
Abstract

Emerging scale-out workloads require extensive amounts of
computational resources. However, data centers using modern
server hardware face physical constraints in space and power, lim-
iting further expansion and calling for improvements in the
computational density per server and in the per-operation energy.
Continuing to improve the computational resources of the cloud
while staying within physical constraints mandates optimizing
server efficiency to ensure that server hardware closely matches
the needs of scale-out workloads.

We use performance counters on modern servers to study a
wide range of scale-out workloads, finding that today’s predomi-
nant processor micro-architecture is inefficient for running these
workloads. We find that inefficiency comes from the mismatch
between the workload needs and modern processors, particularly
in the organization of instruction and data memory systems and the
processor core micro-architecture. Moreover, while today’s pre-
dominant micro-architecture is inefficient when executing scale-
out workloads, we find that continuing the current trends will fur-
ther exacerbate the inefficiency in the future. In this work, we
identify the key micro-architectural needs of scale-out workloads,
calling for a change in the trajectory of server processors that
would lead to improved computational density and power effi-
ciency in data centers.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Performance of Systems - Design studies

General Terms Design, Measurement, Performance

1 Introduction

Cloud computing is emerging as a dominant computing plat-
form for delivering scalable online services to a global client base.
Today’s popular online services, such as web search, social net-
works, and video sharing, are all hosted in large data centers. With
the industry rapidly expanding [15], service providers are building
new data centers, augmenting the existing infrastructure to meet
the increasing demand. However, while demand for cloud infra-
structure continues to grow, the semiconductor manufacturing
industry has reached the physical limits of voltage scaling [20, 24],
no longer able to reduce power consumption or increase power
density in new chips. Physical constraints have therefore become
the dominant limiting factor for data centers, because their sheer
size and electrical power demands cannot be met.

Recognizing the physical constraints that stand in the way of
further growth, cloud providers now optimize their data centers for
compute density and power consumption. Cloud providers have
already begun building server systems specifically targeting cloud
data centers, improving compute density and energy efficiency by
using high-efficiency power supplies and removing unnecessary
board-level components such as audio and graphics chips [17, 35].

Although major design changes are being introduced at the
board- and chassis-level of new cloud servers, the processors used
in these new servers are not designed to efficiently run scale-out
workloads. Processor vendors use the same underlying architecture
for servers and for the general purpose market, leading to extreme
inefficiency in today’s data centers. Moreover, both general pur-
pose (e.g., Intel and AMD) and traditional server processor (e.g.,
Sun Niagara, IBM Power7) designs follow a trajectory that bene-
fits scale-up workloads, a trend that was established long before
the emergence of scale-out workloads. Recognizing the space and
power inefficiencies of modern processors for scale-out work-
loads, some vendors and researchers conjecture that even using
processors built for the mobile space may be more efficient [13,
29, 38, 39].

In this work, we observe that scale-out workloads share many
inherent characteristics that place them into a distinct workload
class from desktop, parallel, and traditional server workloads. We
perform a detailed micro-architectural study of a range of scale-out
workloads, finding a large mismatch between the demands of the
scale-out workloads and today’s predominant processor micro-
architecture. We observe significant over-provisioning of the
memory hierarchy and core micro-architectural resources for the
scale-out workloads. Moreover, continuing the current processor
trends will result in further widening the mismatch between the
scale-out workloads and server processors. Conversely, we find
that the characteristics of scale-out workloads can be leveraged to
gain area and energy efficiency in future servers.

We use performance counters to study the behavior of scale-out
workloads running on modern server processors. Our results
demonstrate:

• Scale-out workloads suffer from high instruction-cache
miss rates. Instruction-caches and associated next-line
prefetchers found in modern processors are inadequate for
scale-out workloads.

• Instruction- and memory-level parallelism in scale-out
workloads is low. Modern aggressive out-of-order cores are
excessively complex, consuming power and on-chip area with-
out providing performance benefits to scale-out workloads.

• Data working sets of scale-out workloads considerably
exceed the capacity of on-chip caches. Processor real-estate
and power are misspent on large last-level caches that do not
contribute to improved scale-out workload performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright © 2012 ACM 978-1-4503-0759-8/12/03…$10.00.

Clearing the Clouds
A Study of Emerging Scale-out Workloads on Modern Hardware

Michael Ferdman‡, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee,
Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi

‡CALCM
Carnegie Mellon University

EcoCloud
École Polytechnique Fédérale de Lausanne

• On-chip and off-chip bandwidth requirements of scale-out
workloads are low. Scale-out workloads see no benefit from
fine-grained coherence and high memory and core-to-core
communication bandwidth.

The rest of this paper is organized as follows. In Section 2, we
provide an overview of the state-of-the-art server processors and
scale-out workloads. We provide a detailed description of our
benchmarking methodology in Section 3. We present our results in
Section 4, concentrating on the mismatch between the needs of
scale-out workloads and modern processors. We summarize
related work in Section 5 and conclude in Section 6.

2 Modern Cores and Scale-out Workloads

Today’s data centers are built around conventional desktop pro-
cessors whose architecture was designed for a broad market. The
dominant processor architecture closely followed the technology
trends, improving single-thread performance with each processor
generation by using the increased clock speeds and “free” (in area
and power) transistors provided by progress in semiconductor
manufacturing. Although Dennard scaling has stopped [12, 19, 20,
46], with both clock frequency and transistor counts becoming lim-
ited by power, processor architects have continued to spend
resources on improving single-thread performance for a broad
range of applications at the expense of area and power efficiency.

2.1 Dominant processor architectures
Modern processors comprise several aggressive out-of-order

cores connected with a high-bandwidth on-chip interconnect to a
deep (three-level) cache hierarchy. While core aggressiveness and
clock frequency scaling enabled a rapid increase in computational
performance, off-chip memory latency improvements were not as
rapid. The “memory wall”—the gap between the speed at which
cores could compute and the speed at which data could be deliv-
ered to the cores for computation—mandated that the data working
set must fit into the on-chip caches to allow the core to compute at
full speed. Modern processors therefore split the die area into two
roughly equal parts, with one part dedicated to the cores and
tightly-coupled private caches and the other dedicated to a large
shared last-level cache. The emergence of multi-core processors
offered the possibility to run computationally-intensive multi-
threaded applications, adding the requirement of fast and high-
bandwidth core-to-core communication to allow cores to compute
without incurring significant delays when operating on actively
shared data.

To leverage the increasing number of transistors on chip for
higher single-thread performance, cores are engineered to execute
independent instructions out of order (OoO), allowing the proces-
sor to temporarily bypass instructions that stall due to a cache
access. While OoO execution can improve core resource utiliza-
tion through instruction-level parallelism (ILP), the core’s
complexity increases dramatically depending on the width of the
pipeline and the size of the reorder window. Large windows
require selecting and scheduling among many instructions while
tracking all memory and register dependencies. This functionality
requires a large and power-hungry scheduler, reorder buffer, and
load-store structures. Moreover, the efficacy of growing the
instruction reorder window rapidly drops off, resulting in dimin-
ishing returns at exponentially increasing area and energy costs
with every processor generation. Notably, although wide pipelines
and large reorder windows do not harm the core performance, low-
ILP applications execute inefficiently because the area and power
costs spent on OoO execution do not yield a performance benefit.

