
The Java Memory Model ∗

Jeremy Manson and William Pugh
Department of Computer Science

University of Maryland, College Park
College Park, MD

{jmanson, pugh}@cs.umd.edu

Sarita V. Adve
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana-Champaign, IL

sadve@cs.uiuc.edu

ABSTRACT
This paper describes the new Java memory model, which
has been revised as part of Java 5.0. The model specifies
the legal behaviors for a multithreaded program; it defines
the semantics of multithreaded Java programs and partially
determines legal implementations of Java virtual machines
and compilers.

The new Java model provides a simple interface for cor-
rectly synchronized programs – it guarantees sequential con-
sistency to data-race-free programs. Its novel contribution
is requiring that the behavior of incorrectly synchronized
programs be bounded by a well defined notion of causality.
The causality requirement is strong enough to respect the
safety and security properties of Java and weak enough to
allow standard compiler and hardware optimizations. To
our knowledge, other models are either too weak because
they do not provide for sufficient safety/security, or are too
strong because they rely on a strong notion of data and
control dependences that precludes some standard compiler
transformations.

Although the majority of what is currently done in compil-
ers is legal, the new model introduces significant differences,
and clearly defines the boundaries of legal transformations.
For example, the commonly accepted definition for control
dependence is incorrect for Java, and transformations based
on it may be invalid.

In addition to providing the official memory model for
Java, we believe the model described here could prove to be a
useful basis for other programming languages that currently
lack well-defined models, such as C++ and C#.

Categories and Subject Descriptors: D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; D.3.0
[Programming Languages]: Standards; F.3.2 [Logics and
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1. INTRODUCTION
The memory model for a multithreaded system specifies

how memory actions (e.g., reads and writes) in a program
will appear to execute to the programmer, and specifically,
which value each read of a memory location may return. Ev-
ery hardware and software interface of a system that admits
multithreaded access to shared memory requires a memory
model. The model determines the transformations that the
system (compiler, virtual machine, or hardware) can apply
to a program written at that interface. For example, given
a program in machine language, the memory model for the
machine language / hardware interface will determine the
optimizations the hardware can perform.

For a high-level programming language such as Java, the
memory model determines the transformations the compiler
may apply to a program when producing bytecode, the trans-
formations that a virtual machine may apply to bytecode
when producing native code, and the optimizations that
hardware may perform on the native code.

The model also impacts the programmer; the transfor-
mations it allows (or disallows) determine the possible out-
comes of a program, which in turn determines which de-
sign patterns for communicating between threads are legal.
Without a well-specified memory model for a programming
language, it is impossible to know what the legal results
are for a program in that language. For example, a mem-
ory model is required to determine what, if any, variants
of double checked locking [37] are valid within a particular
language.

1.1 Background
Over the last two decades, there has been a tremendous

amount of work in the area of memory models at the hard-
ware interface [2, 3, 4, 12, 14, 17, 31, 40, 43], but little at
the programming language level. Programming languages
present two challenges that do not occur in the hardware
world. First, many programming languages, such as Java,
have strong safety and security properties that must be re-
spected. Second, the ability of a compiler to perform global
and subtle analysis in order to transform a program is es-
sentially unlimited, while hardware systems tend to use a
more circumscribed scope in performing optimizations.



Previous work [33, 34] has shown that the original seman-
tics for multithreaded Java [18, §17] had serious problems.
To address these issues, the Java memory model has recently
undergone a major revision. The new model now provides
greater flexibility for implementors, a clear notion of what
it means to write a correct program, and clear semantics for
both correct and incorrect programs. Despite this funda-
mental change, it is largely, although not entirely, consistent
with previous good programming practice and existing JVM
implementations and hardware.

The memory model must strike a balance between ease-
of-use for programmers and implementation flexibility for
system designers. The model that is easiest to understand,
sequential consistency [26], specifies that memory actions
must appear to execute one at a time in a single total order;
actions of a given thread must appear in this total order in
the same order in which they appear in the program (called
program order).

Whether sequential consistency by itself is an appropriate
model for high-level language programmers is a subject of
debate: it makes it easier for the programmer to write subtle
and complicated concurrent algorithms that do not use ex-
plicit synchronization. Unfortunately, such algorithms are
often designed or implemented incorrectly, and some would
argue that almost all programmers should be discouraged
from writing subtle and complicated synchronization-free
concurrent algorithms.

Sequential consistency substantially restricts the use of
many compiler and hardware transformations. In general,
sequential consistency restricts the reordering of any pair of
memory statements within a thread, even if there are no
data or control dependences between the statements (see
Figure 1). This can be a serious limitation since many
important optimizations involve reordering program state-
ments. Even optimizations as ubiquitous as common subex-
pression elimination and redundant read elimination can be
seen as reorderings: each evaluation of the common expres-
sion is conceptually “moved” to the point at which it is eval-
uated for the first time. In a sequentially consistent system,
no compiler or processor reorderings should become visible
to the programmer.

Recently, hardware designers have developed techniques
that alleviate some of the limitations of sequential consis-
tency by reordering accesses speculatively [16, 35]. The re-
ordered accesses are committed only when they are known
to not be visible to the programmer. Compiler techniques
to determine when reorderings are safe have also been pro-
posed [38, 42], but are not yet comprehensively evaluated or
implemented in commercial compilers.

A common method to overcome the limitations of sequen-
tial consistency is the use of relaxed memory models, which
allow more optimizations [12, 17, 19, 31, 40, 43]. Many
of these models were originally motivated by hardware op-
timizations and are described in terms of low-level system
attributes such as buffers and caches. Generally, these mod-
els have been hard to reason with and, as we show later, do
not allow enough implementation flexibility either.

To achieve both programming simplicity and implementa-
tion flexibility, alternative models, referred to as data-race-
free models [2, 4, 6] or properly-labeled models [14, 15], have
been proposed. This approach exploits the observation that
good programming practice dictates that programs be cor-
rectly synchronized (data-race-free); a data race is often a

Initially, x == y == 0
Thread 1 Thread 2
1: r2 = x; 3: r1 = y
2: y = 1; 4: x = 2

r2 == 2, r1 == 1 violates sequential consistency.

With sequential consistency, the result r2 == 2, r1 == 1

is impossible. Such a result would imply that statement 4
came before 1 (because r2 == 2), 1 came before 2 (due to
program order), 2 came before 3 (because r1 == 1), 3 came
before 4 (due to program order), and so 4 came before 4.
Such a cycle is prohibited by sequential consistency. How-
ever, if the hardware or the compiler reorder the instructions
in each thread, then statement 3 may not come before 4,
and/or 1 may not come before 2, making the above result
possible. Thus, sequential consistency restricts reordering
instructions in a thread, even if they are not data or control
dependent.

Figure 1: A Violation of Sequential Consistency.

symptom of a bug. The data-race-free models formalize cor-
rect programs as those that are data-race-free, and guaran-
tee the simple semantics of sequential consistency for such
programs. For full implementation flexibility, these models
do not provide any guarantees for programs that contain
data races. This approach allows standard hardware and
compiler optimizations, while providing a simple model for
programs written according to widely accepted practice.

1.2 The Java Memory Model
The new Java model adopts the data-race-free approach

for correct programs – correct programs are those that are
data-race-free; such programs are guaranteed sequential con-
sistency. Unfortunately, if a model leaves the semantics for
incorrect programs unspecified, it allows violations of safety
and security properties that are necessary for Java programs.

