commodity main memory system
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Writebacks

• Must allow process or to proceed on a miss
– fetch the block
– perform writeback later

• Need writebuffer
– Must handle bus transactions in write buffer
– Snoop writebuffer
– Must care abou t the order of reads and writes
– Revisit in Adve’s tutorial
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Base Organization

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data

Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller
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Non-Atomic State Transitions

• Operations involve multiple actions 
– Loo k up cache tags
– Bus arbitration
– Check for writeback
– Even if bus is atomic, overall set of actions is not
– Race cond itions among multiple operations

• Suppose P1 and P2 attempt to write cached block A
– Each decides to issue BusUpgr to allow S –> M

• Issues
– Handle requests for other blocks while waiting to acquire bus 
– Must handle requests for this block A
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Non-Atomicity =>Transient States

Two types of states
• Stable (e.g. MESI)
• Transient or Intermediate

Increases complexity

P r W r /—

B u s G r a n t / B u s U p g r

B u s R d / F lu s h

B u s G r a n t /  

B u s R d X / F lu s h

B u s G r a n t / B u s R d X

P r R d / B u s R e q

P r W r /—

P r R d / —

P r R d /—
B u s R d /F lu s h′

E

M

I

S

P r R d / —

B u s R d  ( S )

P r W r /B u s R e q

I  →  M

S  →  M

P r W r /  
B u s R e q

B u s R d X /F lu s h′  

I  →  S ,E

B u s R d X /F l u s h

B u s R d X / F lu s h′

B u s G r a n t /  
B u s R d  ( S) B u s R d /F l u s h
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Serialization and Ordering

• Let A and flag be 0

• P1 P2
• A += 5 while (flag == 0)
• flag = 1 print A

• Assume A and flag are in different cache blocks
• What happens?
• How do you implement it correctly?
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Serialization and Ordering

• Processor-cache handshake must preserve 
serialization 

• e.g. write to S state=> first obtain ownership
• why?
• Write completion for SC => need bus invalidation: 

– Wait to get bus, can proceed afterwards

• Must serialize bus operations in program order
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Multi-level Cache Hierarchies

• How to snoop with multi-level caches?
– independent bus snooping at every level?
– maintain cache inclusion

• Requirements for Inclusion
– data in higher-level is subset of data in lower-level 
– modified in higher-level => marked modified in lower-level

• Now only need to snoop lowest-level cache
– If L2 says not present (modified), then not so in L1

• Is inclusion automatically preserved
– Replacements: all higher-level misses go to lower level
– Modifications
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Violations of Inclusion

• The two caches (L1, L2) may choose to replace different 
block

– Differences in reference history
» set-associative first-level cache with LRU replacement

– Split higher-level caches
» instruction, data blocks go in different caches at L1, but collide in 

L2
» what if L2 is set-associative?

– Differences in block size

• But a common case works automatically
– L1 direct-mapped, fewer sets than in L2, and block size same
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Inclusion to be or not to be

• Most common inclusion solution
– Ensure L2 holds superset of L1I and L1D
– On L2 replacement or coherence request that must source data or 

invalidate, forward actions to L1 caches
– Can maintain bits in L2 cache to filter some actions from forwarding
– virtual L1 / physical [Wang, et al., ASPLOS87]
–

• But
– Restricted associativity in unified L2 can limit blocks in split L1’s
– “Backside” L2  (bus -L1-processor-L2) makes filtering awkward
– Not that hard to always snoop L1’s

• Thus, many new designs don’t maintain inclusion
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Split-transaction (Pipelined) Bus

• Supports multiple simultaneous transactions (many 
designs)

Req
Delay

Response

Atomic Transaction Bus

Split-transcation Bus
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Potential Problems

• Two transactions to same block (conflicting) 
– Mid-transaction snoop hits

• Buffer requests and responses
– Need flow control to prevent deadlock

• Ordering of Snoop responses
– when does snoop response appear wrt data response
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One Solution

• NACK for flow control
• Out-of-order responses

– snoop results presented with data response

• Disallow conflicting transactions
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A Split-transaction Bus Design

• 4 Buses + Flow Control and Snoop Results
– Command (type of xaction)
– Address
– Tag (unique identifier for response)
– Data (doesn’t require address)

• Form of transactions
– BusRD, BusRDX (request + response)
– Writeback (request + data)
– Upgrade (request only)

• Per Processor Request Table Tracks All Transactions
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A Simple Example

4,x 4,x 4,x
ld x ld xst x

P2 Can snoop data from first ld
P1 Must hold st operation until entry is clear

P0 P1 P2
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Multi-Level Caches with Split Bus