The first-level instruction and data caches capture the primary
working set of applications, enabling low-latency access to the
most-frequently referenced memory addresses. To maintain low
access latency, the first-level cache capacity must remain small due

to hardware constraints, whereas the last-level caches can have
larger capacity, but with a higher access latency. As the size of the
last-level cache (LLC) has reached tens of megabytes in modern
processors, the access latency of the LLC has itself created a speed
gap between the first-level caches and LLC, pushing processor
designers to mitigate the gap by inserting an intermediate-size sec-
ondary cache. Additionally, to further mitigate the large LLC
latency, the number of miss-status handling registers (MSHRs) is
increased to allow for a large number of memory-reference
instructions to be performed in parallel. Like the core structures for
supporting ILP, the mechanisms to support memory-level parallel-
ism (MLP) use considerable area and energy. Increasing
parallelism in LLC and off-chip accesses can give a tremendous
performance improvement when many independent memory
accesses are available to execute, but results in poor efficiency
when executing workloads with low MLP.

To increase the core utilization when MLP is low, modern pro-
cessors add support for simultaneous multi-threading (SMT),
enabling multiple software threads to be executed simultaneously
in the same core. SMT cores operate like single-threaded cores, but
introduce instructions from two independent software threads into
the reorder window, enabling the core to find independent memory
accesses and perform them in parallel, even when both software
threads have low MLP. However, introducing instructions from
multiple software threads into the same pipeline causes contention
for core resources, limiting the performance of each thread com-
pared to when that thread runs alone.

2.2 Dominant scale-out workloads
To find a set of applications that dominate today’s cloud infra-

structure, we examined a selection of internet services based on
their popularity [2]. For each popular service, we analyzed the
class of application software used by the major providers to offer
these services, either on their own cloud infrastructure or on a
cloud infrastructure leased from a third party. We present an over-
view of the applications most commonly found in today’s clouds,
along with brief descriptions of typical configuration characteris-
tics and dataset sizes. Overall, we find that scale-out workloads
have similar characteristics; all applications we examined (1) oper-
ate on large data sets that are split across a large number of
machines, typically into memory-resident shards, (2) serve large
numbers of completely independent requests that do not share any
state, (3) have application software designed specifically for the
cloud infrastructure where unreliable machines may come and go,
and (4) use inter-machine connectivity only for high-level task
management and coordination.

Data Serving. Various NoSQL data stores [5, 10, 43] have been
explicitly designed to serve as the backing store for large-scale
web applications such as the Facebook inbox, Google Earth, and
Google Finance, providing fast and scalable storage with varying
and rapidly evolving storage schemas. The NoSQL systems split
hundreds of terabytes of data into shards and horizontally scale out
to large cluster sizes. Most operations on requested objects are per-
formed using indexes that support fast lookup and key range scans.
For simplicity and scalability, these systems are designed to sup-
port queries that can be completely executed by a single machine,
with all operations that require combining data from multiple
shards relegated to the middleware.

MapReduce. The explosion of accessible human-generated infor-
mation necessitates automated analytical processing to cluster,
classify, and filter this information. The map-reduce paradigm [9]
has emerged as a popular approach to large-scale analysis, farming
out requests to a cluster of machines that first perform filtering and
transformation of the data (map) and then aggregate the results
(reduce). A key advantage of the map-reduce paradigm is the sep-

aration of infrastructure and algorithms [3]. Users implement
algorithms using map and reduce functions and provide these
functions to the map-reduce infrastructure, which is then responsi-
ble for orchestrating the work. Because of the generality of the
infrastructure and the need to scale to thousands of independent
servers, communication between tasks is typically limited to read-
ing and writing files in a distributed file system. For example, map
tasks produce temporary files that are subsequently read by the
reduce tasks, effectively rendering all map and reduce tasks archi-
tecturally independent. Whenever possible, the map-reduce
infrastructures strive to further reduce communication by schedul-
ing the processing of data on the servers that store that data.

Media Streaming. The availability of high-bandwidth connec-
tions to home and mobile devices has made media streaming
services such as NetFlix, YouTube, and YouKu ubiquitous.
Streaming services use large server clusters to gradually packetize
and transmit media files ranging from megabytes to gigabytes in
size, pre-encoded in various formats and bit-rates to suit a diverse
client base. Sharding of media content ensures that servers fre-
quently send the same content to multiple users, enabling in-
memory caching of content by the servers. While in-memory cach-
ing is effective, the on-demand unicast nature of today’s streaming
services practically guarantees that the streaming server will work
on a different piece of the media file for each client, even when
concurrently streaming the same file to many clients.

SAT Solver. The ability to temporarily allocate compute
resources in the cloud without purchasing the infrastructure has
created an opportunity for engineers and researchers to conduct
large-scale computations. For example, complex algorithms, such
as symbolic execution, become tractable when the computation is
split into smaller sub-problems and distributed to the cloud where
a large number of SAT Solver processes are hosted. However,
unlike the traditional super-computer environment with high-band-
width low-latency dedicated interconnects and balanced memory
and compute resources, the cloud offers dynamic and heteroge-
neous resources that are loosely connected over an IP network.
Large-scale computation tasks must therefore be adapted to a
worker-queue model with centralized load balancing that rebal-
ances tasks across a dynamic pool of compute resources,
minimizing the amount of data exchanged between the workers
and load balancers and practically eliminating any communication
between workers.

Web Frontend. Web services are hosted in the cloud to achieve
high fault-tolerance and dynamic scalability. Although many web
stacks are used in the cloud, the underlying service architectures
are similar. A load balancer distributes independent client requests
across a large number of stateless web servers. The web servers
either directly serve static files or pass the requests to stateless
middleware scripts, written in high-level interpreted or byte-code
compiled languages, which then produce dynamic content. All
state is stored by the middleware in backend databases such as
NoSQL data stores or traditional relational database servers.

Web Search. Web search engines, such as those powering Google
and Microsoft Bing, index terabytes of data harvested from online
sources. To support a large number of concurrent latency-sensitive
search queries against the index, the data is split into memory-resi-
dents shards, with each index serving node (ISN) responsible for
processing requests to its own shard. A frontend machine sends
index search requests to all ISNs in parallel, collects and sorts the
responses, and sends a formatted reply to the requesting client.
Hundreds of unrelated search requests are handled by each ISN
every second, with minimal locality; shards are therefore sized to
fit into the memory of the ISNs to avoid reducing throughput and

degrading quality of service due to disk I/O. For performance scal-
ability, ISNs may be replicated, allowing the frontend to load
balance requests among multiple ISNs that are responsible for the
same shard. ISNs communicate only with the frontend machines
and never to other ISNs. In an ISN, each request is handled by a
software thread, without communicating with other threads.

3 Methodology

We conduct our study on a PowerEdge M1000e enclosure [11]
with two Intel X5670 processors and 24GB of RAM in each blade.
Each Intel X5670 processor includes six aggressive out-of-order
processor cores with a three-level cache hierarchy: the L1 and L2
caches are private to each core, while the LLC (L3) is shared
among all cores. Each core includes several simple stride and
stream prefetchers labelled as adjacent-line, HW prefetcher, and
DCU streamer in the processor documentation and system BIOS
settings. The blades use high-performance Broadcom server NICs
with drivers that support multiple transmit queues and receive-side
scaling. The NICs are connected by a built-in M6220 switch. For
bandwidth-intensive benchmarks, two gigabit NICs are used in
each blade. Table 1 summarizes the key architectural parameters of
the systems.