A key contribution of the revision effort has been to show
that the safety and security properties of Java require pro-
hibiting a class of executions that contain data races and
have not been previously characterized. The challenge is
to characterize and prohibit this class of executions with-
out prohibiting standard compiler and hardware transforma-
tions or unduly complicating the model. In earlier relaxed
models, such executions were either allowed, or were only
prohibited by enforcing traditional control and data depen-
dences. We show that the latter approach restricts standard
compiler optimizations and is not viable for Java.

The revised Java model is based on a new technique that
prohibits the necessary executions while allowing standard
optimizations. Our technique builds legal executions itera-
tively. In each iteration, it commits a set of memory actions;
actions can be committed if they occur in some well-behaved
execution that also contains the actions committed in previ-
ous iterations. A careful definition of “well-behaved execu-
tions” ensures that the appropriate executions are prohib-
ited and standard compiler transformations are allowed. To
our knowledge, this is the only model with this property.

This paper focuses on the semantics for ordinary reads
and writes, locks, and volatile variables in the Java memory
model. It also covers the memory semantics for interaction
with the outside world, and infinite executions. For space
reasons, we omit discussion of two important issues in the



Java memory model: the treatment of final fields, and final-
ization / garbage collection. We discuss the rest of the model
in detail; the full specification is available elsewhere [20].

The revision process for the Java model involved continual
feedback and participation from the broader Java commu-
nity; we refer the reader to the Java memory model mailing
list archives for more information on the evolution of the
model [21].

While this model was developed for Java, many of the
issues that are addressed apply to every multithreaded lan-
guage. It is our hope that the work presented here can be
leveraged to provide the right balance of safety and efficiency
for future programming languages.

2. REQUIREMENTS FOR THE JAVA MEM-
ORY MODEL

Our major design goal was to provide a balance between
(1) sufficient ease of use and (2) transformations and opti-
mizations used in current (and ideally future) compilers and
hardware.

Given that current hardware and compilers employ trans-
formations that violate sequential consistency, it is currently
not possible to provide a sequentially consistent program-
ming model for Java. The memory model for Java is there-
fore a relaxed model.

A detailed description of the requirements for the Java
model and their evolution can be found elsewhere [30]. Here
we provide a brief overview.

2.1 Correctly Synchronized Programs
It is difficult for programmers to reason about specific

hardware and compiler transformations. For ease of use, we
therefore specify the model so that programmers do not have
to reason about hardware or compiler transformations or
even our formal semantics for correctly synchronized code.
We follow the data-race-free approach to define a correctly
synchronized program (data-race-free) and correct seman-
tics for such programs (sequential consistency). The follow-
ing definitions formalize these notions.

• Conflicting Accesses: A read of or write to a vari-
able is an access to that variable. Two accesses to
the same shared field or array element are said to be
conflicting if at least one of the accesses is a write.

• Synchronization Actions: Synchronization actions
include locks, unlocks, reads of volatile variables, and
writes to volatile variables.

• Synchronization Order: Each execution of a pro-
gram is associated with a synchronization order, which
is a total order over all synchronization actions. To de-
fine data-race-free programs correctly, we are allowed
to consider only those synchronization orders that are
also consistent with program order and where a read
to a volatile variable v returns the value of the write
to v that is ordered last before the read by the syn-
chronization order. These latter requirements on the
synchronization order are explicitly imposed as a syn-
chronization order consistency requirement in the rest
of the paper.

• Synchronizes-With Order: For two actions x and
y, we use x

sw→ y to mean that x synchronizes-with

y. An unlock action on monitor m synchronizes-with
all subsequent lock actions on m that were performed
by any thread, where subsequent is defined accord-
ing to the synchronization order. Similarly, a write
to a volatile variable v synchronizes-with all subse-
quent reads of v by any thread. There are additional
synchronized-with edges in Java [20] that are not dis-
cussed here for brevity.

• Happens-Before Order: For two actions x and y,

we use x
hb→ y to mean that x happens-before y [25].

Happens-before is the transitive closure of program or-
der and the synchronizes-with order.

• Data Race: Two accesses x and y form a data race
in an execution of a program if they are from different
threads, they conflict, and they are not ordered by
happens-before.

• Correctly Synchronized or Data-Race-Free Pro-
gram [4, 6]: A program is said to be correctly syn-
chronized or data-race-free if and only if all sequentially
consistent executions of the program are free of data
races.

The first requirement for the Java model is to ensure se-
quential consistency for correctly synchronized or data-race-
free programs as defined above. Programmers then need
only worry about code transformations having an impact
on their programs’ results if those programs contain data
races.

As an example, the code in Figure 1 is incorrectly syn-
chronized. Any sequentially consistent execution of the code
contains conflicting accesses to x and y and these conflicting
accesses are not ordered by happens-before (since there is no
synchronization in the program). A way to make this pro-
gram correctly synchronized is to declare x and y as volatile
variables; then the program is assured of sequentially con-
sistent results with the Java model.

2.2 Out-of-Thin-Air Guarantees for Incorrect
Programs

The bulk of the effort for the revision, and our focus here,
was on understanding the requirements for incorrectly syn-
chronized code. The previous strategy of leaving the seman-
tics for incorrect programs unspecified is inconsistent with
Java’s security and safety guarantees. Such a strategy has
been used in some prior languages. For example, Ada simply
defines unsynchronized code as “erroneous” [1]. The reason-
ing behind this is that since such code is incorrect (on some
level), no guarantees should be made when it occurs. This is
similar to the strategy that some languages take with array
bounds overflow – unpredictable results may occur, and it
is the programmer’s responsibility to avoid these scenarios.

The above approach does not lend itself to the writing
of secure and safe code. In an ideal world, every program-
mer would write correct code all of the time. In our world,
programs frequently contain errors; not only does this cause
code to misbehave, but it can also allows attackers to vio-
late safety assumptions in a program (as is true with buffer
overflows). Our earlier work has described the dangers of
such scenarios in more detail [28].

Program semantics must be completely defined: if pro-
grammers don’t know what their code is doing, they won’t



Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r2 = y;

y = r1; x = r2;
Incorrectly synchronized, but we want

to disallow r1 == r2 == 42.

Figure 2: An Out Of Thin Air Result

be able to know what their code is doing wrong. The second
broad requirement of the Java model is to provide a clear
and definitive semantics for how code should behave when it
is not correctly written, but without substantially affecting
current compilers and hardware.

Figure 2 contains a common example of an program for
which careful semantics are required. It is incorrectly syn-
chronized; all sequentially consistent executions of this pro-
gram exhibit data races between Threads 1 and 2. However,
we need to provide a strong guarantee for this code: we need
to ensure that a value such as 42 will not appear out of thin
air in r1 and r2.

There are no current optimizations that would permit
such an out-of-thin-air result. However, in a future aggres-
sive system, Thread 1 could speculatively write the value
42 to y, which would allow Thread 2 to read 42 for y and
write it out to x, which would allow Thread 1 to read 42
for x, and justify its original speculative write of 42 for y.
A self-justifying write speculation like that one can create
serious security violations and needs to be disallowed. For
example, this would be a serious problem if the value that
was produced out of thin air was a reference to an object
that the thread was not supposed to have (because of, for
example, security guarantees).

Characterizing precisely what constitutes an out-of-thin-
air violation is complicated. Not all speculations that appear
to be self-justifying are security violations, and some can
even arise out of current compiler transformations. How we
characterize the appropriate set of violations is at the core
of the new Java model, and discussed further in Section 4.2.

3. HAPPENS-BEFORE MEMORY MODEL
Before presenting the Java model in full, we present a

simpler memory model, called the happens-before memory
model.

