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Abstract
Drawing inspiration from several previous projects, we present an
ownership-record-free software transactional memory (STM) sys-
tem that combines extremely low overhead with unusually clean se-
mantics. While unlikely to scale to hundreds of active threads, this
“NOrec” system offers many appealing features: very low fast-path
latency—as low as any system we know of that admits concurrent
updates; publication and privatization safety; livelock freedom; a
small, constant amount of global metadata, and full compatibility
with existing data structure layouts; no false conflicts due to hash
collisions; compatibility with both managed and unmanaged lan-
guages, and both static and dynamic compilation; and easy accom-
modation of closed nesting, inevitable (irrevocable) transactions,
and starvation avoidance mechanisms. To the best of our knowl-
edge, no extant STM system combines this set of features.

While transactional memory for processors with hundreds of
cores is likely to require hardware support, software implementa-
tions will be required for backward compatibility with current and
near-future processors with 2–64 cores, as well as for fall-back in
future machines when hardware resources are exhausted. Our ex-
perience suggests that NOrec may be an ideal candidate for such a
software system. We also observe that it has considerable appeal for
use within the operating system, and in systems that require both
closed nesting and publication safety.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages]: Processors—Run-time environments

General Terms Algorithms, Performance

Keywords Ownership Records, Software Transactional Memory,
Transactional Memory, Transactional Memory Models

1. Introduction
The last few years have witnessed a flurry of interest in trans-
actional memory (TM), a synchronization methodology in which
the programmer marks regions of code to be executed atomically,
and the underlying implementation endeavors to execute such re-
gions concurrently whenever possible, generally by means of spec-
ulation. Many researchers—ourselves among them—have come to
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believe that hardware TM will eventually be seen as desirable—
even necessary—in many-core machines. In the meantime, there
are hundreds of millions of multicore machines already in the field.
For the sake of backward compatibility, emerging TM-based pro-
gramming models will need to be implemented in software on these
machines. It also appears likely that software TM (STM) will be
needed as a fall-back on future machines when hardware resources
are exhausted [9].

Even for the staunchest advocates of hardware TM, then, STM
remains of paramount importance. Since 2003, our group has de-
veloped or ported more than 20 different STM systems, with a re-
markable degree of variety in implementation strategy. Thirteen of
these systems are included in version 5 of the Rochester Software
Transactional Memory (RSTM) suite [31].

STM systems differ in buffering mechanism (cloning, redo-
log, undo-log), conflict detection time (eager/late/mixed, visible/in-
visible readers), metadata organization (object-based, ownership
records, Bloom filters), contention management strategy, valida-
tion strategy (lock-based, timestamp-based, sandboxing), progress
guarantees (nonblocking, livelock-free, starvation-free), ordering
semantics, and support for special features (nesting, irreversible
operations, condition synchronization). This extraordinary variety
raises the obvious question: if one is looking for a good, all-around
implementation of TM for use in some new programming system,
which version should one choose? This paper is our attempt to an-
swer that question.

To be clear: we don’t claim the final word on STM. We see sig-
nificant opportunities for further work in language integration, TM-
aware compiler optimizations, and dynamic adaptation to workload
characteristics. And much work remains to be done to optimize
performance and “harden” existing implementations for production
use. At the same time, many pieces of the puzzle have come clear
in recent years; it’s time to put them together.

For the sake of predictable performance on the widest range
of workloads—and in particular for livelock freedom—we have
argued [35] that a general purpose STM system must be “lazy”—it
must delay the detection of conflicts until transaction commit time.
This implies that writes must be buffered in a “redo log.” At the
same time, it permits very simple contention management—just
favor the transaction that is ready to commit.

Perhaps the biggest remaining STM design questions center
around metadata organization and mechanisms to validate (ensure
the consistency of) and commit active transactions. In these there
tends to be a natural tradeoff between scalability and overhead:
more scalable techniques are more distributed, and thus touch a
larger number of separate memory locations. For machines of mod-
est size (up to 32 cores, say), results from systems like RingSTM
suggest [34] that centralized metadata, carefully used, can mini-
mize overhead while preserving acceptable scalability.