Response Processor request

Request/response
to bus

L1 $

L2 $

1

27

8

Processor

Bus

L1 $

L2 $

5

63

4

Processor

Response/
request
from bus

Response/
request
from L2 to L1

Response/
request
from L1 to L2
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Multi-level Caches with Split-Transaction Bus

• General structure uses queues between
– Bus and L2 cache
– L2 cache and L1 cache

• Deadlock!
• Classify all transactions

– Request, only generates responses
– Response, doesn’t generate any other transactions

• Requestor guarantees space for all responses
• Use Separate Request and Response queues
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B

A

More on Correctness

• Partial correctness (never wrong):
Maintain coherence and consistency

• Full correctness (always right): Prevent:
• Deadlock: 

– all system activity ceases
– Cycle of resource dependences

• Livelock: 
– no processor makes forward progress 
– constant on-going transactions at hardware level
– e.g. simultaneous writes in invalidation-based protocol

• Starvation: 
– some processors make no forward progress
– e.g. interleaved memory system with NACK on bank busy
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Deadlock, Livelock, Starvation

• Request-reply protocols can lead to deadlock
– When issuing requests, must service incoming transactions
– e.g. cache awaiting bus grant must snoop & flush blocks
– else may not respond to request that will release bus: deadlock

• Livelock: 
– window of vulnerability problem [Kubi et al., MIT]
– Handling invalidations between obtaining ownership & write
– Solution: don’t let exclusive ownership be stolen before write

• Starvation: 
– solve by using fair arbitration on bus and FIFO buffers
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Deadlock Avoidance

• Responses are never delayed by requests waiting for 
a response

• Responses are guaranteed to be sunk
• Requests will eventually be serviced since the 

number of responses is bounded by outstanding 
requests

• Must classify transactions according to deadlock and 
coherence semantics

– e.g., ordering of BusRD response (Bdata) and BInval
– Treat both Bdata and Binval as requests (go in same queue)
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SUN Enterprise 6000 Overview

• Up to 30 UltraSPARC processors, MOESI protocol
• GigaplaneTM bus has peak bw 2.67 GB/s, 300 ns 

latency
• Up to 112 outstanding transactions (max 7 per board)
• 16 bus slots, for processing or I/O boards 

– 2 CPUs and 1GB memory per board
» memory distributed, but protocol treats as centralized (UMA)

Gigaplane TM bus (256 data, 41 address, 83 MHz)

I/O Cards

P

$2

$
P

$2

$

mem ctrl

Bus Interf ace / Switch
Bus Interface

CPU/Mem
Cards
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Sun Gigaplane Bus
• Non-multiplexed, split-transaction, 256-data/41-

address, 83.5 MHz (Plus 32 ECC lines, 7 tag, 18 
arbitration, etc.  Total 388)

• Cards plug in on both sides: 8 per side
• 112 outstanding transactions, up to 7 from each board

– Designed for multiple outstanding transactions per processor

• Emphasis on reducing latency, unlike Challenge
– Speculative arbitration if address bus not scheduled from prev. cycle

– Else regular 1-cycle arbitration, and 7-bit tag assigned in next cycle

• Snoop result associated with request (5 cycles later)
• Main memory can stake claim to data bus 3 cycles into 

this, and start memory access speculatively
– Two cycles later, asserts tag bus to inform others of coming transfer

• MOESI protocol
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Gigaplane Bus Timing

Arbitration

Address

State

Tag

Status

Data

1

Rd A Tag

A D A D A D A D A D A D A D A D

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Share ~Own

Tag

OK

D0 D1

4,5

Rd B Tag

Own

Tag

6

Cancel

Tag

7
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Enterprise Processor and Memory System

• 2 procs / board, ext. L2 caches, 2 mem banks w/ x-bar
• Data lines buffered through UDB to drive internal 1.3 

GB/s UPA bus
• Wide path to memory so full 64-byte line in 2 bus cycles

UltraSparc

L2 $ Tags

UDB

L2 $ Tags

UDB

Address controller Data controller (crossbar)

Memory (16 × 72-bit SIMMS)

D-tags

576144

Gigaplane connector

Control Address Data 288

Address controller Data controller (crossbar)

Gigaplane connector

Control Address Data 288

72

SysIO SysIO

SBUS
25 MHz 64

SBUS slots

Fast wide 
SCSI

10/100 
Ethernet

FiberChannel
module (2)

UltraSparc
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Enterprise I/O System

