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Abstract

The gem5 simulation infrastructure is the merger of the
best aspects of the M5 [4] and GEMS [9] simulators.
M5 provides a highly configurable simulation framework,
multiple ISAs, and diverse CPU models. GEMS comple-
ments these features with a detailed and flexible mem-
ory system, including support for multiple cache coher-
ence protocols and interconnect models. Currently, gemb
supports most commercial ISAs (ARM, ALPHA, MIPS,
Power, SPARC, and x86), including booting Linux on
three of them (ARM, ALPHA, and x86).

The project is the result of the combined efforts of many
academic and industrial institutions, including AMD,
ARM, HP, MIPS, Princeton, MIT, and the Universities
of Michigan, Texas, and Wisconsin. Over the past ten
years, M5 and GEMS have been used in hundreds of pub-
lications and have been downloaded tens of thousands
of times. The high level of collaboration on the gemb
project, combined with the previous success of the com-
ponent parts and a liberal BSD-like license, make gemb a
valuable full-system simulation tool.

1 Introduction

Computer architecture researchers commonly use soft-
ware simulation to prototype and evaluate their ideas.
As the computer industry continues to advance, the range
of designs being considered increases. On one hand, the
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emergence of multicore systems and deeper cache hier-
archies has presented architects with several new dimen-
sions of exploration. On the other hand, researchers need
a flexible simulation framework that can evaluate a wide
diversity of designs and support rich OS facilities includ-
ing 10 and networking.

Computer architecture researchers also need a simula-
tion framework that allows them to collaborate with their
colleagues in both industry and academia. However, a
simulator’s licensing terms and code quality can inhibit
that collaboration. Some open source software licenses
can be too restrictive, especially in an industrial setting,
because they require publishing any simulator enhance-
ments. Furthermore, poor code quality and the lack of
modularity can make it difficult for new users to under-
stand and modify the code.

The gemb5 simulator overcomes these limitations by
providing a flexible, modular simulation system that is
capable of evaluating a broad range of systems and is
widely available to all researchers. This infrastructure
provides flexibility by offering a diverse set of CPU mod-
els, system execution modes, and memory system models.
A commitment to modularity and clean interfaces allows
researchers to focus on a particular aspect of the code
without understanding the entire code base. The BSD-
based license makes the code available to all researchers
without awkward legal restrictions.

This paper provides a brief overview of gemb’s goals,
philosophy, capabilities, and future work along with
pointers to sources of additional information.

2 Overall Goals

The overarching goal of the gem5 simulator is to be a
community tool focused on architectural modeling. Three
key aspects of this goal are flexible modeling to appeal to
a broad range of users, wide availability and utility to
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Figure 1: Speed vs. Accuracy Spectrum.

the community, and high level of developer interaction to
foster collaboration.

2.1 Flexibility

Flexibility is a fundamental requirement of any success-
ful simulation infrastructure. For instance, as an idea
evolves from a high-level concept to a specific design, ar-
chitects need a tool that can evaluate systems at various
levels of detail, balancing simulation speed and accuracy.
Different types of experiments may also require different
simulation capabilities. For example, a fine-grain clock
gating experiment may require a detailed CPU model,
but modeling multiple cores is unnecessary. Meanwhile,
a highly scalable interconnect model may require several
CPUs, but those CPUs don’t need much detail. Also, by
using the same infrastructure over time, an architect will
be able to get more done more quickly with less overhead.

The gemb simulator provides a wide variety of capa-
bilities and components which give it a lot of flexibility.
These vary in multiple dimensions and cover a wide range
of speed/accuracy trade offs as shown in Figure 1. The
key dimensions of gemb’s capabilities are:

e CPU Model. The gemb simulator currently provides
four different CPU models, each of which lie at a unique
point in the speed-vs.-accuracy spectrum. AtomicSim-
ple is a minimal single IPC CPU model, TimingSimple
is similar but also simulates the timing of memory refer-
ences, InOrder is a pipelined, in-order CPU, and O3 is
a pipelined, out-of-order CPU model. Both the O3 and
InOrder models are “execute-in-execute” designs [4].