In this paper we advocate a minimalist approach to transaction
metadata: no ownership records (as used in most STM systems),
and no Bloom filters (as in RingSTM or many hardware TM sys-
tems). We discuss two concrete systems. The first, Transactional
Mutex Locks (TML) [36], is particularly simple: the runtime pro-



tects atomic regions with a single sequence lock [17]. Multiple
read-only transactions can run and commit concurrently. A reader
can upgrade to writer status at any time, but there can be only one
writer, system-wide. All other readers abort and retry. While it pre-
cludes write concurrency, this system avoids the need for buffered
writes, and requires only the most minimal instrumentation: read-
ers check the sequence lock immediately after reading, to see if they
must abort; writers acquire the sequence lock immediately before
writing, if they do not hold it already. (Even this minimal instru-
mentation can often be elided based on simple dataflow analysis.)
We have yet to see another STM system match the performance of
TML at thread counts of roughly four or fewer.

Our second system, which we describe in detail in Section 2,
is herein named “NOrec” (no ownership records).1 It also uses a
sequence lock, but only to protect the transaction commit proto-
col. Readers check, after each read, to see if any writer has re-
cently committed; if so, they perform value-based validation [10,
15, 29] to make sure their previous reads, if performed right now,
would return the values previously seen. As in many STM sys-
tems (TML, JudoSTM [29], RingSTM, and even TL2 [7]), NOrec’s
global metadata ultimately imposes a limit on scalability, but the se-
rial bottleneck is relatively small. As in JudoSTM and RingSTM,
threads can figure out what they want to write concurrently; as in
RingSTM, they can determine, concurrently, that these writes do
not conflict with previous writers.

Serialization of commit and (for NOrec) writeback has the very
desirable property of ensuring privatization safety [23, 32]. When
combined with every-reader abort (in TML) or value-based vali-
dation (in NOrec), it also ensures publication safety [25].2 Post-
read validation avoids the need for sandboxing, as performed in
JudoSTM, to prevent erroneous behavior in transactions that are
doomed to abort. Privatization safety makes it acceptable to access
shared data structures outside transactions, at no additional cost to
either transactional or nontransactional code, so long as the overall
program is transactional data race free [5] (or violation free in the
semantics of Abadi et al. [1]). Publication safety also constrains
the behavior of racy programs, as required by the Java Memory
Model [21]. Unlike TML and TL2 (the only previous STM system,
to our knowledge, that is intrinsically publication safe), 3 NOrec is
compatible with closed nesting [28]: one can abort an inner trans-
action without dooming the outer transaction to abort as well.

Among the various runtimes in the RSTM suite (against which
we conducted experiments), only TML and (in some cases) Ring-
STM have lower instrumentation overhead than NOrec. TML, of
course, precludes concurrency among writers, and RingSTM can
introduce false conflicts due to Bloom filter collisions. NOrec’s sin-
gle global counter also avoids the performance impact of metadata-
induced cache pressure. In short, for systems of modest size, NOrec
combines very low time and space overheads with very clean se-
mantics in a very simple package—a winning combination.

This paper makes the following contributions: the design of the
NOrec system (Section 2); a description of its semantic properties
and their importance for applications with publication and priva-
tization (Section 3); a characterization of its performance (Sec-
tion 4); and the recognition of its particular appeal in certain special
contexts: in conjunction with closed nesting, within the operating
system, or as a fall-back for “best effort” hardware TM (Section 5).

1 In RSTM v.5 [31], it is named “Precise” in recognition of its lack of false
conflicts.
2 In the terminology of Menon et al. [25], the version of NOrec presented
in Section 2.2 is ALA publication safe. We present a variant in Section 3.3
that is SLA publication safe.
3 As before, this refers to ALA publication safety.

2. A Fast TM
NOrec combines three key ideas: (1) a single global sequence
lock—shared with our simpler Transactional Mutex Lock (TML)
system [36]; (2) an indexed write set, as in our work on contention
management for word-based, blocking TMs [35]; and (3) value-
based conflict detection, as in the JudoSTM of Olszewski et al. [29].
The resulting TM is both fast at low thread counts and surprisingly
scalable—even on multi-chip machines.

2.1 Design
In a future where hardware TM is common on many-core chips,
STM will be important primarily in smaller and legacy systems,
and as a software fall-back when hardware resources are exhausted.
In these contexts an algorithm’s instrumentation overhead is at least
as important as its scalability. We describe the design of NOrec by
starting with the lowest overhead STM algorithm we know of, and
adding the minimum overhead needed for satisfactory scalability.