Each legal execution under this model has several proper-
ties/requirements (Section 5 provides a more formal version
of the requirements):

• There is a synchronization order over synchronization
actions, synchronization actions induce synchronizes-
with edges between matched actions, and the tran-
sitive closure of the synchronizes-with edges and pro-
gram order gives an order known as the happens-before
order (as described in Section 2.1).

• For each thread t, the actions t performs in the exe-
cution are the same as those that t would generate in
program order in isolation, given the values seen by
the reads of t in the execution.

• A rule known as happens-before consistency (see be-
low) determines the values a non-volatile read can see.

• A rule known as synchronization order consistency (see
below) determines the value a volatile read can see.

Initially, x == 0, ready == false. ready is a volatile
variable.

Thread 1 Thread 2

x = 1; if (ready)

ready = true r1 = x;
If r1 = x; executes, it will read 1.

Figure 3: Use of Happens-Before Memory Model
with Volatiles

Happens-before consistency says that a read r of a variable
v is allowed to observe a write w to v if, in the happens-before
partial order of the execution:

• r does not happen-before w (i.e., it is not the case that

r
hb→ w) – a read cannot see a write that happens-after

it, and

• there is no intervening write w′ to v, ordered by happens-

before (i.e., no write w′ to v such that w
hb→ w′ hb→ r) –

the write w is not overwritten along a happens-before
path.

Synchronization order consistency says that (i) synchro-
nization order is consistent with program order and (ii) each
read r of a volatile variable v sees the last write to v to come
before it in the synchronization order.

The happens-before memory model is a simple approxima-
tion to the semantics we want for the Java memory model.
For example, the happens-before memory model allows the
behavior shown in Figure 1. There are no synchronizes-with
or happens-before edges between threads, and each read is
allowed to return the value of the write by the other thread.

Figure 3 provides an example of how to use the happens-
before memory model to restrict the values a read can re-
turn. Notice that ready is a volatile boolean variable. There
is therefore a happens-before edge from the write ready =

true to any read that sees that write.
Assume Thread 2’s read of ready sees the write to ready.

Thread 1’s write of x must happen-before Thread 2’s read
of x (because of program order), and Thread 2’s read must
return the new value of x. In more detail: the initial value of
x is assumed to happen-before all actions. There is a path
of happens-before edges that leads from the initial write,
through the write to x, to the read of x. On this path, the
initial write is seen to be overwritten. Thus, if the read of
ready in Thread 2 sees true, then the read of x must see
the value 1.

If ready were not volatile, one could imagine a compiler
transformation that reordered the two writes in Thread 1,
resulting in a read of true for ready, but a read of 0 for x.

4. CAUSALITY
Although it is simple, the happens-before memory model

(as discussed in Section 3) allows unacceptable behaviors.
Notice that the behavior we want to disallow in Figure 2 is
consistent with the happens-before memory model. If both
write actions write out the value 42, and both reads see those
writes, then both reads see values that they are allowed to
see.

The happens-before memory model also does not fulfill
our requirement that correctly synchronized programs have
sequentially consistent semantics (first observed in [6, 7]).



Before compiler transformation After compiler transformation

Initially, a = 0, b = 1

Thread 1 Thread 2

1: r1 = a; 5: r3 = b;

2: r2 = a; 6: a = r3;

3: if (r1 == r2)

4: b = 2;
Is r1 == r2 == r3 == 2 possible?

Initially, a = 0, b = 1

Thread 1 Thread 2

4: b = 2; 5: r3 = b;

1: r1 = a; 6: a = r3;

2: r2 = r1;

3: if (true) ;
r1 == r2 == r3 == 2 is sequentially

consistent

Figure 5: Effects of Redundant Read Elimination

Initially, x == y == 0

Thread 1 Thread 2

r1 = x; r2 = y;

if (r1 != 0) if (r2 != 0)

y = 42; x = 42;
Correctly synchronized, so we must disallow r1 == r2 ==

42.

Figure 4: Correctly Synchronized Program

For example, the code shown in Figure 4 [2] is correctly
synchronized. This may seem surprising, since it doesn’t
perform any synchronization actions. Remember, however,
that a program is correctly synchronized if, when it is exe-
cuted in a sequentially consistent manner, there are no data
races. If this code is executed in a sequentially consistent
way, each action will occur in program order, and neither of
the writes will occur. Since no writes occur, there can be no
data races: the program is correctly synchronized.

For the above program, the only sequentially consistent
result is r1 == r2 == 0; this is therefore the only result
that we want to allow under the Java model. However, as the
result in Figure 2, the result of r1 == r2 == 42 for Figure 4
is consistent with the happens-before memory model. If
both writes occur, and both reads see them, then the if
guards are both true, and both reads see writes that they
are allowed to see. As mentioned, this violates the guarantee
that we wish to make of sequential consistency for correctly
synchronized programs.

Regardless of these weaknesses, the happens-before mem-
ory model provides a good outer bound for our model; all of
our executions must be consistent with it.

4.1 Data and Control Dependencies
The missing link between our desired semantics and the

happens-before memory model is one of causality. In Fig-
ures 2 and 4, actions which caused the illegal writes to occur
were, themselves, caused by the writes. This kind of circular
causality seems undesirable in general, and these examples
are prohibited in the Java memory model.

In both of those examples, a write that is data or control
dependent on a read appears to occur before that read, and
then causes the read to return a value that justifies that
write. In Figure 2, the value written by the write is used
to justify the value that it does write. In Figure 4, the
occurrence of the write is used to justify the fact that the
write will execute.

Unfortunately, the notion of “cause” is a tricky one, and
cannot employ the notion of data and control dependencies.

Initially, x = y = 0

Thread 1 Thread 2

1: r1 = x; 4: r3 = y;

2: r2 = r1 | 1; 5: x = r3;

3: y = r2;
Is r1 == r2 == r3 == 1 possible?

Figure 6: Using Global Analysis

For example, the Java memory model allows the behavior
shown in Figure 5, even though that example also seems to
involve a case of circular causality. This behavior must be
allowed, because a compiler can

• eliminate the redundant read of a, replacing r2 = a

with r2 = r1, then

• determine that the expression r1 == r2 is always true,
eliminating the conditional branch 3, and finally

• move the write 4: b = 2 early.

After the compiler does the redundant read elimination,
the assignment 4: b = 2 is guaranteed to happen; the sec-
ond read of a will always return the same value as the first.
Without this information, the assignment seems to cause
itself to happen. With this information, there is no depen-
dency between the reads and the write. For this transformed
program (illustrated in Figure 5(b)), the outcome r1 == r2
== r3 == 2 is sequentially consistent and could be produced
on many commercial systems. Thus, dependence-breaking
optimizations can also result in executions containing ap-
parent “causal cycles”.

Figure 6 shows another example in which the compiler
should be allowed to perform a global analysis that elimi-
nates a data dependence. For the behavior in Figure 6 to
occur, it would seem that the write to y must occur before
the read of x, which would seem to violate the data depen-
dence of the write to y on the read of x. However, a compiler
could use an interthread analysis to determine that the only
possible values for x and y are 0 or 1. Knowing this, the
compiler can determine that r2 is always 1. This breaks the
data dependence, allowing a write of the constant value 1 to
y before the read of x by thread 1. The Java model allows
both this analysis and the behavior in Figure 6.

4.2 Causality and the Java Memory Model
The key question now becomes how to formalize the no-

tion of causality so we restrict causal violations of the type in
Figures 2 and 4, but allow outcomes of the type in Figure 5.