We benchmark a suite of scale-out workloads alongside tradi-
tional benchmarks, including desktop (SPECint), parallel
(PARSEC), enterprise web (SPECweb09), and relational database
server (TPC-C, TPC-E, Web Backend) workloads. For all but the
TPC-E benchmark, we use CentOS 5.5 with the 2.6.32 Linux ker-
nel. For the TPC-E benchmark, we use Microsoft Windows Server
2008 Release 2.

3.1 Measurement tools and methodology
We analyze architectural behavior using Intel VTune [26], a

tool that provides an interface to the processor performance coun-
ters. For all scale-out and traditional server workloads except SAT
Solver, we perform a 180-second measurement after the workload
completes the ramp-up period and reaches a steady state. Because
SAT Solver has no steady-state behavior, we achieve comparable
results across runs by re-using input traces. We create SAT Solver
input traces that take 45 minutes to execute in our baseline setup
and use the first 30 minutes as warmup and the last 15 minutes as
the measurement window. We measure the entire execution of the
PARSEC and SPEC CINT2006 applications.

For our evaluation, we limit all workload configurations to four
cores, tuning the workloads to achieve high utilization of the cores
(or hardware threads, in the case of the SMT experiments) while
maintaining the workload QoS requirements. To ensure that all

Table 1. Architectural parameters.

Processor 32nm Intel Xeon X5670,
operating at 2.93GHz

CMP width 6 OoO cores

Core width 4-wide issue and retire

Reorder buffer 128 entries

Load/Store buffer 48/32 entries

Reservation stations 36 entries

L1 cache 32KB, split I/D, 4-cycle access latency

L2 cache 256KB per core,
6-cycle access latency

LLC (L3 cache) 12MB, 29-cycle access latency

Memory 24GB, 3 DDR3 channels,
delivering up to 32GB/s

application and operating system software runs on the cores under
test, we disable all unused cores using the available operating sys-
tem mechanisms.

We note that computing a breakdown of the execution-time
stall components of superscalar out-of-order processors cannot be
performed precisely due to overlapped work in the pipeline [14,
28]. We present execution-time breakdown results based on the
performance counters that have no overlap. However, we plot
memory cycles side-by-side rather than in a stack to indicate the
potential overlap with cycles during which instructions were com-
mitted. We compute the memory cycles as a sum of the cycles
when an off-core request was outstanding, instruction stall cycles
contributed by L2 instruction hits, second-level TLB miss cycles,
and the first-level instruction TLB miss cycles. Because data stalls
can overlap other data stalls, we compute the number of cycles
when an off-core request was outstanding using MSHR occupancy
statistics, which measure the number of cycles when there is at
least one L2 miss being serviced. We do not include L1-D and L2
data cache hits in the computation because they are effectively hid-
den by the out-of-order core [27].1

We perform a cache sensitivity analysis by dedicating two
cores to cache-polluting threads. The polluter threads traverse
arrays of predetermined size in a pseudo-random sequence, ensur-
ing that all accesses miss in the upper-level caches and reach the
LLC. We use performance counters to confirm that the polluter
threads achieve nearly 100% hit ratio in the LLC, effectively
reducing the cache capacity available for the workload running on
the remaining cores of the same processor.

To measure the frequency of read-write sharing, we execute the
workloads on cores split across two physical processors in separate
sockets. When reading a recently-modified block, this configura-
tion forces accesses to actively-shared read-write blocks to appear
as off-chip accesses that hit in a remote processor cache.

3.2 Scale-out workload experimental setup

Data Serving. We benchmark the Cassandra 0.7.3 database with a
15GB Yahoo! Cloud Serving Benchmark (YCSB) dataset. Server
load is generated using the YCSB 0.1.3 client [7] that sends
requests following a Zipfian distribution with a 95:5 read to write
request ratio. Cassandra is configured with a 7GB Java heap and
400MB new-generation garbage collector space.

MapReduce. We benchmark a node of a four-node Hadoop 0.20.2
cluster, running the Bayesian classification algorithm from the
Mahout 0.4 library [3]. The algorithm attempts to guess the coun-
try tag of each article in a 4.5GB set of Wikipedia pages. One map
task is started per core and assigned a 2GB Java heap.

Media Streaming. We benchmark the Darwin Streaming Server
6.0.3, serving videos of varying duration, using the Faban driver
[23] to simulate the clients. We limit our setup to low bit-rate video
streams to shift stress away from network I/O.

SAT Solver. We benchmark one instance per core of the Klee SAT
Solver, an important component of the Cloud9 parallel symbolic
execution engine [6]. Input traces for the engine are produced by
Cloud9 by symbolically executing the command-line printf utility
from the GNU CoreUtils 6.10 using up to four 5-byte and one 10-
byte symbolic command-line arguments.

Web Frontend. We benchmark a frontend machine serving Olio, a
Web 2.0 web-based social event calendar. The frontend machine
runs Nginx 1.0.10 with a built-in PHP 5.3.5 module and APC 3.1.8

PHP opcode cache. We generate a backend dataset using the
Cloudstone benchmark [40] and use the Faban driver [23] to simu-
late clients. To limit disk space requirements, we generate a 12GB
on-disk file dataset and modify the PHP code to always serve files
from the available range.

Web Search. We benchmark an index serving node (ISN) of the
distributed version of Nutch 1.2/Lucene 3.0.1 with an index size of
2GB and data segment size of 23GB of content crawled from the
public internet. We mimic real-world setups by making sure that
the search index fits in memory, eliminating page faults and mini-
mizing disk activity [38]. We simulate clients using the Faban
driver. The clients are configured to achieve the maximum search
request rate while ensuring that 90% of all search queries complete
in under 0.5 seconds.

3.3 Traditional benchmark experimental setup

PARSEC 2.1. We benchmark the official applications with the
native input, reporting results averaged across all benchmarks. We
present results averaged into two groups, cpu-intensive (cpu) and
memory-intensive (mem) benchmarks.

SPEC CINT2006. We benchmark the official applications run-
ning with the first reference input, reporting results averaged
across all benchmarks. Similarly to PARSEC, we separately pres-
ent cpu-intensive (cpu) and memory-intensive (mem) applications.

SPECweb09. We benchmark the e-banking workload running on
the Nginx 1.0.1 web server with an external FastCGI PHP 5.2.6
module and APC 3.0.19 PHP opcode cache. We disable connection
encryption (SSL) when running SPECweb09 to allow for better
comparison to the Web Frontend workload.

TPC-C. We benchmark the TPC-C workload on a commercial
enterprise database management system (DBMS). The database
load is generated by 32 clients configured with zero think time and
running on a separate machine. The TPC-C database has 40 ware-
houses. The DBMS is configured with a 3GB buffer pool and
direct I/O.

TPC-E. We benchmark the TPC-E 1.12 workload on a commer-
cial enterprise database management system (DBMS). The client
driver runs on the same machine, bound to a core that is not used
by the database software. The TPC-E database contains 5000 cus-
tomer records (52GB). The DBMS is configured with a 10GB
buffer pool.

Web Backend. We benchmark a machine executing the database
backend of the Web Frontend benchmark presented above. The
backend machine runs the MySQL 5.5.9 database engine with a
2GB buffer pool.

3.4 I/O infrastructure
Data-intensive scale-out workloads and traditional database

server workloads exhibit a significant amount of disk I/O, with a
large fraction of the non-sequential read and write accesses scat-
tered throughout the storage space. If the underlying I/O
bandwidth is limited, either in raw bandwidth or in I/O operation
throughput, the I/O latency is exposed to the system, resulting in
an I/O-bound workload where the CPU is underutilized and the
application performance unnecessarily suffers.

