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/Review: Symmetric Multiprocesors (SMP) \

* Multiple (micro-)processors
« Each has cache (today a cache hierarchy)
« Connect with logical bus (totally-ordered broadcast)

« Implement Snooping Cache Coherence Protocol
— Broadcast all cache “misses” onbus
— All caches “snoop” bus and may act
— Memory respond s otherwise

\_ /
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/ Review: Snoopy Design Choices \

.

Controller upd ates state of
blocks in response to processor Pprocessor
and snoop events and Id/st
generates bus xactions

Often have duplicate cache tags
Snoopy protocol
— set of states
— state-transition diagram
— actions
Basic Choices
— write-through vs. write-back Snoop (observed bus transaction)
— invalidate vs. upd ate

.

\_ /
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/ Review: MSI State Diagram
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/ But in More Detail ...

=

so it need not?

« Is it okay a cache miss is not an atomic event
(check tags, queue for bus, get bus, etc.)?

« Is deadlock a problem?

« Can one use virtual caches in SMPs?

\

* How does memory know another cache will respond

« What about L1/L2 caches & split transactions buses?

« What happens on a PTE update with multiple TLBs?

/
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/ Outline

=

« Coherence Control Implementation

« Hierarchical Cache

« Split Buses

« Deadlock, Livelock, & Starvation
« Case Studies

« TLB Coherence

Q/irtual Cache Issues

« Writebacks, Non-Atomicity, & Serialization/Order
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/

Snooping SMP Design Goals \

N

* Goals
— Correctness
— High Performance
— Minimal Hardware => reduced complexity & cost

« Often at odds

— High Performance

=> multiple outstanding low-level events
=>more complex interactions
=>more potential correctness bugs
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/

Base Cache Coherence Design \

Single-level write-back cache

Invalidation protocol

One outstanding memory request per processor
Atomic memory bus transactions

— no interleaving of transactions

Atomic operations within process
— one finishes before next in program order

Examine write serialization, completion,
atomicity

Then add more concurrency and re-examine

N
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/

Cache Controller and Tags \

¢ On amiss in uniprocessor:
— Assert request for bus
— Wait for bus grant
— Drive address and command lines
— Wait for command to be accepted by relevant device
— Transfer data

« In snoop-based multiprocessor, cache controller must:
— Monitor bus and processor

» Can view as two controllers: bus-side, and processor-side
» With single-level cache: dual tags (not data) or dual-ported tag RAI
» synchronize on updates

— Respond to bus transactions when necessary

N
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/ Reporting Snoop Results: How? \

* Collective response from caches must appear on bus
« Wired-OR signals

— Shared: asserted if any cache has a copy

— Dirty/Inhibit: asserted if some cache has a dirty copy

» needn’t know which, since it will do what's necessary

— Snoop -valid: asserted when OK to check other two signals

« May require priority scheme for cache-to-cache
transfers
— Which cache should supply data when in shared state?
— Commercial implementations allow memory to provide data

\_ /
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/ Reporting Snoop Results: When? \

*« Memory needs to know what, if anything, to do

« Fixed number of clocks from address appearing on
bus
— Dual tags required to reduce contention with processor
— Still must be conservative (update both on write: E -> M)
— Pentium Pro, HP servers, Sun Enterprise
« Variable delay
— Memory assumes cache will supply data till all say “sorry”
— Less conservative, more flexible, more complex
— Memory can fetch data early and ho ld (SGI Challenge)

« Immediately: Bit-per-block in memory

K — H/W complexity in commodity main memory system /
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/ Writebacks \

* Must allow processor to proceed on a miss
— fetch the block

— perform writeback later

* Need writebuffer

— Must handle bus transactions in write buffer
— Snoop writebuffer

— Must care about the order of reads and writes
— Revisit in Adve's tutorial

\_ /
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/ Base Organization \

P

Data

Cache data RAM

Snoop state Data buffer
K (] [ [ systembus! | ] ] /
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/ Non-Atomic State Transitions \

e Operations involve multiple actions
— Look up cache tags
— Bus arbitration
— Check for writeback
— Even if bus is atomic, overall set of actions is not
— Race conditions among multiple operations

* Suppose P1 and P2 attempt to write cached block A
— Each decides to issue BusUpgr to allow S —>M

¢ Issues
— Handle requests for other blocks while waiting to acquire bus
— Must handle requests for this block A

\_ /
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/ Non-Atomicity =>Transient States \

Two types of states
« Stable (e.g. MESI)
- Transient or Intermediate
Increases complexity

BusGranuBusRAX

BusRAX/Flush
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/ Serialization and Ordering

. Let A and flag be O

. P1 P2

. A+=5 while (flag == 0)
. flag=1 print A

* Assume A and flag are in different cache blocks
e What happens?
* How do you implement it correctly?