We address these issues by considering when actions can
occur in an execution. Both Figures 4 and 5 involve mov-
ing actions (specifically, writes) earlier than they otherwise
would have occurred under pure sequential consistency.

One difference between the acceptable and unacceptable
results is that in Figure 5, the write that we perform early
4: b = 2 would also have occurred if we had carried on
the execution in a sequentially consistent way, accessing the
same location and writing the same value. In Figure 4, the
early write could never write the same value (42) in any se-
quentially consistent execution. These observations provide
an intuition as to when an action should be allowed to occur
in a legal Java execution.

To justify performing the writes early in Figures 5 and 6,
we find a well-behaved execution in which those writes took
place, and use that execution to perform the justification.
Our model therefore builds an execution iteratively; it al-
lows an action (or a group of actions) to be committed if
it occurs in some well-behaved execution that also contains
the actions committed so far.

Identifying what constitutes a “well-behaved” execution
is the key to our notion of causality. We distinguished the
early writes in Figures 2 and 4 from the early writes in Fig-
ures 5 and 6 by considering whether those writes could occur
in a sequentially consistent execution. While it may appear
intuitive to use the notion of a sequentially consistent exe-
cution to justify the occurrence of early writes, this notion
turns out to be too relaxed in some subtle cases.

After trying several possibilities for formalizing the “well-
behaved” executions that could justify early writes, we con-
verged on the following. We observed that early execution
of an action does not result in an undesirable causal cy-
cle if its occurrence is not dependent on a read returning a
value from a data race. This insight led to our notion of a
“well-behaved execution”: a read that is not yet committed
must return the value of a write that is ordered before it by
happens-before.

We can use a “well-behaved” execution to “justify” further
executions where writes occur early. Given a well-behaved
execution, we may commit any of the uncommitted writes
that occur in it (with the same address and value). We also
may commit any uncommitted reads that occur in such an
execution, but additionally require that the read return the
value of a previously committed write in both the justifying
execution and the execution being justified (we allow these
writes to be different).

To keep consistency among the successive justifying ex-
ecutions, we also require that across all justifying execu-
tions, the happens-before and synchronization order rela-
tions among committed accesses remains the same, and the
values returned by committed reads remain the same.

Our choice of justifying executions ensures that the oc-
currence of a committed action and its value does not de-
pend on an uncommitted data race. We build up a notion
of causality, where actions that are committed earlier may
cause actions that are committed later to occur. This ap-
proach ensures that later commits of accesses involved in
data races will not result in an undesirable cycle.

Consider again the executions with undesirable causal be-
haviors in Figure 2 and 4. To get the undesirable behavior,
the actions in those executions must all read and write the
value 42. This implies that some action must read or write
the value 42 in an execution where reads only return val-

ues of writes that happen-before them. However, there is
no such execution, so we are unable to commit any of the
actions in those executions.

On the other hand, given the code in Figure 5, there is
an execution where all reads return values from writes that
happen-before them and where the write 4: b = 2 occurs.
This is any execution where both r1 and r2 read the value
0 for a. Thus, we can commit 4: b = 2. This allows us
to commit a read of b by Thread 2 that returns the value
2. We use the same justifying execution for this – the read
returns the value 1 in the justifying execution (since this
does not involve a race), but can return the value 2 in the
execution being justified (since the write of b to 2 is already
committed). Using a similar procedure, we can commit the
rest of the accesses. Thus, the model allows the execution
in Figure 5, but not those in Figure 4 and 2.

The next section presents the model, as we have discussed
it, using a formal notation. The causality constraints are
presented in Section 5.4.

5. FORMAL SPECIFICATION
This section provides the formal specification of the Java

memory model.

5.1 Actions and Executions
An action a is described by a tuple 〈t, k, v, u〉, comprising:

t - the thread performing the action

k - the kind of action: volatile read, volatile write, (non-
volatile) read, (non-volatile) write, lock, unlock, spe-
cial synchronization action, thread divergence actions
and external actions. Volatile reads, volatile writes,
locks and unlocks are synchronization actions, as are
special synchronization actions such as the start of a
thread, the synthetic first or last action of a thread,
and actions that detect that a thread has terminated,
as described in Section 2.1.

v - the (runtime) variable or monitor involved in the ac-
tion

u - an arbitrary unique identifier for the action

An execution E is described by a tuple

〈P, A,
po→,

so→, W, V,
sw→ ,

hb→ 〉

comprising:

P - a program

A - a set of actions

po→ - program order, which for each thread t, is a total
order over all actions performed by t in A

so→ - synchronization order, which is a total order over all
synchronization actions in A

W - a write-seen function, which for each read r in A,
gives W (r), the write action seen by r in E.

V - a value-written function, which for each write w in
A, gives V (w), the value written by w in E.

sw→ - synchronizes-with, a partial order over synchroniza-
tion actions.



hb→ - happens-before, a partial order over actions

Note that the synchronizes-with and happens-before are
uniquely determined by the other components of an execu-
tion and the rules for well-formed executions.

Two of the action types require special descriptions, and
are detailed further in Section 7. These actions are intro-
duced so that we can explain why such a thread may cause
all other threads to stall and fail to make progress.

external actions - An external action is an action that
may be observable outside of an execution, and may
have a result based on an environment external to the
execution. An external action tuple contains an ad-
ditional component, which contains the results of the
external action as perceived by the thread performing
the action. This may be information as to the success
or failure of the action, and any values read by the
action.

Parameters to the external action (e.g., which bytes
are written to which socket) are not part of the exter-
nal action tuple. These parameters are set up by other
actions within the thread and can be determined by
examining the intra-thread semantics. They are not
explicitly discussed in the memory model.

In non-terminating executions, not all external actions
are observable. Non-terminating executions and ob-
servable actions are discussed in Section 7.

thread divergence action - A thread divergence action is
only performed by a thread that is in an infinite loop in
which no memory, synchronization or external actions
are performed. If a thread performs a thread diver-
gence action, that action is followed in program order
by an infinite sequence of additional thread divergence
actions.

5.2 Definitions

1. Definition of synchronizes-with. The synchronizes-
with order is described in Section 2.1. The source of
a synchronizes-with edge is called a release, and the
destination is called an acquire.

2. Definition of happens-before. The happens-before
order is given by the transitive closure of the program
order and the synchronizes-with order. This is dis-
cussed in detail in Section 2.1.

3. Definition of sufficient synchronization edges.
A set of synchronization edges is sufficient if it is the
minimal set such that if the transitive closure of those
edges with program order edges is taken, all of the
happens-before edges in the execution can be deter-
mined. This set is unique.

4. Restrictions of partial orders and functions. We
use f |d to denote the function given by restricting the
domain of f to d: for all x ∈ d, f(x) = f |d(x) and for

all x 6∈ d, f |d(x) is undefined. Similarly, we use
e→ |d

to represent the restriction of the partial order
e→ to

the elements in d: for all x, y ∈ d, x
e→ y if and only

if x
e→ |d y. If either x 6∈ d or y 6∈ d, then it is not the

case that x
e→ |d y.

5.3 Well-Formed Executions
We only consider well-formed executions. An execution

E = 〈P, A,
po→,

so→, W, V,
sw→,

hb→〉 is well formed if the following
conditions are true:

1. Each read of a variable x sees a write to x.
All reads and writes of volatile variables are
volatile actions. For all reads r ∈ A, we have W (r) ∈
A and W (r).v = r.v. The variable r.v is volatile if and
only if r is a volatile read, and the variable w.v is
volatile if and only if w is a volatile write.