To isolate the CPU behavior of the applications, our experi-
mental setup over-provisions the I/O subsystem to avoid an I/O
bottleneck. To avoid bringing up disk arrays containing hundreds
of disks and flash devices, as it is traditionally done with large-
scale database installations [44], we construct a network-attached
iSCSI storage array by creating large RAM disks in separate
machines and connect the machine under test to the iSCSI storage
via the high-speed ethernet network. This approach places the

1. In the processors we study, we measure the occupancy statistics of the
super queue structure, which tracks all accesses that miss in the L1 caches.

entire dataset of our applications in the memory of the remote
machines, creating an illusion of a large disk cluster with
extremely high I/O bandwidth and low latency.

4 Results

We begin exploring the micro-architectural behavior of scale-
out workloads through examining the commit-time execution
breakdown in Figure 1. We classify each cycle of execution as
Committing if at least one instruction was committed during that
cycle or as Stalled otherwise. Overlapped with the execution-time
breakdown, we show the Memory cycles bar, which approximates
the number of cycles when the processor could not commit instruc-
tions due to outstanding long-latency memory accesses.

The execution-time breakdown of scale-out workloads is domi-
nated by stalls in both application code and operating system.
Notably, most of the stalls in scale-out workloads arise due to
long-latency memory accesses. This behavior is in contrast to the
cpu-intensive desktop (SPECint) and parallel (PARSEC) bench-
marks, which stall execution significantly less than 50% of the
cycles and experience only a fraction of the stalls due to memory
accesses. Furthermore, although the execution-time breakdown of
some scale-out workloads (e.g., MapReduce and SAT Solver)
appears similar to the memory-intensive PARSEC and SPECint
benchmarks, the nature of the stalls of these workloads is different.
Unlike the scale-out workloads, many PARSEC and SPECint
applications frequently stall due to pipeline flushes after wrong-
path instructions, with much of the memory access time not on the
critical path of execution.

Scale-out workloads show memory system behavior that more
closely matches traditional online transaction processing work-
loads (TPC-C, TPC-E, and Web Backend). However, we observe
that scale-out workloads differ considerably from traditional
online transaction processing (TPC-C) which spends over 80% of
the time stalled due to dependent memory accesses.2 We find that
scale-out workloads are most similar to the more recent transaction
processing benchmarks (TPC-E and Web Backend) that use more
complex data schemas or perform more complex queries than tra-
ditional transaction processing. We also observe that a traditional
enterprise web workload (SPECweb09) behaves differently from
the Web Frontend workload, representative of modern scale-out
configurations. While the traditional web workload is dominated
by serving static files and a small number of dynamic scripts, mod-

ern scalable web workloads like Web Frontend handle a much
higher fraction of dynamic requests, leading to higher core utiliza-
tion and less OS involvement.

Although the behavior across scale-out workloads is similar,
the class of scale-out workloads as a whole differs significantly
from other workloads. Processor architectures optimized for desk-
top and parallel applications are not optimized for scale-out
workloads that spend the majority of their time waiting for cache
misses, resulting in a clear micro-architectural mismatch. At the
same time, architectures designed for workloads that perform only
trivial computation and spend all of their time waiting on memory
(e.g., SPECweb09 and TPC-C) also cannot cater to scale-out work-
loads. In the rest of this section, we provide a detailed analysis of
the inefficiencies of running scale-out workloads on modern
processors.

4.1 Frontend inefficiencies
• Cores idle due to high instruction-cache miss rates
• L2 caches increase average I-fetch latency
• Excessive LLC capacity leads to long I-fetch latency

Instruction-fetch stalls play a critical role in system perfor-
mance by preventing the core from making forward progress due
to a lack of instructions to execute. Frontend stalls serve as a fun-
damental source of inefficiency for both area and power, as the
core real-estate and power consumption are entirely wasted for the
cycles that the frontend spends fetching instructions. Figure 2 pres-
ents the L1-I and L2 instruction miss rates of our workloads. In
addition to the application instruction-cache miss rates, we present
the miss rates for the operating system, averaged across workloads
that spend significant time executing operating system code.

We find that, in contrast to desktop and parallel workloads, the
instruction working sets of many scale-out workloads considerably
exceed the L1-I cache capacity, resembling the instruction-cache
behavior of traditional server workloads. It is worth pointing out
that, although the Media Streaming application instruction work-
ing set fits into the L2 cache, this workload spends more than 50%
of its time executing operating system code. As a result, the aggre-
gate instruction miss rate for this workload is high and cannot be
satisfied by the L2 cache.

We note that the operating system behavior differs between the
scale-out workloads and traditional server systems. Although
many scale-out workloads actively use the operating system, the
functionality exercised by the scale-out workloads is more
restricted. Both L1-I and L2 operating system instruction cache
miss rates across the scale-out workloads are lower compared to
traditional server workloads, indicating a smaller operating system
instruction working set in scale-out workloads.

2. In addition to instructions and data, TPC-C includes 14% Request-For-
Ownership memory cycles. These accesses are not on the critical path, but
are part of the memory cycles that appear in Figure 1.

0%

25%

50%

75%

100%
To

ta
l E

xe
ut

io
n

C
yc

le
s

Stalled (OS) Stalled (Application) Committing (Application) Committing (OS) Memory

Figure 1. Execution-time breakdown and memory cycles of scale-out workloads (left) and traditional benchmarks (right).

Stringent access-latency requirements of the L1-I caches pre-
clude increasing the size of the caches to capture the instruction
working set of many scale-out workloads, which is an order of
magnitude larger than the caches found in modern processors. We
find that modern processor architectures cannot tolerate the latency
of L1-I cache misses, avoiding frontend stalls only for applications
whose entire instruction working set fits into the L1 cache. Fur-
thermore, the high L2 instruction miss rates indicate that the L1-I
capacity experiences a significant shortfall and cannot be mitigated
by the addition of a modestly-sized L2 cache.

The disparity between the needs of the scale-out workloads and
the processor architecture are apparent in the instruction-fetch
path. Although exposed instruction-fetch stalls serve as a key
source of inefficiency under any circumstances, the instruction-
fetch path of modern processors actually exacerbates the problem.
The L2 cache experiences high instruction miss rates, increasing
the average fetch latency of the missing fetch requests by placing
an additional intermediate lookup structure on the path to retriev-
ing instruction blocks from the LLC. Moreover, the entire
instruction working set of any scale-out workload is considerably
smaller than the LLC capacity. However, because the LLC is a
large cache with a large uniform access latency, it contributes an
unnecessarily large instruction-fetch penalty (29 cycles to access
the 12MB cache).

Implications To improve efficiency and reduce frontend stalls,
processors built for scale-out workloads must bring instructions
closer to the cores. Rather than relying on a deep hierarchy of
caches, a partitioned organization that replicates instructions and
makes them available close to the requesting cores [21] is likely to
considerably reduce frontend stalls. To effectively use the on-chip
real-estate, the system would need to share the partitioned instruc-
tion caches among multiple cores, striking a balance between the
die area dedicated to replicating instruction blocks and the latency
of accessing these blocks from the closest cores.