N
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/ Serialization and Ordering

Processor-cache handshake must preserve
serialization

e.g. write to S state=> first obtain ownership

e why?

Write completion for SC => need bus invalidation:
— Wait to get bus, can proceed afterwards

Must serialize bus operations in program order

N
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/ Multi-level Cache Hierarchies

* How to snoop with multi-level caches?
— independent bus snooping at every level?
— maintain cache inclusion

* Requirements for Inclusion

— data in higher-level is subset of data in lower-level

— modified in higher-level => marked modified in lower-level
* Now only need to snoop lowest-level cache

— If L2 says not present (modified), then not so in L1

e Isinclusion automatically preserved
— Replacements: all higher-level misses go to lower level
— Modifications

N
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/ Violations of Inclusion \

e The two caches (L1, L2) may choose to replace different
block

— Differences in reference history
» set-associative first-level cache with LRU replacement
— Split higher-level caches
» instruction, data blocks go in different caches at L1, but collide in

» what if L2 is set-associative?
— Differences in block size

* But a common case works automatically
— L1 direct-mapped, fewer sets than in L2, and block size same

\_ /

(C) 2003 Mark D. Hill from Adve,
Falsafi, Lebeck, Reinhardt, & Singh UPC Parallel Computer Architecture 19

/ Inclusion to be or not to be \

¢ Most common inclusion solution
— Ensure L2 holds superset of L1l and L1D

— On L2 replacement or coherence request that must source data or
invalidate, forward actions to L1 caches

— Can maintain bits in L2 cache to filter some actions from forwarding
— virtual L1/ physical [Wang, et al., ASPLOS87]

* But
— Restricted associativity in unified L2 can limit blocks in split L1's

— “Backside” L2 (bus -L1-processor-L2) makes filtering awkward
— Not that hard to always snoop L1's

« Thus, many new designs don’t maintain inclusion
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/ Split-transaction (Pipelined) Bus \

« Supports multiple simultaneous transactions (many
designs)

Atomic Transaction Bus

Req
Delay
Response

Split-transcation Bus

m

\_ /
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/ Potential Problems

« Two transactions to same block (conflicting)
— Mid-transaction snoop hits

« Buffer requests and responses
— Need flow control to prevent deadlock

« Ordering of Snoop responses
— when does snoop response appear wrt data response

N
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/ One Solution

* NACK for flow control

« Out-of-order responses
— snoop results presented with data response

« Disallow conflicting transactions

N
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/ A Split-transaction Bus Design

« 4 Buses + Flow Control and Snoop Results
— Command (type of xaction)
— Address
— Tag (unique identifier for response)
— Data (doesn’t require address)
« Form of transactions
— BusRD, BusRDX (request + response)
— Writeback (request + data)
— Upgrade (request only)

N

« Per Processor Request Table Tracks All Transactions

/
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/ A Simple Example \

PO Pl P2

4 x 4x 4x

I

P2 Can snoop data from first Id
P1 Must hold st operation until entry is clear
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/ Multi-Level Caches with Split Bus \

Processor
Processor request
] | - |

:?:;ip;usr:s ®Zzspunse/ @Iﬂ/ ® %_{

from Lpto Ly from Ly to L,
LS
Request/response
@) @% e ® ©®
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Processor

Response

Response/ ——
request  —
from bus

multi-level Caches with Split-Transaction Bus\

« General structure uses queues between
— Bus and L2 cache
— L2 cache and L1 cache
« Deadlock!
« Classify all transactions
— Request, only generates responses
— Response, doesn’t generate any other transactions
« Requestor guarantees space for all responses