2. Synchronization order is consistent with pro-
gram order and mutual exclusion. Having syn-
chronization order consistent with program order im-
plies that the happens-before order, given by the tran-
sitive closure of synchronizes-with edges and program
order, is a valid partial order: reflexive, transitive and
antisymmetric. Having synchronization order consis-
tent with mutual exclusion means that on each moni-
tor, the lock and unlock actions are correctly nested.

3. The execution obeys intra-thread consistency.
For each thread t, the actions performed by t in A
are the same as would be generated by that thread in
program-order in isolation, with each write w writing
the value V (w), given that each read r sees / returns
the value V (W (r)). Values seen by each read are de-
termined by the memory model. The program order
given must reflect the program order in which the ac-
tions would be performed according to the intrathread
semantics of P , as specified by the parts of the JLS
that do not deal with the memory model.

4. The execution obeys synchronization-order con-
sistency. Consider all volatile reads r ∈ A. It is not
the case that r

so→ W (r). Additionally, there must be

no write w such that w.v = r.v and W (r)
so→ w

so→ r.

5. The execution obeys happens-before consist-
ency. Consider all reads r ∈ A. It is not the case

that r
hb→ W (r). Additionally, there must be no write

w such that w.v = r.v and W (r)
hb→ w

hb→ r.

5.4 Causality Requirements for Executions
A well-formed execution

E = 〈P, A,
po→,

so→, W, V,
sw→,

hb→〉

is validated by committing actions from A. If all of the
actions in A can be committed, then the execution satisfies
the causality requirements of the Java memory model.

Starting with the empty set as C0, we perform a sequence
of steps where we take actions from the set of actions A and
add them to a set of committed actions Ci to get a new
set of committed actions Ci+1. To demonstrate that this is
reasonable, for each Ci we need to demonstrate an execution
Ei containing Ci that meets certain conditions.

Formally, an execution E satisfies the causality require-
ments of the Java memory model if and only if there exist

• Sets of actions C0, C1, . . . such that

– C0 = ∅
– Ci ⊂ Ci+1



– A = ∪(C0, C1, C2, . . .)

such that E and (C0, C1, C2, . . .) obey the restrictions
listed below.

The sequence C0, C1, . . . may be finite, ending in a set
Cn = A. However, if A is infinite, then the sequence
C0, C1, . . . may be infinite, and it must be the case
that the union of all elements of this infinite sequence
is equal to A.

• Well-formed executions E1, . . . , where Ei = 〈P, Ai,
poi→

,
soi→, Wi, Vi,

swi→ ,
hbi→〉.

Given these sets of actions C0, . . . and executions E1, . . .,
every action in Ci must be one of the actions in Ei. All
actions in Ci must share the same relative happens-before
order and synchronization order in both Ei and E. Formally,

1. Ci ⊆ Ai

2.
hbi→ |Ci =

hb→ |Ci

3.
soi→ |Ci =

so→ |Ci

The values written by the writes in Ci must be the same
in both Ei and E. The reads in Ci−1 need to see the same
writes in Ei as in E (but not the reads in Ci−Ci−1) Formally,

4. Vi|Ci = V |Ci

5. Wi|Ci−1 = W |Ci−1

All reads in Ei that are not in Ci−1 must see writes that
happen-before them. Each read r in Ci − Ci−1 must see
writes in Ci−1 in both Ei and E, but may see a different
write in Ei from the one it sees in E. Formally,

6. For any read r ∈ Ai − Ci−1, we have Wi(r)
hbi→ r

7. For any read r ∈ Ci−Ci−1, we have Wi(r) ∈ Ci−1 and
W (r) ∈ Ci−1

Given a set of sufficient synchronizes-with edges for Ei, if
there is a release-acquire pair that happens-before an action
in Ci−Ci−1, then that pair must be present in all Ej , where
j ≥ i. Formally,

8. Let
sswi→ be the

swi→ edges that are in the transitive

reduction of
hbi→ but not in

poi→. We call
sswi→ the suffi-

cient synchronizes-with edges for Ei. If x
sswi→ y

hbi→ z

and z ∈ Ci − Ci−1, then x
swj→ y for all j ≥ i.

If an action y is committed, all external actions that happen-
before y are also committed.

9. If y ∈ Ci, x is an external action and x
hbi→ y, then

x ∈ Ci.

6. EXAMPLE
As a simple example of how the memory model works,

consider Figure 7. Note that there are initially writes of
the default value 0 to x and y. We wish to get the result
r1 == r2 == 1, which can occur if a compiler reorders the
statements in Thread 1. This result is consistent with the

Initially, x = y = 0
Thread 1 Thread 2

r1 = x; r2 = y;

y = 1; x = r2;

r1 == r2 == 1 is a legal behavior

Figure 7: A Standard Reordering

Final First First Sees
Action Value Committed In Final Value In
x = 0 0 C1 E1

y = 0 0 C1 E1

y = 1 1 C1 E1

r2 = y 1 C2 E3

x = r2 1 C3 E3

r1 = x 1 C4 E

Figure 8: Table of commit sets for Figure 7

happens-before memory model, so we only have to ensure
that it complies with the causality rules in Section 5.4.

The set of actions C0 is the empty set. Therefore, accord-
ing to Rule 6, in execution E1, all reads must see values of
writes that happen-before them. That is, in E1, both reads
must see the value 0. We first commit the initial writes of 0
to x and y, as well as the write of 1 to y by Thread 1; these
writes are contained in the set C1.

We wish the action r2 = y to see the value 1. C1 cannot
contain this action seeing this value: neither write to y had
been committed. C2 may contain this action; however, the
read of y must return 0 in E2, because of Rule 6. Execution
E2 is therefore identical to E1.

In E3, by Rule 7, r2 = y can see any conflicting write
that occurs in C2 (as long as that write is happens-before
consistent). This action can now see the write of 1 to y

in Thread 1, which was committed in C1. We commit one
additional action in C3: a write of 1 to x by x = r2.

C4, as part of E4, contains the read r1 = x; it still sees 0,
because of Rule 6. In our final execution E = E5, however,
Rule 7 allows r1 = x to see the write of 1 to x that was
committed in C3.

7. OBSERVABLE BEHAVIOR AND
NONTERMINATING EXECUTIONS

For programs that always terminate in some bounded fi-
nite period of time, their behavior can be understood (in-
formally) simply in terms of their allowable executions. For
programs that can fail to terminate in a bounded amount of
time, more subtle issues arise.

The observable behavior of a program is defined by the
finite sets of external actions that the program may perform.
A program that, for example, simply prints “Hello” forever
is described by a set of behaviors that for any non-negative
integer i, includes the behavior of printing “Hello” i times.

Termination is not explicitly modeled as a behavior, but
a program can easily be extended to generate an additional
external action “executionTermination” that occurs when
all threads have terminated.

We also define a special hang action. If a behavior is de-
scribed by a set of external actions including a hang action,
it indicates a behavior where after the (non-hang) external



Initially, v is volatile and v = false

Thread 1 Thread 2

while (!v); v = true;

System.out.println("Thread 1 done"); System.out.println("Thread 2 done");

If we observe print message by thread 2, Thread 1 must see write to v, print its message
and terminate. But program can also be observed to hang and not print any messages.

Figure 9: Fairness Example

actions are observed, the program can run for an unbounded
amount of time without performing any additional external
actions or terminating. Programs can hang:

• if all non-terminated threads are blocked, and at least
one such blocked thread exists, or

• if the program can perform an unbounded number of
actions without performing any external actions.