Furthermore, although modern processors include next-line
prefetchers, high instruction-cache miss rates and significant fron-
tend stalls indicate that the prefetchers are ineffective for scale-out
workloads. Scale-out workloads are written in high-level lan-
guages, use third-party libraries, and execute operating system
code, exhibiting complex non-sequential access patterns that are
not captured by simple next-line prefetchers. Including instruction
prefetchers that predict these complex patterns is likely to improve
overall processor efficiency by eliminating wasted cycles due to
frontend stalls.

4.2 Core inefficiencies
• Low ILP precludes effectively using the full core width
• ROB and LSQ are underutilized due to low MLP

Modern processors execute instructions out of order to enable
simultaneous execution of multiple independent instructions per
cycle. Additionally, out-of-order execution elides stalls due to
memory accesses by executing independent instructions that fol-
low a memory reference while the long-latency cache access is in
progress. Modern processors support up to 128-instruction win-
dows, with the width of the processor dictating the number of
instructions that can simultaneously execute in one cycle.

In addition to exploiting ILP, large instruction windows can
exploit memory-level parallelism (MLP) by finding independent
memory-accesses within the instruction window and performing
the memory accesses in parallel. The latency of LLC hits and off-
chip memory accesses cannot be hidden by out-of-order execution;
achieving high MLP is therefore key to achieving high core utiliza-
tion by reducing the data access latency.

Modern processors use 4-wide cores that can decode, issue,
execute, and commit up to four instructions on each cycle. How-
ever, in practice, instruction-level parallelism (ILP) is limited by
dependencies. The Baseline bars in Figure 3 (left) show the aver-
age number of instructions committed per cycle when running on
an aggressive 4-wide out-of-order core. Despite the abundant
availability of core resources and functional units, scale-out work-
loads achieve a modest application IPC, typically in the range of
0.6 (Media Streaming) to 1.1 (Web Frontend). Although workloads
that can benefit from wide cores exist, with some cpu-intensive
PARSEC and SPECint applications reaching an IPC of 2.0 (indi-
cated by the range bars in the figure), using wide processors for
scale-out applications does not yield significant benefit.

Modern processors have 48-entry load-store queues, enabling
up to 48 memory-reference instructions in the 128-instruction win-
dow. However, just as instruction dependencies limit ILP, address
dependencies limit MLP. The Baseline bars in Figure 3 (right)
present the MLP, ranging from 1.4 (Web Frontend) to 2.3 (SAT
Solver) for the scale-out workloads. These results indicate that the
memory accesses in scale-out workloads are replete with complex
dependencies, limiting the MLP that can be found by modern
aggressive processors. We again note that while desktop and paral-
lel applications can use high-MLP support, with some PARSEC
and SPECint applications having an MLP up to 5.0, support for
high MLP is not useful for scale-out applications. However, we
find that scale-out workloads generally exhibit higher MLP than
traditional server workloads.

0

25

50

75

100
In

st
ru

ct
io

n
m

is
se

s
pe

r k
-In

st
ru

ct
io

n
141 122L1-I (Application) L2 (Application) L1-I (OS) L2 (OS)

Figure 2. L1-I and L2 instruction cache miss rates for scale-out workloads (left) and traditional benchmarks (right). The OS bars present
the instruction cache miss rates of the workloads that spend significant time executing operating system code.

Support for 4-wide out-of-order execution with a 128-instruc-
tion window and up to 48 outstanding memory requests requires
multiple-branch prediction, numerous ALUs, forwarding paths,
many-port register banks, large instruction schedulers, highly-
associative reorder buffers (ROB) and load-store queues (LSQ),
and many other complex on-chip structures. The complexity of the
cores limits core count, leading to chip designs with several cores
that consume half of the available on-chip real-estate and dissipate
the vast majority of the chip’s dynamic power budget. However,
our results indicate that scale-out workloads exhibit low ILP and
MLP, deriving benefit only from a small degree of out-of-order
execution. As a result, the nature of scale-out workloads cannot
effectively utilize the available core resources. Both the die area
and the energy are wasted, leading to data-center inefficiency.
Entire buildings are packed with aggressive cores, designed to
commit 4 instructions per cycle with over 48 outstanding memory
requests, but executing applications with an average IPC of 0.8 and
average MLP of 1.9. Moreover, current industry trends point
toward greater inefficiency in the future; over the past two
decades, processors have gradually moved to increasingly complex
cores, raising the core width from 2-way to 4-way and increasing
the window size from 20 to 128 instructions.

The inefficiency of modern cores running applications without
abundant IPC and MLP has led to the addition of simultaneous
multi-threading (SMT) to the processor cores to enable the core
resources to be simultaneously shared by multiple software
threads, thereby guaranteeing that independent instructions are
available to exploit parallelism. We present the IPC and MLP of an
SMT-enabled core in Figure 3 using the bars labeled SMT. As
expected, the MLP found and exploited by the cores when two
independent application threads run on each core concurrently is
nearly doubled compared to the system without SMT. Unlike tradi-
tional database server workloads that contain many inter-thread
dependencies and locks, the independent nature of threads in scale-
out workloads enables them to observe considerable performance
benefits from SMT, with 39-69% improvements in IPC.

Implications The nature of scale-out workloads makes them ideal
candidates to exploit multi-threaded multi-core architectures.
Modern mainstream processors offer excessively complex cores,
resulting in inefficiency through waste of resources. At the same
time, our results corroborate prior work [38], indicating that niche
processors offer excessively simple (e.g., in-order [8, 29]) cores
that cannot leverage the available ILP and MLP in scale-out work-
loads. We find that scale-out workloads would be well-suited by
architectures offering multiple independent threads per core with a

modest degree of superscalar out-of-order execution and support
for several simultaneously-outstanding memory accesses. For
example, rather than implementing SMT on a 4-way core, two
independent 2-way cores would consume fewer resources while
achieving higher aggregate performance. Furthermore, each nar-
rower core would not require a large instruction window, reducing
the per-core area and power consumption compared to modern
processors and enabling higher compute density by integrating
more cores per chip.

4.3 Data-access inefficiencies
• Large LLC consumes area, but does not improve performance
• Simple data prefetchers are ineffective

More than half of commodity processor die area is dedicated to
the memory system. Modern processors feature a three-level cache
hierarchy where the last-level cache (LLC) is a large-capacity
cache shared among all cores. To enable high-bandwidth data
fetch, each core can have up to 16 L2 cache misses in flight. The
high-bandwidth on-chip interconnect enables cache-coherent com-
munication between the cores. To mitigate the capacity and latency
gap between the L2 caches and LLC, each L2 cache is equipped
with prefetchers that can issue prefetch requests into the LLC and
off-chip memory. Multiple DDR3 memory channels provide high-
bandwidth access to off-chip memory.

The LLC is the largest on-chip structure; its cache capacity has
been increasing with each processor generation due to semicon-
ductor manufacturing improvements. We investigate the utility of
growing the LLC capacity for scale-out workloads in Figure 4. We
plot the average system performance3 of scale-out workloads as a
function of the LLC capacity, normalized to a baseline system with
a 12MB LLC. Unlike in the memory-intensive desktop applica-
tions (e.g., SPECint mcf), we find minimal performance sensitivity
to LLC size above 4-6MBs in scale-out and traditional server
workloads. The LLC captures the instruction working sets of scale-
out workloads, which are less than two megabytes. Beyond this
point, small shared supporting structures may consume another
one to two megabytes. Because scale-out workloads operate on
massive data sets and service a large number of concurrent
requests, both the dataset and the per-client data are orders of mag-
nitude larger than the available on-chip cache capacity. As a result,
an LLC that captures the instruction working set and minor sup-

0

1

2

3

4
A

pp
lic

at
io

n
IP

C
Baseline SMT

0

2

4

6

8

A
pp

lic
at

io
n

M
LP

Baseline SMT

Figure 3. Application instructions committed per cycle for systems with and without SMT, out of a maximum IPC of 4 (left) and memory-
level parallelism for systems with and without SMT (right). Range bars indicate the minimum and maximum of the corresponding group.