» Use Separate Request and Response queues

\_ /
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More on Correctness

/

« Partial correctness (never wrong):
Maintain coherence and consistency
« Full correctness (always right): Prevent:

« Deadlock: :

— all system activity ceases PR ) B
— Cycle of resource dependences - EW—
« Livelock: ‘ i
— no processor makes forward progress
— constant on-going transactions at hardware level
— e.g. simultaneous writes in invalidation-based protocol
« Starvation:

— some processors make no forward progress
— e.g. interleaved memory system with NACK on bank busy

S s
\_J
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Deadlock, Livelock, Starvation

/

=

« Request-reply protocols can lead to deadlock

— When issuing requests, must service incoming transactions

— e.g. cache awaiting bus grant must snoop & flush blocks

— else may not respond to request that will release bus: deadlock
« Livelock:

— window of vulnerability problem [Kubi et al., MIT]

— Handling invalidations between obtaining ownership & write

— Solution: don't let exclusive ownership be stolen before write
 Starvation:

— solve by using fair arbitration on bus and FIFO buffers

/
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Deadlock Avoidance

/

=

aresponse
Responses are guaranteed to be sunk

Requests will eventually be serviced since the
number of responses is bounded by outstanding
requests

coherence semantics
— e.g., ordering of BusRD response (Bdata) and Blnval
— Treat both Bdata and Binval as requests (go in same queue)

N

Responses are never delayed by requests waiting for

Must classify transactions according to deadlock and

/
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/ SUN Enterprise 6000 Overview \

CPUMem |E
Cards

i

1/0 Cards

< Gigaplane™ bus (256 data, 41 address, 83 MH2) >

« Up to 30 UltraSPARC processors, MOESI protocol

* Gigaplane™ bus has peak bw 2.67 GB/s, 300 ns
latency

« Up to 112 outstanding transactions (max 7 per board)
« 16 bus slots, for processing or /0O boards

— 2 CPUs and 1GB memory per board
K » memory distributed, but protocol treats as centralized (UMA)/
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/ Sun Gigaplane Bus \

« Non-multiplexed, split-transaction, 256-data/41-
address, 83.5 MHz (Plus 32 ECC lines, 7 tag, 18
arbitration, etc. Total 388)
Cards plug in on both sides: 8 per side
112 outstanding transactions, up to 7 from each board
— Designed for multiple outstanding transactions per processor
Emphasis on reducing latency, unlike Challenge
— Speculative arbitration if address bus not scheduled from prev. cycle
— Else regular 1-cycle arbitration, and 7-bit tag assigned in next cycle
Snoop result associated with request (5 cycles later)
Main memory can stake claim to data bus 3 cycles into
this, and start memory access speculatively

— Two cycles later, asserts tag bus to inform others of coming transfer
MOESI protocol
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/ Gigaplane Bus Timing \
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/Enterprise Processor and Memory System \

* 2 procs/board, ext. L2 caches, 2 mem banks w/ x-bar

Data lines buffered through UDB to drive internal 1.3
GB/s UPA bus

Wide path to memory so full 64-byte line in 2 bus cycles

FiberChannel 101200
Memory (16 x 72-bit SIMMS) module (2) | SBUS slots Ethemet

Fast wide
scs

Control § ¥ Address Dataly 268 Contol ¥ Address Datey 268
[ Gigaplane connector ] [ Gigapiane connector

K e vt | [onaconster s (e ot | oo mmerraosna]
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/ Enterprise I/O System \

« 1/0 board has same bus interface ASICs as processor
boards

« But internal bus half as wide, and no memory path
« Only cache block sized transactions, like processing
boards

— Uniformity simplifies design

— ASICs implement single-block cache, follows coherence protocol
« Two independent 64-bit, 25 MHz Sbuses

— One for two dedicated FiberChannel modules connected to disk

— One for Ethernet and fast wide SCSI

— Can also support three SBUS interface cards for arbitrary
peripherals

« Performance and cost of I/0 scale with no. of I/O
Qoards /
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/ Memory Access Latency \

¢ 300ns read miss latency (130 ns on bus)
* Rest is path through caches & the DRAM access
* TLB misses add 340 ns

00

s00 ||
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/ Sun Enterprise 10000 \

« How far can you go with snooping coherence?
* Quadruple request/snoop bandwidth using four
address busses
— each handles 1/4 of physical address space

— impose logical ordering for consistency: for writes on same cycle,
those on bus 0 occur “before” bus 1, etc.