A thread can be blocked in a variety of circumstances,
such as when it is attempting to acquire a lock or perform
an external action (such as a read) that depends on an ex-
ternal data. If a thread is in such a state, Thread.getState
will return BLOCKED or WAITING. An execution may result in
a thread being blocked indefinitely and the execution not
terminating. In such cases, the actions generated by the
blocked thread must consist of all actions generated by that
thread up to and including the action that caused the thread
to be blocked indefinitely, and no actions that would be gen-
erated by the thread after that action.

To reason about observable behaviors, we need to talk
about sets of observable action. If O is a set of observable
actions for E, then set O must be a subset of A, and must
contain only a finite number of actions, even if A contains an
infinite number of actions. Furthermore, if an action y ∈ O,

and either x
hb→ y or x

so→ y, then x ∈ O.
Note that a set of observable actions is not restricted to

containing external actions. Rather, only external actions
that are in a set of observable actions are deemed to be
observable external actions.

A behavior B is an allowable behavior of a program P if
and only if B is a finite set of external actions and either

• There exists an execution E of P , and a set O of ob-
servable actions for E, and B is the set of external
actions in O (if any threads in E end in a blocked
state and O contains all actions in E, then B may also
contain a hang action), or

• There exists a set O of actions such that

– B consists of a hang action plus all the external
actions in O and

– for all K ≥ |O|, there exists an execution E of P
and a set of actions O′ such that:

∗ Both O and O′ are subsets of A that fulfill the
requirements for sets of observable actions.

∗ O ⊆ O′ ⊆ A

∗ |O′| ≥ K

∗ O′ −O contains no external actions

Note that a behavior B does not describe the order in
which the external actions in B are observed, but other (im-
plicit and unstated) constraints on how the external actions
are generated and performed may impose such constraints.

7.1 Discussion
The Java language specification does not guarantee pre-

emptive multithreading or any kind of fairness: there is no
hard guarantee that any thread will surrender the CPU and
allow other threads to be scheduled. The lack of such a
guarantee is partially due to the fact that any such guaran-
tee would be complicated by issues such as thread priorities
and real-time threads (in Real-time Java virtual machine im-
plementations). Most Java virtual machine implementations
will provide some sort of fairness guarantee, but the details
are implementation specific and are treated as a quality of
service issue, rather than a rigid requirement.

However, there are some limitations on compiler transfor-
mations that reduce fairness. For example, in Figure 9, if
we observe the print message from Thread 2, and no threads
other than Threads 1 and 2 are running, then Thread 1 must
see the write to v, print its message and terminate. This pre-
vents the compiler from hoisting the volatile read of v out
of the loop in Thread 1.

The fact that Thread 1 must terminate if the print by
Thread 2 is observed follows from the rules on observable
actions. If the print by Thread 2 is in a set of observable
actions O, then the write to v and all reads of v that see
the value 0 must also be in O. Additionally, the program
cannot perform an unbounded amount of additional actions
that are not in O. Therefore, the only observable behavior
of this program in which the program hangs (runs forever
without performing additional external actions) is one in
which it performs no observable external actions other than
hanging. This includes the print action.

It follows from this that in Figure 9, the instructions in
Thread 2 cannot be arbitrarily reordered. If this reordering
were performed, it would be possible for Thread 2 to print,
after which there could be a context switch to Thread 1;
Thread 1 would never terminate.

Note that the program in Figure 9 has only finite execu-
tions. Since there are no blocking operations in Thread 2,
it must run to completion in any execution. However, we
want to allow this program to be executed such that it is
not observed to terminate (which might happen if Thread
1 were run and never performed a context switch). One of
the things we needed to accomplish in the formalization of
observable behavior was that no distinction should be made
between a program that can run for a finite, but unbounded,
number of steps and a program that can run for an infinite
number of steps. For example, if accesses to volatile fields
in Figure 9 were implemented by surrounding them with



Initially, x == y == z == 0
Thread 1 Thread 2 Thread 3 Thread 4
1: z = 1 2: r1 = z 5: r2 = x 7: r3 = y

3: if (r1 == 0) 6: y = r2 8: x = r3
4: x = 1

Must not allow r1 == r2 == r3 == 1

Figure 10: Prohibited “bait-and-switch” behavior

Initially, x == y == 0
Thread 1 Thread 2 Thread 3
1: r1 = x 4: r2 = x 6: r3 = y
2: if (r1 == 0) 5: y = r2 7: x = r3
3: x = 1
Must not allow r1 == r2 == r3 == 1

Figure 11: A variant “bait-and-switch” behavior

locks, Thread 2 could block and never acquire the lock. In
this situation, the program would execute infinitely.

8. SURPRISING AND CONTROVERSIAL
BEHAVIORS

Many of the requirements and goals for the Java memory
model were straightforward and non-controversial (e.g., cor-
rectly synchronized programs exhibit only sequentially con-
sistent behavior). Other decisions about the requirements
generated quite a bit of discussion; the final decision often
came down to a matter of taste and preference rather than
any concrete requirement.

One of the most subtle of these is that in programs with
data races, certain kinds of behaviors were deemed to display
an unacceptable “bait-and-switch” circular reasoning. One
such example is shown in Figure 10, in which it was decided
that the behavior r1 == r2 == r3 == 1 was unacceptable.
In an execution that exhibits this behavior, only Threads 3
and 4 read and write to x and y. Thus, this seems to be an
“out-of-thin-air” example, as in Figure 2. What differenti-
ates this example from Figure 2 is that in Figure 10, Thread
2 might have, but didn’t write 1 to x.

After much discussion within the Java community, it was
decided that allowing such behaviors would make reasoning
about the safety properties of programs too difficult. Rea-
soning about the behaviors of Threads 3 and 4 in Figure 10
requires reasoning about Threads 1 and 2, even when trying
to reason about executions in which Threads 1 and 2 did
not interact with Threads 3 and 4.

Given that the behavior in Figure 10 is unacceptable, the
behavior in Figure 11 is very similar, and it seems reasonable
to prohibit it as well (the behaviors in Figures 10 and 11 are
prohibited by the Java memory model).

Figure 12 shows a code fragment very similar to that of

Initially, x == y == 0
Thread 1 Thread 2
1: r1 = x 6: r3 = y
2: if (r1 == 0) 7: x = r3
3: x = 1
4: r2 = x
5: y = r2

Compiler transformations can result
in r1 == r2 == r3 == 1

Figure 12: Behavior that must be allowed

Figure 11. However, for the code in Figure 12, we must
allow the behavior that was prohibited in Figure 11. We do
this because that behavior can result from well understood
and reasonable compiler transformations.

• The compiler can deduce that the only legal values for
x and y are 0 and 1.

• The compiler can then replace the read of x on line 4
with a read of 1, because either

– 1 was read from x on line 1 and there was no
intervening write, or

– 0 was read from x on line 1, 1 was assigned to x

on line 3, and there was no intervening write.

• Via forward substitution, the compiler is allowed to
transform line 5 to y = 1. Because there are no de-
pendencies, this line can be made the first action per-
formed by Thread 1.

After these transformations are performed, a sequentially
consistent execution of the program will result in the behav-
ior in question.

The fact that the behavior in Figure 11 is prohibited and
the behavior in Figure 12 is allowed is, perhaps, surpris-
ing. We could derive Figure 12 from Figure 11 by “inlining”
Threads 1 and 2 into a single thread. This shows that, in
general, thread inlining is not legal under the Java memory
model.