3. User-IPC has been shown to be proportional to application through-
put [47]. We verified this relationship for the scale-out workloads.

porting data structures achieves nearly the same performance as an
LLC with double or triple the capacity.

Our results show that the on-chip resources devoted to the LLC
are one of the key limiters of cloud-application compute density in
modern processors. For traditional workloads, increasing the LLC
capacity captures the working set of a broader range of applica-
tions, contributing to improved performance due to a reduction in
average memory latency for those applications. However, because
the LLC capacity already exceeds the cloud-application require-
ments by 2-3x, whereas the next working set exceeds any possible
SRAM cache capacity, the majority of the die area and power cur-
rently dedicated to the LLC is wasted. Moreover, prior research
[22] has shown that increases in the LLC capacity that do not cap-
ture a working set lead to an overall performance degradation—
LLC access latency is high due to its large capacity, not only wast-
ing on-chip resources, but also penalizing all L2 cache misses by
slowing down LLC hits and delaying off-chip accesses.

In addition to leveraging MLP to overlap demand requests from
the processor core, modern processors use prefetching to specula-
tively increase MLP. Prefetching has been shown effective at
reducing cache miss rates by predicting block addresses that will
be referenced in the future and bringing these blocks into the cache
prior to the processor’s demand, thereby hiding the access latency.
In Figure 5, we present the hit ratios of the L2 cache when all
available prefetchers are enabled (Baseline), as well as the hit
ratios after disabling the prefetchers. We observe a noticeable deg-
radation of the L2 hit ratios of many desktop and parallel
applications when the adjacent-line prefetcher and L2 HW
prefetcher are disabled. In contrast, only one of the scale-out work-
loads (MapReduce) significantly benefits from these prefetchers,
with the majority of the workloads experiencing negligible
changes in the cache hit rate. Moreover, similar to traditional
server workloads (TPC-C), disabling the prefetchers results in an
increase in the hit ratio for some scale-out workloads (Media
Streaming, SAT Solver). Finally, we note that the DCU streamer
(not shown) provides no benefit to scale-out workloads, in some
cases marginally increasing the L2 miss rate because it pollutes the
cache with unnecessary blocks.

Implications While modern processors grossly over-provision the
memory system, data-center efficiency can be improved by match-
ing the processor design to the needs of the scale-out workloads.
Whereas modern processors dedicate approximately half of the die
area to the LLC, scale-out workloads would likely benefit from a
different balance. A two-level cache hierarchy with a modestly
sized LLC that makes special provision for caching instruction
blocks would benefit performance. The reduced LLC capacity
along with the removal of the ineffective L2 cache would offer

access-latency benefits while at the same time freeing up die area
and power. The die area and power can be practically applied
toward improving compute density and efficiency by adding more
hardware contexts and more advanced prefetchers. Additional
hardware contexts (more threads per core and more cores) should
linearly increase application parallelism, while more advanced cor-
relating data prefetchers could accurately prefetch complex access
data patterns and increase the performance of all cores.

4.4 Bandwidth inefficiencies
• Lack of data sharing deprecates coherence and connectivity
• Off-chip bandwidth exceeds needs by an order of magnitude

Increasing core counts have brought parallel programming into
the mainstream, highlighting the need for fast and high-bandwidth
inter-core communication. Multi-threaded applications comprise a
collection of threads that work in tandem to scale up the applica-
tion performance. To enable effective scale-up, each subsequent
generation of processors offers a larger core count and improves
the on-chip connectivity to support faster and higher-bandwidth
core-to-core communication.

We investigate the utility of the on-chip interconnect for scale-
out workloads in Figure 6. We plot the fraction of L2 misses that
access data most recently written by another thread running on a
remote core, breaking down each bar into Application and OS
components to offer insight into the source of the data sharing.

In general, we observe limited read-write sharing across the
scale-out workloads. We find that the OS-level data sharing is
dominated by the network subsystem. Multi-threaded Java-based
applications (Data Serving and Web Search) exhibit a small degree

0.5

0.6

0.7

0.8

0.9

1.0

4 5 6 7 8 9 10 11

U
se

r I
PC

no
rm

al
iz

ed
 to

 b
as

el
in

e

Cache size (MB)

Scale-out Server SPECint (mcf)

Figure 4. Performance sensitivity to LLC capacity.

0%

25%

50%

75%

100%

L2
 h

it
ra

tio
 (%

)

Baseline (all enabled)
Adjacent-line disabled
HW prefetcher disabled

Figure 5. L2 hit ratios of a system with enabled and disabled
adjacent-line and HW prefetchers.

0.0%

2.5%

5.0%

7.5%

10.0%

R
ea

d-
w

rit
e

sh
ar

ed
 L

LC
 h

its
no

rm
al

iz
ed

 to
 L

LC
 d

at
a

re
fe

re
nc

es

Application OS

Figure 6. Percentage of LLC data references accessing cache
blocks modified by a thread running on a remote core.

of sharing from the use of a parallel garbage collector that may run
a collection thread on a remote core, artificially inducing applica-
tion-level communication. Additionally, we found that the Media
Streaming server updates global counters to track the total number
of packets sent by the server; reducing the amount of communica-
tion by keeping per-thread statistics is trivial and would eliminate
the mutex lock and shared-object scalability bottleneck. We note
that the on-chip application-level communication in scale-out
workloads is distinctly different from traditional database server
workloads (TPC-C, TPC-E, and Web Backend), which experience
frequent interaction between threads on actively shared data struc-
tures that are used to service client requests.

The low degree of active sharing indicates that wide and low-
latency interconnects available in modern processors are over-pro-
visioned for scale-out workloads. Although the overhead with a
small number of cores is limited, as the number of cores on chip
increases, the area and energy overhead of enforcing coherence
becomes significant. Likewise, the area overheads and power con-
sumption of an over-provisioned high-bandwidth interconnect
further increase processor inefficiency.

Beyond the on-chip interconnect, we also find off-chip band-
width inefficiency. While the off-chip memory latency has
improved slowly, off-chip bandwidth has been improving at a
rapid pace. Over the course of two decades, the memory bus
speeds have increased from 66MHz to dual-data-rate at over
1GHz, raising the peak theoretical bandwidth from 544MB/s to
17GB/s per channel, with the latest server processors having four
independent memory channels. We plot the off-chip bandwidth uti-
lization of our workloads in Figure 7. Scale-out workloads
experience high off-chip miss rates, however, the MLP of the
applications is low due to the complex data structure dependencies,
leading to low aggregate off-chip bandwidth utilization even when
all cores have outstanding off-chip memory accesses. Among the
scale-out workloads we examine, Media Streaming is the only
application that uses up to 15% of the available off-chip band-
width. However, we note that our applications are configured to
stress the processor, demonstrating the worst-case behavior. Over-
all, we find that modern processors significantly over-provision
off-chip bandwidth for scale-out workloads.