e System Mode. Each execution-driven CPU model
can operate in either of two modes. System-call Emula-
tion (SE) mode avoids the need to model devices or an

operating system (OS) by emulating most system-level
services. Meanwhile, Full-System (F'S) mode executes
both user-level and kernel-level instructions and models
a complete system including the OS and devices.

e Memory System. The gemb simulator includes two
different memory system models, Classic and Ruby.
The Classic model (from M5) provides a fast and eas-
ily configurable memory system, while the Ruby model
(from GEMS) provides a flexible infrastructure capable
of accurately simulating a wide variety of cache coher-
ent memory systems.

The gemb5 simulator can also execute workloads in a
number of ISAs, including today’s most common ISAs,
x86 and ARM. This significantly increases the number of
workloads and configurations gem5 can simulate.

Section 4 provides a more detailed discussion of these
capabilities.

2.2 Availability

There are several types of gem5 user; each has different
goals and requirements. These include academic and cor-
porate researchers, engineers in industry, and undergrad-
uate and graduate students. We want the gem5 simulator
to be broadly available to each of these types of user. The
gemb5 license (based on BSD) is friendly both to corporate
users, since businesses need not fear being forced to re-
veal proprietary information, and to to academics, since
they retain their copyright and thus get credit for their
contributions.

2.3 High level of collaboration

Full-system simulators are complex tools. Dozens of
person-years of effort have gone into the gem5 simula-
tor, developing both the infrastructure for flexible model-
ing and the numerous detailed component models. By
being an open source, community-led project, we can
leverage the work of many researchers, each with differ-
ent specialties. The gemb community is very active and
leverages a number of collaborative technologies to fos-
ter gemb use and development, including mailing lists, a
wiki, web-based patch reviews, and a publicly accessible
source repository.

3 Design Features

This section focuses on a few key aspects of gem5’s im-
plementation: pervasive object orientation, Python inte-
gration, domain-specific languages, and use of standard



interfaces. While most of these features are simply good
software engineering practice, they are all particularly
useful for designing simulators.

3.1 Pervasive Object-Oriented Design

Flexibility is an important goal of the gemb5 simulator
and key aspect of its success. Flexibility is primarily
achieved through object-oriented design. The ability to
construct configurations from independent, composable
objects leads naturally to advanced capabilities such as
multi-core and multi-system modeling.

All major simulation components in the gem5 simu-
lator are SimObjects and share common behaviors for
configuration, initialization, statistics, and serialization
(checkpointing). SimObjects include models of concrete
hardware components such as processor cores, caches, in-
terconnect elements and devices, as well as more abstract
entities such as a workload and its associated process con-
text for system-call emulation.

Every SimObject is represented by two classes, one in
Python and one in C++ which derive from SimObject
base classes present in each language. The Python class
definition specifies the SimObject’s parameters and is
used in script-based configuration. The common Python
base class provides uniform mechanisms for instantiation,
naming, and setting parameter values. The C++ class en-
compasses the SimObject’s state and remaining behavior,
including the performance-critical simulation model.

3.2 Python Integration

The gemb5 simulator derives significant power from tight
integration of Python into the simulator. While 85% of
the simulator is written in C++, Python pervades all
aspects of its operation. As mentioned in Section 3.1,
all SimObjects are reflected in both Python and C++.
The Python aspect provides initialization, configuration,
and simulation control. The simulator begins execut-
ing Python code almost immediately on start-up; the
standard main() function is written in Python, and all
command-line processing and startup code is written in
Python.

3.3 Domain-Specific Languages

In situations that require significant flexibility in perform-
ing a specialized task, domain-specific languages (DSLs)
provide a powerful and concise way to express a variety
of solutions by leveraging knowledge and idioms common
to that problem space. The gemb5 environment provides

two domain-specific languages, one for specifying instruc-
tion sets (inherited from Mb5) and one for specifying cache
coherence protocols (inherited from GEMS).