This is an example where adding happens-before relation-
ships can increase the number of allowed behaviors. This
property can be seen as an extension of the way in which
causality is handled in the Java memory model (as discussed
in Section 4.2). The happens-before relationship is used
to express causation between two actions; if an additional
happens-before relationship is inserted, the causal relation-
ships change.

Other approaches may exist to defining an acceptable
memory model for a programming language. However, much
energy was expended on the Java memory model, and more
than a dozen different approaches were considered. The ap-
proach presented in this paper, part of the Java 5.0 standard,
was found to be the only acceptable approach.

9. FORMALIZING THE IMPACT OF THE
MODEL

Section 2 discussed some of the properties we wanted the
model to reflect. This section discusses how those properties
are realized.

9.1 Considerations for Implementors
This section discusses some of the key ways in which the

new Java memory model impacts the decisions that must
be taken by Java platform implementors. Remember from
Section 2, that one of our key informal requirements was
that the memory model allow as many optimizations as it
can.

9.1.1 Control Dependence
The new Java memory model makes changes that are sub-

tle, but deep, to the way in which implementors must reason
about Java programs. For example, the standard definition



of control dependence assumes that execution always pro-
ceeds to exit. This must not be casually assumed in multi-
threaded programs.

Consider the program in Figure 13. Under the traditional
definitions of control dependence, neither of the writes in
either thread are control dependent on the loop guards. This
might lead a compiler to decide that the writes could be
reordered to before the loops. However, this would be illegal
in Java. This program is, in fact, correctly synchronized: in
all sequentially consistent executions, neither thread writes
to shared variables and there are no data races (this figure
is very similar to Figure 4). A compiler must not reorder
the writes in that example.

The notion of control dependence that correctly encapsu-
lates this is called weak control dependence [32] in the con-
text of program verification. This property has also been
restated as loop control dependence [10] in the context of
program analysis and transformation.

9.1.2 Semantics Allow Reordering
We mentioned earlier that a key notion for program op-

timization was that of reordering. We demonstrated in Fig-
ure 1 that standard compiler reorderings, unobservable in
single threaded programs, can have observable effects in mul-
tithreaded programs. However, reorderings are crucial in
many common code optimizations; e.g., instruction schedul-
ing, register allocation, common sub-expression elimination
and redundant read elimination.

In this section, we demonstrate that many of the reorder-
ings necessary for these optimizations are legal. This is
not a complete list of legal reorderings; others can be de-
rived from the model. However, this demonstrates a sample
of common reorderings, used for many common optimiza-
tions. Specifically, we demonstrate the legality of reordering
two independent actions when doing so does not change the
happens-before relationship for any other actions.

Theorem 1. Consider a program P and the program P ′

that is obtained from P by reordering two adjacent state-
ments sx and sy. Let sx be the statement that comes before
sy in P , and after sy in P ′. The statements sx and sy may
be any two statements such that

• reordering sx and sy doesn’t eliminate any transitive
happens-before edges in any valid execution (it will re-
verse the direct happens-before edge between the actions
generated by sx and sy)

• Reordering sx and sy does not hoist an action above
an infinite loop

• sx and sy are not conflicting accesses to the same vari-
able,

• sx and sy are not both synchronization actions or ex-
ternal actions, and

• the intra-thread semantics of sx and sy allow reorder-
ing (e.g., sx doesn’t store into a register that is read by
sy).

Transforming P into P ′ is a legal program transformation.

Proof:
Assume that we have a valid execution E′ of program P ′.

It has a legal set of behaviors B′. To show that the trans-
formation of P into P ′ is legal, we need to show that there

is a valid execution E of P that has the same observable
behaviors as E′.

Let x be the action generated by sx and y be the action
generated by sy. If x and y are executed multiple times, we
repeat this analysis for each repetition.

The execution E′ has a set of observable actions O′, and
the execution E has a set of observable actions O. If O
includes x, O must also include y because x

hb→ y in E. If
O′ does not include y (and therefore y is not an external
action, as it must not take place after an infinite series of
actions), we can use O as the set of observable actions for
E′ instead: they induce the same behavior.

Since E′ is legal, we have E′
0, E

′
1 . . ., a sequence of ex-

ecutions that eventually justifies E. E′
0 doesn’t have any

committed actions and ∀i, 0 ≤ i, E′
i is used to justify the

additional actions that are committed to give E′
i+1.

We will show that we can use Ei ≡ E′
i to show that E ≡ E′

is a legal execution of P .
If x and y are both uncommitted in E′

i, the happens-
before ordering between x and y doesn’t change the possible
behaviors of actions in Ei and E′

i. Any action that happens-
before x or y happens-before both of them. If either x or
y happens-before an action, both of them do (excepting, of
course, x and y themselves). Thus, the reordering of x and
y can’t affect the write seen by any uncommitted read.

Similarly, the reordering doesn’t affect which (if any) in-
correctly synchronized write a read can be made to see when
the read is committed.

If E′
i is used to justify committing x in E′

i+1, then Ei may
be used to justify committing x in Ei+1. Similarly for y.

If one or both of x or y is committed in E′
i, it can also

be committed in Ei, without behaving any differently, with
one caveat. If y is a lock or a volatile read, it is possible that
committing x in E′

i will force some synchronization actions
that happen-before y to be committed in E′

i. However, we
are allowed to commit those actions in Ei, so this does not
affect the existence of Ei.

Thus, the sequences of executions used to justify E′ will
also justify E, and the program transformation is legal.

9.1.3 Other Code Transformations
Although the Java memory model is not defined in terms

of which transformations are legal, it is possible to derive
the legality of a transformation based on the model. For
example,

• synchronization on thread local objects can be ignored
or removed altogether (the caveat to this is the fact
that invocations of methods like wait and notify have
to obey the correct semantics – for example, even if the
lock is thread local, it must be acquired when perform-
ing a wait),

• redundant synchronization (e.g., when a synchronized
method is called from another synchronized method
on the same object) can be ignored or removed,

• volatile fields of thread local objects can be treated as
normal fields.

9.2 Considerations for Programmers
The most important property of the memory model that is

provided for programmers is the notion that if a program is



Initially, x == y == 0

Thread 1 Thread 2
do { r1 = x; do { r2 = y;
} while (r1 == 0); } while (r2 == 0);
y = 42; x = 42;

Correctly synchronized, so non-termination is the only
legal behavior

Figure 13: Correctly Synchronized Program

correctly synchronized, it is unnecessary to worry about re-
orderings. In this section, we prove this property holds of the
Java memory model. First, we prove a lemma that shows
that when each read sees a write that happens-before it,
the resulting execution behaves in a sequentially consistent
way. We then show that reads in executions of correctly syn-
chronized programs can only see writes that happen-before
them. Thus, by the lemma, the resulting behavior of such
programs is sequentially consistent.

9.2.1 Correctly synchronized programs exhibit only
sequentially consistent behaviors

Lemma 2. Consider an execution E of a correctly syn-
chronized program P that is legal under the Java memory
model. If, in E, each read sees a write that happens-before
it, E has sequentially consistent behavior.

Proof:
Since the execution is legal under the memory model, the

execution is happens-before consistent and synchronization
order consistent.

A topological sort on the happens-before edges of the ac-
tions in an execution gives a total order consistent with pro-
gram order and synchronization order. Let r be the first
read in E that doesn’t see the most recent conflicting write
w in the sorted order but instead sees w′. Let the topological
sort of E be αw′βwγrδ.