Implications The on-chip interconnect and off-chip memory
buses can be scaled back to improve processor efficiency. Because
the scale-out workloads perform only infrequent communication
via the network, there is typically no read-write sharing in the
applications; processors can therefore be designed as a collection
of core islands using a low-bandwidth interconnect that does not
enforce coherence between the islands, eliminating the power
associated with the high-bandwidth interconnect as well as the

power and area overheads of fine-grained coherence tracking. Off-
chip memory buses can be optimized for scale-out workloads by
scaling back unnecessary bandwidth. Memory controllers consume
a large fraction of the chip area and memory buses are responsible
for a large fraction of the system power. Reducing the number of
memory channels and the power draw of the memory buses should
improve scale-out workload efficiency without affecting applica-
tion performance.

5 Related Work

Previous research has characterized the micro-architectural
behavior of traditional commercial server applications when run-
ning on modern hardware, using real machines [1, 28] and
simulation environments [21, 22, 34, 36]. We include traditional
server applications in our study to compare them with scale-out
workloads and to validate our evaluation framework.

The research community uses the PARSEC benchmark suite to
perform experiments with chip multiprocessors [4]. Bienia et al.
characterize the PARSEC suite’s working sets and the communica-
tion patterns among threads [4]. In our work, we examine the
execution time breakdown of PARSEC. Unlike the scale-out and
traditional server applications, PARSEC has a negligible instruc-
tion working set and exhibits a high degree of memory-level
parallelism, displaying distinctly different micro-architectural
behavior compared to scale-out workloads.

Previous research analyzed various performance or power inef-
ficiencies of modern processors running traditional commercial
applications [8, 19, 22, 29, 37, 45, 46]. Tuck and Tullsen showed
that simultaneous multithreading can improve performance of sci-
entific and engineering applications by 20-25% on a Pentium4
processor [45]. Our results show similar trends for scale-out work-
loads. Kgil et al. [29] show that, for a particular class of
throughput-oriented web workloads, modern processors are
extremely power inefficient, arguing that the chip area should be
used for processing cores rather than caches. A similar observation
has been made in the GPU domain [18]. Our results corroborate
these findings, showing that, for scale-out workloads, the time
spent accessing the large and slow last-level caches accounts for
more than half of the data stalls [22], calling for resizing and reor-
ganizing the cache hierarchy. We draw similar conclusions to
Davis et al. [8] and Hardavellas et al. [22] who showed that heav-
ily multithreaded in-order cores are more efficient for throughput-
oriented workloads compared to aggressive out-of-order cores.
Also corroborating prior work, we find that latency-sensitive and
computationally intensive web search workloads favor more
aggressive processing cores [38]. Ranganathan and Jouppi moti-
vate the need for integrated analysis of micro-architectural
efficiency and application service-level agreements in their survey
of enterprise information technology trends [37]. To address the
power inefficiencies of current general-purpose processors, spe-
cialization at various hardware levels has been proposed [19, 46].

As cloud computing has become ubiquitous, there has been sig-
nificant research activity on characterizing particular scale-out
workloads, either micro-architecturally [38, 42], or at the system
level [7, 30, 31, 32, 41]. To the best of our knowledge, our study is
the first work to systematically characterize the micro-architectural
behavior of a wide range of cloud services. Kozyrakis et al. [30]
presented a system-wide characterization of large-scale online ser-
vices provided by Microsoft and showed the implications of such
workloads on data-center server design. Reddi et al. characterized
the Bing search engine [38], showing that the computational inten-
sity of search tasks is increasing as a result of adding more
machine learning features to the engine. These findings are consis-
tent with our results, which show that web search has the highest
IPC among the studied scale-out workloads.

0%

5%

10%

15%

20%
O

ff-
ch

ip
 m

em
or

y
ba

nd
w

id
th

 u
til

iz
at

io
n Application OS

Figure 7. Average off-chip memory bandwidth utilization as a
percentage of available off-chip bandwidth.

Much work focused on benchmarking the cloud and datacenter
infrastructure. The Yahoo! Cloud Serving Benchmark (YCSB) [7]
is a framework to benchmark large-scale distributed data serving
systems. We include results for the YCSB benchmark and provide
its micro-architectural characterization running on Cassandra, a
popular cloud database. Fan et al. discuss web mail, web search,
and map-reduce as three representative workloads present in the
Google datacenter [16]. Lim et al. extend this set of benchmarks
and add an additional media streaming workload [33]. They further
analyze the energy efficiency of a variety of systems when running
these applications. Our benchmark suite similarly includes work-
loads from these categories.

CloudCmp [31, 32] is a framework to compare cloud providers
using a systematic approach to benchmarking various components
of the infrastructure. Huang et al. analyzed performance and power
characteristics of Hadoop clusters using HiBench [25], a bench-
mark that specifically targets the Hadoop map-reduce framework.
Our MapReduce benchmark uses the same infrastructure. How-
ever, we provide the micro-architectural, rather than a system-
wide, characterization of the map-reduce workload. For bench-
marking modern web technologies, we use CloudStone [40], an
open source benchmark that simulates activities related to social
events.

6 Conclusions

Cloud computing has emerged as a dominant computing plat-
form to provide hundreds of millions of users with online services.
To support the growing popularity and continue expanding their
services, cloud providers must work to overcome the physical
space and power constraints limiting data-center growth. While
strides have been made to improve data-center efficiency at the
rack and chassis-levels, we observe that the predominant processor
micro-architecture of today’s data centers is inherently inefficient
for running scale-out workloads, resulting in low compute density
and poor trade-offs between performance and energy.

In this work, we used performance counters to analyze the
micro-architectural behavior of a wide range of scale-out work-
loads. We analyzed and identified the key sources of area and
power inefficiency in the instruction fetch, core micro-architecture,
and memory system organization. We then identified the specific
needs of scale-out workloads and suggested the architectural mod-
ifications that can lead to dense and power-efficient data-center
processor designs in the future. Specifically, our analysis showed
that efficiently executing scale-out workloads requires optimizing
the instruction-fetch path for multi-megabyte instruction working
sets, reducing the core aggressiveness and last-level cache capacity
to free area and power resources in favor of more cores each with
more hardware threads, and scaling back the over-provisioned on-
chip and off-chip bandwidth.

Acknowledgements

The authors would like to thank the anonymous reviewers for
their feedback and suggestions. We thank the PARSA lab for con-
tinual support and feedback, in particular Pejman Lotfi-Kamran
and Javier Picorel for their assistance with the SPECweb09 and the
SAT Solver benchmarks. We thank the DSLab for their assistance
with Cloud9, Emre Özer and Rustam Miftakhutdinov for their
feedback and suggestions, and Aamer Jaleel and Carole Jean-Wu
for their assistance with understanding the Intel architecture and
configuration. We thank the EuroCloud project partners for advo-
cating and inspiring the CloudSuite benchmark suite. This work
was partially supported by EuroCloud, Project No 247779 of the
European Commission 7th RTD Framework Programme – Spe-
cific Cooperation Theme 3 ‘Information and Communication
Technologies: Embedded Systems and Control’.

References

[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.
Wood. DBMSs on a modern processor: where does time go? In
Proceedings of the 25th International Conference on Very Large Data
Bases, September 1999.

[2] Alexa, The Web Information Company. http://www.alexa.com/.

[3] Apache Mahout: scalable machine-learning and data-mining library.
http://mahout.apache.org/.

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC benchmark suite: characterization and architectural
implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, October 2008.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes,
and Robert E. Gruber. Bigtable: a distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, volume 7, November 2006.