Single Global Sequence Lock Our minimum overhead algorithm
is the Transactional Mutex Lock (TML) [36],4 which uses a global
sequence lock [17] to serialize writer transactions. A sequence lock
resembles a reader-writer lock in which a reader can upgrade to
writer status at any time, but must be prepared to restart its critical
section if one of its peers upgrades.

The primary advantage of a sequence lock over a traditional
reader-writer lock is that readers are invisible, and need not in-
duce the coherence overhead associated with updating the lock data
structure. The primary disadvantage is that doomed readers may be
active at the same time as a writer, and may read inconsistent val-
ues from memory, leading to potentially erroneous behavior, espe-
cially in pointer-based algorithms. Some problems can be avoided
by (typically manual) sandboxing, but using the lock in this way
is error prone, and still does not solve problems related to memory
deallocation. Sequence locks are used in the Linux kernel to pro-
tect read-mostly structures where dynamic memory allocation is
not required; traditional reader-writer locks and read-copy-update
(RCU) [24] are used in other cases.

TML integrates the concept of a single global sequence lock
with eager conflict detection and in-place updates. The STM write
barrier acquires the lock for writing, the read barrier checks the lock
version to ensure consistency, and the STM’s built-in memory man-
agement system handles any dangerous deallocation situations. The
result is a very low overhead STM that is highly scalable in read-
mostly workloads, as seen in our performance results (Section 4).
The simplicity of the resulting algorithm facilitates compiler opti-
mization [36], but the results presented here do not consider these.

A side effect of having a single lock is that the resulting al-
gorithm, while blocking, is clearly livelock free. This property is
preserved through the following modifications, which we make to
improve scalability.

There are two impediments to scaling in TML. First, the eager,
in-place nature of the algorithm, when combined with its single
lock, means that only one writer can ever be active at a time. Sec-
ond, invisible readers must be extremely conservative and assume
that they may have been invalidated by any writer.

Lazy/Redo Our first extension is to use lazy conflict detection and
a redo log, for concurrent speculative writers. Updates are buffered
in a write log, which we must search on each read to satisfy possible
read-after-write hazards. We use a linear write log indexed by a
linear-probed hash table with versioned buckets to support O(1)
clearing—a structure that was shown to scale well in our work on
word-based contention management [35]. Writing transactions do

4 This algorithm is equivalent to the unpublished M4 algorithm described in
a 2007 patent by Dice and Shavit [8].



not attempt to acquire the sequence lock until their commit points,
allowing speculative readers and writers to proceed concurrently.

The primary benefit of this extension is to shrink the period
of time that a writer holds the lock, increasing the likelihood that
concurrent read-only transactions will commit.

Value-Based Validation We would also like to allow transactions,
both readers and writers, to detect if they have actually been inval-
idated by a committing writer, rather than making a conservative
assumption. The typical detection mechanism associates transac-
tional metadata with each data location: word-based systems usu-
ally use a table of ownership records (orecs). Most of the complex-
ity in traditional STMs is in correctly and efficiently maintaining
these orecs. The read barrier in a typical “invisible” reader system
inspects both the location read and its associated orec, storing the
location and possibly information from its orec in a read set data
structure. The transaction then re-checks the orecs during valida-
tion, possibly comparing to previously saved values, to see whether
all its reads remain mutually consistent (i.e., could have occurred
at the same instant in time).

The alternative to metadata-based validation is value-based val-
idation (VBV), used by Harris & Fraser as a “second chance” vali-
dation scheme in their work on revocable locks [15], by Ding et al.
in their work on speculative parallelization using process-level vir-
tual memory [10], and by Olszewski et al. in JudoSTM [29]. Rather
than logging the address of an ownership recodr, a VBV read bar-
rier logs the address of the location and the value read. Validation
consists of re-reading the addresses and verifying that there exists
a time (namely now) at which all of the transaction’s reads could
have occurred atomically.

VBV employs no shared metadata, issues no atomic read-
modify-write instructions, and introduces no false conflicts above
the level of a word. Fortuitously, our global sequence lock provides
a natural “consistent snapshot” capability for validation.