Let αw′βwγr′δ′ be the topological sort of an execution
E′. E′ is obtained exactly as E, except that instead of r, it
performs the action r′, which is the same as r except that
it sees w; δ′ is any sequentially consistent completion of the
program such that each read sees the previous conflicting
write.

The execution E′ is sequentially consistent, and it is not

the case that w′ hb→ w
hb→ r, so P is not correctly synchro-

nized.
Thus, no such r exists and the program has sequentially

consistent behavior.

Theorem 3. If an execution E of a correctly synchro-
nized program is legal under the Java memory model, it is
also sequentially consistent.

Proof: By Lemma 2, if an execution E is not sequen-
tially consistent, there must be a read r that sees a write w
such that w does not happen-before r. The read must be
committed, because otherwise it would not be able to see a
write that does not happen-before it. There may be multi-
ple reads of this sort; if so, let r be the first such read that
was committed. Let Ei be the execution that was used to
justify committing r.

The relative happens-before order of committed actions
and actions being committed must remain the same in all

executions considering the resulting set of committed ac-

tions. Thus, if we don’t have w
hb→ r in E, then we didn’t

have w
hb→ r in Ei when we committed r.

Since r was the first read to be committed that doesn’t
see a write that happens-before it, each committed read in
Ei must see a write that happens-before it. Non-committed
reads always sees writes that happens-before them. Thus,
each read in Ei sees a write that happens-before it, and there
is a write w in Ei that is not ordered with respect to r by
happens-before ordering.

A topological sort of the actions in Ei according to their
happens-before edges gives a total order consistent with pro-
gram order and synchronization order. This gives a total
order for a sequentially consistent execution in which the
conflicting accesses w and r are not ordered by happens-
before edges. However, Lemma 2 shows that executions of
correctly synchronized programs in which each read sees a
write that happens-before it must be sequentially consistent.
Therefore, this program is not correctly synchronized. This
is a contradiction.

10. RELATED WORK
Hardware architectures have motivated most prior work

on memory models. Lamport provides one of the earliest dis-
cussions of memory models [25], which provides the widely
used definition for sequential consistency. Several relaxed
models have been proposed in academia and for commercial
hardware [4, 6, 12, 17, 19, 31, 40, 43]. Adve and Ghara-
chorloo provide a primer for this work [3]. Adve and Hill [4,
6] and Gharachorloo et al. [17] first formalized the prop-
erty of sequential consistency for data-race-free (or properly-
labeled [17]) programs for memory models. The data-race-
free work also observed that models such as happens-before
are insufficient to provide this property [6, 7].

There has also been substantial work on relaxed models in
the area of runtime systems for software distributed shared-
memory [9, 22]. Much of this work has built on the hardware
models.

Our work is primarily motivated by requirements for pro-
gramming languages, which differ significantly from those
for hardware-driven memory models. Specifically, the out-
of-thin-air requirement stems from security and safety prop-
erties of programming languages. Formalizing this require-
ment in a way that would not prohibit compiler transforma-
tions was particularly challenging. In particular, the amount
of analysis and transformation that a compiler might per-
form is essentially unlimited. Thus, devising a memory
model that doesn’t interfere with desirable compiler trans-
formations is significantly harder; it is also undesirable, as
it would require a major restructuring of current compilers
and incur a significant performance penalty.

Not surprisingly, all of the above hardware-driven mem-
ory models either allow unacceptable out-of-thin-air behav-
ior for incorrectly synchronized programs (e.g., allow the be-
havior shown in Figure 2), or they do not allow dependence-
breaking transformations as shown in Figures 5 and 6.

In programming languages such as C [23] and C++ [41],
threads are not part of the language specification. Instead,
libraries such as POSIX threads (pthreads) [27] support
multi-threading. Since the C/C++ spec doesn’t talk about
threads and the pthreads specification doesn’t talk about
the C/C++ language features, various elements of the se-



mantics can be left unspecified. For example, it is unclear if
double-checked locking [37] works in C as described in vari-
ous publications or if there is a way of modifying it to work.
In contrast, the Java specification makes it clear that stan-
dard double-checked locking idiom only works if the checked
field is volatile.

After the flaws in the original Java memory model were
pointed out [33], a number of proposals for replacement
memory models for Java emerged. Most of these are based
around techniques originally used for hardware memory mod-
els.

The various proposals for revising the Java memory model
differed in a number of details, such as whether they al-
lowed removal of synchronization on thread-local objects
and whether they defined special semantics for final fields.
Due to space limitations, we are unable to enumerate all of
the differences between this work and previous proposals.
However, none of the previous proposals for revising the
Java memory model adequately handled cases involving the
apparent reordering of data and control dependences, such
as shown in Figures 5 and 6. This deficiency was even in
previous work [28] by two of the authors of this paper. The
SC- model [5] handled Figures 5 and 6, but not Figure 10.

Maessen, Arvind and Shen [8] present an operational se-
mantics for Java threads based on the Commit / Reconcile /
Fence protocol [39]. The CRF semantics prohibits reorder-
ing of control and data dependences, and thus prohibits the
behaviors in Figures 5 and 6.

Yang, Gopalakrishnan and Lindstrom [44, 45] attempt to
characterize the approaches taken in [8, 28, 29] using a sin-
gle, unified memory model (called UMM). They also [44] use
the same notation to propose their own memory model for
Java. In their semantics, an action can only be performed
early if the action is guaranteed to occur in all executions.
This disallows a variety of possible optimizations, including
the transformation seen in 5 and 6.

Kotrajaras [24] proposes a memory model for Java that
is based on the original, flawed model. It suffers not only
from the complexity of that model, but from its reliance on
a single, global shared memory.

Saraswat [36] presents a memory model for Java based on
solving a system of constraints between actions for a unique
fixed point, rather than depending on control and data de-
pendence. Thus, Saraswat’s model allows the behavior in
Figure 5; given which writes are seen by each read, there is a
unique fixed point solution. However, Saraswat’s model does
not allow the behavior in Figure 6; in that example, given
the binding of reads to writes, there are multiple fixed-point
solutions.

The ECMA specification for the Common Language In-
frastructure (CLI) provides a memory model [13]. However,
it is vague and informal; as a result it seems impossible to
determine whether that model allows or disallows behaviors
such as shown in Figures 2, 4 – 6 and 10 – 13.

It is also worth noting that some of the Microsoft engineers
have published articles [11] in which they claim that the
CLI specification is too relaxed, and that they have written
code as part of Microsoft’s core libraries that won’t work
according to the ECMA spec.

11. CONCLUSION
In this paper, we have outlined the necessary properties

for a programming language memory model, and outlined

how those properties can be achieved. The resulting model
balances two crucial needs: it allows implementors flexibility
in their ability to perform code transformations and opti-
mizations, and it also provides a clear and simple program-
ming model for those writing concurrent code.

The model meets the needs of programmers in several key
ways:

• For data-race-free programs, it allows programmers to
reason about their programs using the simple seman-
tics of sequential consistency, oblivious to any compiler
and hardware transformations.

• It provides a clear definition for the behavior of pro-
grams in the presence of data races, including the most
comprehensive treatment to date of the dangers of
causality and how they can be avoided.

This paper clarifies and formalizes these needs, balanc-
ing them carefully with a wide variety of optimizations and
program transformations commonly performed by compil-
ers and processor architectures. It also provides proof tech-
niques to ensure that the model reflects this balancing act
accurately and carefully. It is this balance that has given us
the necessary confidence to use this model as the foundation
for concurrency in the Java programming language.
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