[6] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and
George Candea. Cloud9: a software testing service. ACM SIGOPS
Operating Systems Review, 43:5–10, January 2010.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramak-
rishnan, and Russell Sears. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud
Computing, June 2010.

[8] John D. Davis, James Laudon, and Kunle Olukotun. Maximizing
CMP throughput with mediocre cores. In Proceedings of the 14th
International Conference on Parallel Architectures and Compilation
Techniques, September 2005.

[9] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data
processing on large clusters. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation,
volume 6, November 2004.

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. In Proceedings of the 21st ACM
SIGOPS Symposium on Operating Systems Principles, October 2007.

[11] PowerEdge M1000e Blade Enclosure.
http://www.dell.com/us/enterprise/p/poweredge-m1000e/pd.aspx.

[12] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of multi-
core scaling. In Proceeding of the 38th Annual International
Symposium on Computer Architecture, June 2011.

[13] EuroCloud Server. http://www.eurocloudserver.com.

[14] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E.
Smith. A performance counter architecture for computing accurate
CPI components. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems, October 2006.

[15] Facebook Statistics.
https://www.facebook.com/press/info.php?statistics.

[16] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz André Barroso. Power
provisioning for a warehouse-sized computer. In Proceedings of the
34th Annual International Symposium on Computer Architecture,
June 2007.

[17] Google Data Centers.
http://www.google.com/intl/en/corporate/datacenter/.

[18] Zvika Guz, Oved Itzhak, Idit Keidar, Avinoam Kolod, Avi
Mendelson, and Uri C. Weiser. Threads vs. caches: modeling the
behavior of parallel workloads. In International Conference on
Computer Design, October 2010.

[19] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex
Solomatnikov, Benjamin C. Lee, Stephen Richardson, Christos
Kozyrakis, and Mark Horowitz. Understanding sources of ineffi-

ciency in general-purpose chips. In Proceedings of the 37th Annual
International Symposium on Computer Architecture, June 2010.

[20] Nikos Hardavellas, Michael Ferdman, Anastasia Ailamaki, and Babak
Falsafi. Toward Dark Silicon in Servers. In IEEE Micro, 31(4):6–15,
July-Aug, 2011.

[21] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia
Ailamaki. Reactive NUCA: near-optimal block placement and repli-
cation in distributed caches. In Proceedings of the 36th Annual
International Symposium on Computer Architecture, June 2009.

[22] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril,
Anastassia Ailamaki, and Babak Falsafi. Database servers on chip
multiprocessors: limitations and opportunities. In The 3rd Biennial
Conference on Innovative Data Systems Research, January 2007.

[23] Faban Harness and Benchmark Framework.
http://java.net/projects/faban/.

[24] Mark Horowitz, Elad Alon, Dinesh Patil, Samuel Naffziger, Rajesh
Kumar, and Kerry Bernstein. Scaling, power, and the future of
CMOS. In Electron Devices Meeting, 2005. IEDM Technical Digest.
IEEE International, December 2005.

[25] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
The HiBench benchmark suite: characterization of the MapReduce-
based data analysis. In 26th International Conference on Data Engi-
neering Workshops, March 2010.

[26] Intel VTune Amplifier XE Performance Profiler.
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/.

[27] Tejas S. Karkhanis and James E. Smith. A first-order superscalar
processor model. In Proceedings of the 31st Annual International
Symposium on Computer Architecture, June 2004.

[28] Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger C.
Raphael, and Walter E. Baker. Performance characterization of a quad
Pentium Pro SMP using OLTP workloads. In Proceedings of the 25th
Annual International Symposium on Computer Architecture, June 1998.

[29] Taeho Kgil, Shaun D’Souza, Ali Saidi, Nathan Binkert, Ronald
Dreslinski, Trevor Mudge, Steven Reinhardt, and Krisztian Flautner.
PicoServer: using 3D stacking technology to enable a compact energy
efficient chip multiprocessor. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages
and Operating Systems, October 2006.

[30] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kushagra
Vaid. Server engineering insights for large-scale online services.
IEEE Micro, 30(4):8–19, July-Aug, 2010.

[31] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang.
CloudCmp: comparing public cloud providers. In Proceedings of the
10th Annual Conference on Internet Measurement, November 2010.

[32] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang.
CloudCMP: Shopping for a cloud made easy. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing, June 2010.

[33] Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant
Patel, Trevor Mudge, and Steven Reinhardt. Understanding and
designing new server architectures for emerging warehouse-
computing environments. In Proceedings of the 35th Annual Interna-
tional Symposium on Computer Architecture, June 2008.

[34] Jack L. Lo, Luiz André Barroso, Susan J. Eggers, Kourosh Ghara-
chorloo, Henry M. Levy, and Sujay S. Parekh. An analysis of
database workload performance on simultaneous multithreaded
processors. In Proceedings of the 25th Annual International Sympo-
sium on Computer Architecture, June 1998.

[35] Open Compute Project. http://opencompute.org/.

[36] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve,
and Luiz André Barroso. Performance of database workloads on
shared-memory systems with out-of-order processors. In Proceedings
of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1998.

[37] Parthasarathy Ranganathan and Norman Jouppi. Enterprise IT trends
and implications for architecture research. In Proceedings of the 11th
International Symposium on High-Performance Computer Architec-
ture, February 2005.

[38] Vijay Janapa Reddi, Benjamin C. Lee, Trishul Chilimbi, and Kush-
agra Vaid. Web search using mobile cores: quantifying and mitigating
the price of efficiency. In Proceedings of the 37th Annual Interna-
tional Symposium on Computer Architecture, June 2010.

[39] SeaMicro Packs 768 Cores Into its Atom Server.
http://www.datacenterknowledge.com/archives/2011/07/18/seam-
icro-packs-768-cores-into-its-atom-server/.

[40] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy
Nguyen, Hubert Wong, Arthur Klepchukov, Sheetal Patil, Armando
Fox, and David Patterson. Cloudstone: multi-platform, multi-
language benchmark and measurement tools for web 2.0. In the 1st
Workshop on Cloud Computing and Its Applications, October 2008.

[41] Vijayaraghavan Soundararajan and Jennifer M. Anderson. The impact
of management operations on the virtualized datacenter. In Proceed-
ings of the 37th Annual International Symposium on Computer
Architecture, June 2010.

[42] Lingjia Tang, Jason Mars, Veil Vachharajani, Robert Hundt, and
Mary Lou Soffa. The impact of memory subsystem resource sharing
on datacenter applications. In Proceeding of the 38th Annual Interna-
tional Symposium on Computer Architecture, June 2011.

[43] The Apache Cassandra Project. http://cassandra.apache.org/.

[44] TPC Transaction Processing Performance Council.
http://www.tpc.org/default.asp.

[45] Nathan Tuck and Dean M. Tullsen. Initial observations of the simulta-
neous multithreading Pentium 4 processor. In Proceedings of the 12th
International Conference on Parallel Architectures and Compilation
Techniques, September 2003.

[46] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino
Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson,
and Michael B. Taylor. Conservation cores: reducing the energy of
mature computations. In Proceedings of the 15th International
Conference on Architectural Support for Programming Languages
and Operating Systems, March 2010.

[47] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anas-
tassia Ailamaki, Babak Falsafi, and James C. Hoe. Simflex: Statistical
sampling of computer system simulation. IEEE Micro, 26:18–31, July
2006.