Lazy conflict detection, buffered updates, and VBV allow active
transactions to “survive” through a nonconflicting writer’s commit.
This adds significant scalability to NOrec in workloads where writ-
ers are common or transactions are long. The resulting algorithm
has one main scalability bottleneck remaining: the sequence lock
provides for only a single active committing writer at a time. This
is the limitation that would likely make it unsuitable as the primary
TM mechanism on a machine with hundreds of cores.

To minimize this commit bottleneck, we arrange for valida-
tion to occur before lock acquisition, a technique pioneered in
RingSTM [34]. Details appear in the following section.

volatile unsigned global lock

local unsigned lock snapshot
local List<Address, Value> reads
local Hash<Address, Value> writes

Listing 1. NOrec Metadata

2.2 Implementation
Metadata NOrec requires little shared metadata, and very little
metadata overall (Listing 1). The sequence lock is simply a shared
unsigned integer. Each transaction maintains a thread local snap-
shot of the lock, as well as a list of address/value pairs for a read
log, and a hashtable representation of a write set. As is standard, the
implementation stores these thread locals, along with a few others
(e.g., jump buffers used during aborts), as part of a transaction De-
scriptor, which is then an explicit parameter to the STM API calls.

Our current implementation logs values as unsigned words.
Clients of the TM interface are responsible for appropriate align-
ment and type modifications, and for splitting operations on larger
types into multiple calls to TXRead or TXWrite.

unsigned Validate ()
1 while (true)
2 time = global lock
3 if ((time & 1) != 0)
4 continue
5
6 for each (addr, val ) in reads
7 if (∗addr != val)
8 TXAbort() // abort will longjmp
9
10 if (time == global lock)
11 return time

Listing 2. NOrec Validation

Validation Validation is a simple consistent snapshot algorithm
(Listing 2). We start by reading the global lock’s version number
in line 2, spinning if there is a writer currently holding the lock.
Lines 6–8 loop through the read log, verifying that locations still
contain the values seen by earlier reads. Lines 10 and 11 verify that
validation occurred without interference by a committing writer,
restarting the validation if this is not true.

The Validate routine returns the time at which the validation
succeeded. This time is used by the calling transaction to update its
snapshot value. This mechanism resembles the extendable times-
tamps of Riegel et al. [30], with important differences that we cover
in Section 3.2.

void TXBegin()
1 do
2 snapshot = global lock
3 while ((snapshot & 1) != 0)

Listing 3. Transaction Begin

TXBegin Beginning a transaction in NOrec simply entails read-
ing the sequence lock, spinning if it is currently held by a commit-
ting writer. This snapshot value indicates the most recent time at
which the transaction was known to be consistent.

Value TXRead(Address addr)
1 if (writes . contains(addr))
2 return writes [addr]
3
4 val = ∗addr
5 while (snapshot != global lock )
6 snapshot = Validate()
7 val = ∗addr
8
9 reads .append(address, value)
10 return val

Listing 4. Read Barrier

TXRead Given lazy conflict detection and buffered updates, the
read barrier first checks if we have already written this location
(lines 1 and 2). If not, we read a value from memory (line 4).

Lines 5–7 provide opacity [14] via post-validation. Opacity is
crucial for unmanaged (non-sandboxed) languages: it guarantees
that even a speculative transaction will never see inconsistent state.
Line 5 compares the sequence lock to the local snapshot. If the
snapshot is out of date, line 6 validates to confirm that the transac-
tion is still consistent, capturing the returned time as the new local
snapshot. Line 7 rereads the memory location and returns to line 5
to try again.

Lines 9 and 10 log the address/value pair for future validation,
and return the value read. The reads log is currently an append-
only list, allowing us to detect inconsistent reads during validation.
An address may appear multiple times in the list. In a data-race-free
program, post-validation for opacity guarantees that all entries for a



given location contain the same value. Programs with data races can
result in entries with different values—in which case subsequent
validation will fail, as it should.

An alternative would be to store the read set in a hashed struc-
ture as we do the write set, guaranteeing a unique value for each
address. The read barrier would then have two options: (1) always
look up the address in the read set first, returning the found value
if one exists, or (2) always read the actual location first, and abort
if an inconsistent value exists in the read set. The first option can
be considered optimistic, in the sense that at the time of the read a
conflict may exist that will be “fixed” by some future committing
transaction that restores the earlier value. The optimistic option can
tolerate this temporary conflict and commit successfully, where the
second, pessimistic option must abort.