* Get rid of data bandwidth problem: use a network
— E10000 uses 16x16 crossbar betw. CPU boards & memory boards
— Each CPU board has up to 4 CPUs: max 64 CPUs total

« 10.7 GB/s max BW, 468 ns unloaded miss latency

« See “Starfire: Extending the SMP Envelope”, IEEE
Micro, Jan/Feb 1998

\_ /
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« Coherence Control Implementation

« Writebacks, Non-Atomicity, & Serialization/Order
« Hierarchical Cache

« Split Buses

« Deadlock, Livelock, & Starvation

« Case Studies

« TLB Coherence

Q/irtual Cache Issues /
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/ Translation Lookaside Buffer \

« Cache of Page Table Entries
« Page Table Maps Virtual Page to Physical Frame

Virtual Address Space Physical Address Space

[ =
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/ The TLB Coherence Problem

=

« Since TLB is a cache, must be kept coherent

processors
* Process migration

« Changes are infrequent
—get OStodoit

N

« Change of PTE on one processor must be seen by all
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/ TLB Shootdown

=

« To modify TLB entry, modifying processor must
— LOCK page table,
— flush TLB entries,
— queue TLB operations,
— send interprocessor interrupt,
— spin until other processors are done
— UNLOCK page table

e SLOW!

« But most common solution today

N
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/ TLB Shootdown Improvments

=

« Evolutionary Changes

— Keep track of which processor even had the mapping
& only shoot them down

— Defer shootdowns on “upgrade” changes
(e.g., page from read-only to read-write)

— SGI Origin “poison” bit for also deferring downgrades
— Others

« Revolutionary Changes
— “Invalidate TLB entry” instruction (e.g., PowerPC)
— No TLB (e.g., Berkeley SPUR)
» Use virtual L1 caches so address translation only on miss
» On miss, walk PTE which will often be cached
» PTE changes kept coherent by cache coherence

N
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/ Virtual Caches & Synonyms \

* Problem
— Synomyms: VO & V1 map to P1
— When doing coherence on block in P1 how do you find VO & V1?

« Don't do virtual caches (most common today)
« Don’t allow synonyms
— Probably use a segmented global address space
— (e.g., Berkeley SPUR had process pick 4 of 256 1BG segments)
— Still requires reverse address translation
¢ Allow virtual cache & synonyms
— How implement reverse address translation?
— See Wang et al. next

\_ /
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/ Wang et al. [ISCA89] \

« Basic Idea
— Extended Goodman one-level cache idea [ASPLOS87]
— Virtual L1 and physical L2
— Do coherence on physical addresses

— Each L2 block maintains pointer to corresponding L1 block (if any)
(requires log2 #L1_blocks - log2 (page_size / block_size)

— Never allow block to be simultaneously cached under synonyms

« Example where VO & V1 map to P2
— Initially V1in L1 and P2 in L1 points to V1
— Processor references VO
— L1 miss
— L2 detects synonym in L1

— Change L1 tag and L2 pointer so that L1 has VO instead of V1
— Resume /
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/ Virtual Caches & Homonyms \

« Homonym
— “pool” of water and “pool” the game
— VO of one process maps to P2, while VO of other process maps to P3

« Flush cache on context switch
— simple but performs poorly
« Address-space IDs (ASIDs)
— in architecture & part of context state
* Mapping-valid bit of Wang et al.
— Add mapping-valid as a “second” valid bit on L1 cache block
— On context switch do “flash clear” of mapping -valid bits
— Interesting case is valid block with mapping invalid

» On processor access, re-validate mapping
» On replacement, treat as valid block (e.g., writeback) /
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« Coherence Control Implementation

« Writebacks, Non-Atomicity, & Serialization/Order

« Hierarchical Cache

« Split Buses

« Deadlock, Livelock, & Starvation

« Case Studies

« TLB Coherence

Q/irtual Cache Issues /
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