ISA DSL. The gem5 ISA description language unifies
the decoding of binary instructions and the specification
of their semantics. The gem5 CPU models achieve ISA
independence by using a common C++ base class to de-
scribe instructions. Derived classes override virtual func-
tions like execute () to implement opcodes, such as add.
Instances of these derived classes represent specific ma-
chine instructions, such as add ri1,r2,r3. Implementing
a specific ISA thus requires a set of C++ declarations for
these derived classes, plus a function that takes a machine
instruction and returns an instance of one of the derived
classes that corresponds to that instruction.

The ISA description language allows users to specify
this required C++ code compactly. Part of the language
allows the specification of class templates (more general
than C++ templates) that cover broad categories of in-
structions, such as register-to-register arithmetic opera-
tions. Another portion of the language provides for the
specification of a decode tree that concisely combines op-
code decoding with the creation of specific derived classes
as instances of the previously defined templates.

While the original ISA description language targeted
RISC architectures such as the Alpha ISA, it has been sig-
nificantly extended to cope with complex variable-length
ISAs, particularly x86, and ISAs with complex register
semantics like SPARC. These extensions include a mi-
crocode assembler, a predecoder, and multi-level register
index translation. These extensions are discussed in more
detail in a recent book chapter [5].

Cache Coherence DSL. SLICC is a domain-specific
language that gives gemb the flexibility to implement a
wide variety of cache coherence protocols. Essentially,
SLICC defines the cache, memory, and DMA controllers
as individual per-memory-block state machines that to-
gether form the overall protocol. By defining the con-
troller logic in a higher-level language, SLICC allows dif-
ferent protocols to incorporate the same underlying state
transition mechanisms with minimal programmer effort.

The gemb version of SLICC is very similar to the prior
GEMS version of SLICC [9]. Just like the prior version,
gemb SLICC defines protocols as a set of states, events,
transitions, and actions. Within the specification files,
individual transition statements define the valid combi-
nations and actions within each transition specify the op-
erations that must be performed. Also similar to the pre-
vious version, gemb SLICC ties the state machine-specific
logic to protocol-independent components such as cache
memories and network ports.



While gemb SLICC contains several similarities to its
predecessor design, the language does include several en-
hancements. First, the language itself is now imple-
mented in Python rather than C++, making it easier
to read and edit. Second, to adhere to the gemb SimOb-
ject structure, all configuration parameters are specified
as input parameters and gemb SLICC automatically gen-
erates the appropriate C++ and Python files. Finally,
gemb SLICC allows local variables to simplify program-
ming and improve performance.

3.4 Standard Interfaces

Standard interfaces are fundamental to object-oriented
design. Two central interfaces are the port interface and
the message buffer interface.

Ports are one of the interfaces used to connect two
memory objects together in gem5. In the Classic memory
system, the ports interface connects all memory objects
including CPUs to caches, caches to busses, and busses
to devices and memories. Ports support three mecha-
nisms for accessing data (timing, atomic, and functional)
and an interface for things like determining topology and
debugging. Timing mode is used to model the detailed
timing of memory accesses. Requests are made to the
memory system by sending messages, and responses are
expected to return asynchronously via other messages.
Atomic mode is used to get some timing information, but
is not message-oriented. When an atomic call is made
(via a function call), the state change for the operation
is performed synchronously. This has higher performance
but gives up some accuracy because message interactions
are not modeled. Finally, functional accesses update the
simulator state without changing any timing information.
These are generally used for debugging, system-call emu-
lation, and initialization.

Ruby utilizes the ports interface to connect to CPUs
and devices, and adds message buffers to connect to Ruby
objects internally. Message buffers are similar to ports in
that they provide a standard communication interface.
However, message buffers differ in some subtle ways with
regards to message typing and storage. In the future,
ports and message buffers may evolve into a unified in-
terface.

4 Simulation Capabilities
The gemb simulator has a wide range of simulation capa-

bilities ranging from the selection of ISA, CPU model, and
coherence protocol to the instantiation of interconnection

networks, devices and multiple systems. This section de-
scribes some of the different options available in these
categories.