We expect that the lower constant overhead of the list com-
bined with its simpler read barrier logic will result in better perfor-
mance in most applications. It also greatly simplifies closed nest-
ing implementations (Section 5.1). The most compelling reason to
use a hashed set is to accommodate programs in which locations
are reread frequently and validation is also frequent; here the list
has validation cost proportional to the number of reads performed,
while the hash is proportional to the number of locations read.

void TXWrite(Address addr, Value val)
1 writes [addr] = val

Listing 5. Write Barrier

TXWrite The write barrier (Listing 5) simply logs the value writ-
ten using a simple hash-based set. Details of the set implementation
are given elsewhere [31, 35].

void TXCommit()
1 if (read−only transaction )
2 return
3
4 while (!CAS(&global lock, snapshot, snapshot + 1))
5 snapshot = Validate()
6
7 for each (addr, val ) in writes
8 ∗addr = val
9
10 global lock = snapshot + 2 // one more than CAS above

Listing 6. Transaction Commit

TXCommit All transactions enter their commit protocol (List-
ing 6) with a snapshot of the sequence lock, and are guaranteed,
due to post-validation in the read barrier (Listing 4, Lines 5-7), to
have been consistent as of that snapshot. We exploit this property
in both the read-only and writer commit protocol.

A read-only transaction linearizes at the last time that it was
proven consistent, i.e., snapshot time. No additional work is re-
quired at commit for such transactions (lines 1 and 2 of Listing 6).

A writer transaction will attempt to atomically increment the
sequence lock using a compare-and-swap (CAS) instruction, using
its snapshot time as the expected prior value. If this CAS succeeds,
then the writer cannot have been invalidated by a second writer: no
further validation is required. A failed CAS indicates a need for
validation because a concurrent writer committed. Line 5 in List-
ing 6 performs this validation and moves the snapshot forward,
preparing the writer for another commit attempt. As in RingSTM,
transactions never hold the commit lock while validating, minimiz-
ing the underlying serial bottleneck of single-writer commit.

3. Semantics
If transactions were used to protect all accesses to shared data,
most researchers would expect TM to display what the database

initially p == null, published == false
T1: T2:

1 p = new foo() atomic {
2 atomic { if (published)
3 published = true val = p−>x
4 } }

Listing 7. Publication

initially p != null , published == true
T1: T2:

1 atomic { atomic {
2 published = false if (published)
3 } val = p−>x
4 p = null }

Listing 8. Privatization

community calls strict serializability: in every program execution,
transactions would appear to occur, each atomically, in some global
total order that is consistent with program order in every thread.
Complications arise when we introduce the notions of publica-
tion [25] and privatization [18, pp. 22–23] [32] [37, pp. 6–7]. Be-
cause transactions—particularly software transactions—are likely
to incur nontrivial cost, programmers are motivated to avoid their
use when accessing data that are known to be private to a given
thread at a particular point in time. It seems reasonable to assume,
for example, that newly allocated data can safely be initialized out-
side a transaction before being made visible to other threads (pub-
lished—see Listing 7). Similarly, if a thread excises data from a
shared structure, or otherwise makes them inaccessible to other
threads (privatized—see Listing 8), it seems reasonable that the
thread could safely access the data nontransactionally thereafter.

Unfortunately, since the purpose of private accesses is to avoid
examining or modifying transactional metadata, a naive STM im-
plementation may allow these accesses to appear “out of order” in
the presence of publication and privatization, violating both intu-
itive and formal notions of transactional semantics. In this section
we review the notions of publication and privatization safety, and
discuss how they are supported in NOrec.

3.1 Publication and Privatization Safety
In standard parlance, two memory accesses are said to conflict
if they occur in different threads, they touch the same location,
and at least one of them is a write. A memory consistency model
(or just “memory model”) defines a “happens before” order <hb

on accesses in the execution of a parallel program. This order
determines which writes are permitted to be seen by a given read.
Typically synchronization accesses (e.g., lock acquire and release
operations) are ordered across threads, all accesses are ordered
within a thread, and <hb is the (partial) transitive closure of these
inter-thread and intra-thread orders.