• I/O board has same bus interface ASICs as processor 
boards

• But internal bus half as wide, and no memory path
• Only cache block sized transactions, like processing 

boards
– Uniformity simplifies design
– ASICs implement single-block cache, follows coherence protocol

• Two independent 64-bit, 25 MHz Sbuses
– One for two dedicated FiberChannel modules connected to disk
– One for Ethernet and fast wide SCSI
– Can also support three SBUS interface cards for arbitrary 

peripherals

• Performance and cost of I/O scale with no. of I/O 
boards
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Memory Access Latency
• 300ns read miss latency (130 ns on bus)
• Rest is path through caches & the DRAM access
• TLB misses add 340 ns
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Sun Enterprise 10000

• How far can you go with snooping coherence?
• Quadruple request/snoop bandwidth using four 

address busses
– each handles 1/4 of physical address space
– impose logical ordering for consistency: for writes on same cycle, 

those on bus 0 occur “before” bus 1, etc.

• Get rid of data bandwidth problem: use a network
– E10000 uses 16x16 crossbar betw. CPU boards & memory boards
– Each CPU board has up to 4 CPUs: max 64 CPUs total

• 10.7 GB/s max BW, 468 ns unloaded miss latency
• See “Starfire: Extending the SMP Envelope”, IEEE 

Micro, Jan/Feb 1998
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Outline

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

• Deadlock, Livelock, & Starvation

• Case Studies

• TLB Coherence

• Virtual Cache Issues
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Translation Lookaside Buffer

• Cache of Page Table Entries
• Page Table Maps Virtual Page to Physical Frame

0

4

7 7

4

3

Virtual Address Space Physical Address Space
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The TLB Coherence Problem

• Since TLB is a cache, must be kept coherent
• Change of PTE on one processor must be seen by all 

processors
• Process migration
• Changes are infrequent

– get OS to do it

UPC Parallel Computer Architecture 41
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

TLB Shootdown

• To modify TLB entry, modifying processor  must
– LOCK page table,
– flush TLB entries, 
– queue TLB operations, 
– send interprocessor interrupt, 
– spin until other processors are done
– UNLOCK page table

• SLOW!

• But most common solution today
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TLB Shootdown Improvments

• Evolutionary Changes
– Keep track of which processor even had the mapping

& only shoot them down
– Defer shootdowns on “upgrade” changes

(e.g., page from read-only to read-write)
– SGI Origin “poison” bit for also deferring downgrades
– Others

• Revolutionary Changes
– “Invalidate TLB entry” instruction (e.g., PowerPC)
– No TLB (e.g., Berkeley SPUR)

» Use virtual L1 caches so address translation only on miss
» On miss, walk PTE which will often be cached
» PTE changes kept coherent by cache coherence
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Virtual Caches & Synonyms

• Problem
– Synomyms: V0 & V1 map to P1
– When doing coherence on block in P1 how do you find V0 & V1?

• Don’t do virtual caches (most common today)
• Don’t allow synonyms

– Probably use a segmented global address space
– (e.g., Berkeley SPUR had process pick 4 of 256 1BG segments)
– Still requires reverse address translation

• Allow virtual cache & synonyms
– How implement reverse address translation?
– See Wang et al. next

UPC Parallel Computer Architecture 44
(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh

Wang et al. [ISCA89]

• Basic Idea
– Extended Goodman one-level cache idea [ASPLOS87]
– Virtual L1 and physical L2
– Do coherence on physical addresses
– Each L2 block maintains pointer to corresponding L1 block (if any)

(requires log2 #L1_blocks - log2 (page_size / block_size)
– Never allow block to be simultaneously cached under synonyms

• Example where V0 & V1 map to P2
– Initially V1 in L1 and P2 in L1 points to V1
– Processor references V0
– L1 miss
– L2 detects synonym in L1
– Change L1 tag and L2 pointer so that L1 has V0 instead of V1
– Resume
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Virtual Caches & Homonyms

• Homonym
– “pool” of water and “pool” the game
– V0 of one process maps to P2, while V0 of other process maps to P3

• Flush cache on context switch
– simple but performs poorly

• Address-space IDs (ASIDs)
– in architecture & part of context state

• Mapping-valid bit of Wang et al.
– Add mapping-valid as a “second” valid bit on L1 cache block
– On context switch do “flash clear” of mapping -valid bits
– Interesting case is valid block with mapping invalid

» On processor access, re-validate mapping
» On replacement, treat as valid block (e.g., writeback)
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Outline

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

• Deadlock, Livelock, & Starvation

• Case Studies

• TLB Coherence

• Virtual Cache Issues