ISAs. The gemb simulator currently supports a variety
of ISAs including Alpha, ARM, MIPS, Power, SPARC,
and x86. The simulator’s modularity allows these differ-
ent ISAs to plug into the generic CPU models and the
memory system without having to specialize one for the
other. However, not all possible combinations of ISAs
and other components are currently known to work. An
up-to-date list can be found on the gemb website.

Execution Modes. The gem5 simulator can oper-
ate in two modes: System-call Emulation (SE) and Full-
System (FS). In SE mode, gem5 emulates most com-
mon system calls (e.g. read()). Whenever the pro-
gram executes a system call, gemb traps and emulates
the call, often by passing it to the host operating system.
There is currently no thread scheduler in SE mode, so
threads must be statically mapped to cores, limiting its
use with multi-threaded applications. The SPEC CPU
benchmarks are often run in SE mode.

In FS mode, gemb simulates a bare-metal environment
suitable for running an OS. This includes support for in-
terrupts, exceptions, privilege levels, I/O devices, etc.
Because of the additional complexity and completeness
required, not all ISAs current support FS mode.

Compared to SE mode, FS mode improves both the
simulation accuracy and variety of workloads that gemb
can execute. While SPEC CPU benchmarks can be run
in SE mode, running them in FS mode will provide more
realistic interactions with the OS. Workloads that require
many OS services or I/O devices may only be run in FS
mode. For example, because a web server relies on the
kernel’s TCP/IP protocol stack and a network interface
to send and receive requests and a web browser requires
a X11 server and display adapter to visualize web pages
these workloads must be run is FS mode.

CPU Models. The gem) simulator supports four dif-
ferent CPU models: AtomicSimple, TimingSimple, In-
Order, and O3. AtomicSimple and TimingSimple are
non-pipelined CPU models that attempt to fetch, decode,
execute and commit a single instruction on every cycle.
The AtomicSimple CPU is a minimal, single IPC CPU
which completes all memory accesses immediately. This
low overhead makes AtomicSimple a good choice for sim-
ulation tasks such as fast-forwarding. Correspondingly,
the TimingSimple CPU also only allows one outstanding
memory request at a time, but the CPU does model the
timing of memory accesses.

The InOrder model is an “execute-in-execute” CPU
model emphasizing instruction timing and simulation ac-



curacy with an in-order pipeline. InOrder can be config-
ured to model different numbers of pipeline stages, issue
width, and numbers of hardware threads.

Finally, the O3 CPU is a pipelined, out-of-order model
that simulates dependencies between instructions, func-
tional units, memory accesses, and pipeline stages. Pa-
rameterizable pipeline resources such as the load/store
queue and reorder buffer allow O3 to simulate superscalar
architectures and CPUs with multiple hardware threads
(SMT). The O3 model is also “execute-in-execute”, mean-
ing that instructions are only executed in the execute
stage after all dependencies have been resolved.

Cache Coherence Protocols. SLICC enables
gem5’s Ruby memory model to implement many differ-
ent types of invalidation-based cache coherence protocols,
from snooping to directory protocols and several points
in between. SLICC separates cache coherence logic from
the rest of the memory system, providing the necessary
abstraction to implement a wide range of protocol logic.
Similar to its GEMS predecessor [9], SLICC performs all
operations at a cache-block granularity. The word-level
granularity required by update-based protocols is not cur-
rently supported. This limitation has not been a issue
so far because invalidation-based protocols dominate the
commercial market. Specifically, gemb SLICC currently
models a broadcast-based protocol based on the AMD
Opteron™ [7], as well as a CMP directory protocol [10].

Not only is SLICC flexible enough to model different
types of protocols, but it also simulates them in sufficient
depth to model detailed timing behavior. Specifically,
SLICC allows specifying transient states within the in-
dividual state machines as cache blocks move from one
base state to another. SLICC also includes separate vir-
tual networks (a.k.a. network message classes) so message
dependencies and stalls can be properly modeled. Using
these virtual networks, the SLICC-generated controllers
connect to the interconnection network.

Interconnection Networks. The Ruby memory
model supports a vast array of interconnection topologies
and includes two different network models. In essence,
Ruby can create any arbitrary topology as long as it is
composed of point-to-point links. A simple Python file
declares the connections between components and short-
est path analysis is used to create the routing tables.
Once Ruby creates the links and routing tables, it can
implement the resulting network in one of two ways.

The first Ruby network model is referred to as the Sim-
ple network. The Simple network models link and router
latency as well as link bandwidth. However, the Simple
network does not model router resource contention and
flow control. This model is great for experiments that

require Ruby’s detailed protocol modeling but that can
sacrifice detailed network modeling for faster simulation.

The second Ruby network model is the Garnet network
model [1]. Unlike the simple network, Garnet models the
router micro-architecture in detail, including all relevant
resource contention and flow control timing. This model
is suitable for on-chip network studies.

Devices. The gem5 simulator supports several 1/0O
devices ranging from simple timers to complex network
interface controllers. Base classes are available that en-
capsulates common device interfaces such as PCI to avoid
code duplication and simplify implementing new devices.
Currently implemented models includes NICs, an IDE
controller, a frame buffer, DMA engines, UARTS, and
interrupt controllers.

Modeling Multiple Systems. Because of the simu-
lator’s object oriented design it also supports simulating
multiple complete systems. This is done by instantiating
another set of objects (CPU, memory, I/O devices, etc.).
Generally, the user connects the systems via the network
interfaces described above to create a client/server pair
that communicate over TCP/IP. Since all the simulated
systems are tightly coupled within gemb the results of
multi-system simulation is still deterministic.

5 Future Work

While gemb is a highly capable simulator, there is always
a desire for additional features and other improvements.
A few of the efforts underway or under consideration in-
clude:

o A first-class power model. While external power mod-
els such as Orion [6] and McPAT [8] have been used
with GEMS and M5, we are working on a more com-
prehensive, modular, and integrated power model for
gem>.

e Full cross-product ISA/CPU/memory system support.
The modularity and flexibility of gemb enables a wide
variety of combinations of ISAs, CPU models, and
memory systems, as illustrated in Figure 1, each of
which can be used in SE or FS mode. Because each
component model must support the union of all fea-
tures required by any ISA in any mode, particular com-
ponent models do not always work in every conceivable
circumstance. We continue to work to eliminate these
inconsistencies.

e Parallelization. To address the inherent performance
limitations of detailed simulation and leverage the ubig-
uity of multi-core systems, we have been refactoring



gemb’s internal event system to support parallel dis-
crete event simulation [11].

o Checkpoint import.  Although gemb’s simple CPU
models are much faster than their detailed counter-
parts, they are still considerably slower than binary
translation-based emulators such as QEMU [3] and
SimNow™ [2].  Rather than duplicating the enor-
mous effort of developing a binary translation capabil-
ity within gem5, we plan to enable the transfer of state
checkpoints from these emulators into gemb. Users will
be able to fast-forward large workloads to interesting
points using these high-performance alternatives, then
simulate from those points in gem5. Even higher per-
formance may be possible by using a hardware virtual
machine environment such as KVM! rather than binary
translation.

6 User Resources

All gem5 simulator documentation and information is
available at the website http://www.gemb.org. The web-
site includes instructions on how to check out, build, and
run the gemb simulator, as well as how to download sup-
plemental support files like OS binaries and disk images.

The gemb user community is active and communicates
through three mailing lists: (1) the announce mailing list
is used to announce significant modifications or achieve-
ments; (2) the user mailing list is used for general discus-
sions about gemb and for questions about how to use it;
and (3) the dev mailing list is for discussions regarding
mainline gemb development.

Developers will find support resources in the form of
systems for revision control, bug tracking, code reviews,
and code browsing. All of these can be accessed through
the main website.

We encourage you to visit the web site, subscribe to
the mailing lists, and help us make gemb a valuable com-
munity resource.
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