If all conflicting accesses in an execution are ordered by <hb,
then the value seen by every read will be determined by a unique
most recent write. If, however, there exists a sequentially consistent
execution in which some conflicting accesses are not ordered, then
the program is said to have a data race. There may be more than one
most recent write for a given read, or there may be incomparable
writes. In some memory models (e.g., that of Java [21]), a read
is required to return the value from one of these writes. In other
memory models (e.g., that of C++ [3]), program behavior in the
presence of a data race is undefined. Grossman et al. [13] were the
first to explore memory models specifically for TM. The discussion
here follows their framework closely.

Strict serializability provides a natural basis for TM memory
models: transactions are globally totally ordered, accesses within
each thread are ordered, and these two orders are mutually con-



initially n == 0, published == false
T1: T2:

1 n = 1 atomic {
2 atomic { } v = n
3 published = true f = published
4 }

Listing 9. Publication via empty transaction

sistent, so their transitive closure induces a global partial order on
all memory accesses. This partial order turns out to be just what
one would expect in a simplistic (nonspeculative) TM implementa-
tion based on a single global lock [5, 18, 25, 33]. Stated a bit more
precisely, in the style of memory models, a TM system is said to
provide single lock atomicity (SLA) if, for every program execution,
there exists some global total order on transactions that is consis-
tent with program order, and that when closed with program order
produces a happens-before order that explains the program’s reads.

Unfortunately, many STM systems fail to provide SLA, because
private accesses do not follow the metadata protocols of the STM
system. It is common, for example, for a transaction to perform
“cleanup” operations (e.g., write-back from a log) after it has com-
mitted. If some other transaction privatizes data that have not yet
been cleaned up, subsequent private reads may see the wrong val-
ues, and private writes may be lost. Similarly, it is possible for pri-
vate writes to change the values of data that are still being read by a
transaction that is doomed to abort but has not yet realized this fact.
If care is not taken, such a transaction may suffer logically impossi-
ble errors: division by zero, segmentation fault, infinite loop, jump
to an invalid or non-transaction-safe code address. (For a discus-
sion of techniques to support SLA in the presence of privatization,
see our paper at ICPP’08 [23].)

In the case of publication, most STM systems permit execu-
tions that are forbidden by SLA semantics, at least with Java-like
conventions on races. Many examples can be found in a 2008 paper
by Menon et al. [25], which first identified the “publication prob-
lem.” In Listing 9, for example (adapted from Figure 9 of that pa-
per), there is no conflict between the transactions in T1 and T2,
and many STM systems will allow them to execute concurrently
(or even elide T1’s, since it is empty). In this case, however, all of
T1’s code may execute between lines 2 and 3 of T2, leading to a
result (v == 0, f == true) that is forbidden by SLA.

Interestingly, as Menon et al. point out [25], ensuring SLA se-
mantics in the presence of publication is a challenge only for pro-
grams with data races. In Listing 9, SLA permits all of T2 to fall
between lines 1 and 2 of T1, in which case T1’s write of n is un-
ordered with respect to T2’s read. This asymmetry with respect to
privatization (where problems occur even in the absence of races)
occurs because only one thread (the one that currently enjoys pri-
vate access) has the right to perform publication, while any thread
has the right to privatize. In this regard, privatization resembles the
acquisition of a lock; publication resembles its release.

Rather than force STM implementations to provide SLA seman-
tics for programs with data races, Menon et al. propose a series of
semantics that progressively relax the transactional orderings re-
quired by SLA. Their DLA (disjoint lock atomicity) orders only
those transactions that conflict. This allows a Java-like system to
display the 〈v == 0, f == true〉 outcome in Listing 9. Their ALA
(asymmetric lock atomicity) permits similarly counter-intuitive re-
sults in the event of an anti-dependence between the publisher’s
transaction and some subsequent transaction in another thread. Fi-
nally, their ELA (encounter-time lock atomicity) permits counter-
intuitive results even in the case of forward (flow) dependences, if
the compiler hoists reads outside of conditionals (effectively per-
forming a speculative prefetch that creates a data race not found in
the original program).

Of these various relaxations, we find ALA the most compelling:
it permits all the classic compiler optimizations within transac-
tions, while still providing behavior indistinguishable from SLA
in programs that publish only by forward dependences. Stated a bit
more precisely, a TM system system is said to provide asymmet-
ric lock atomicity (ALA) if, as in SLA, there exists for every pro-
gram execution a global total order on transactions <t that induces
a happens-before order <hb that explains the program’s reads. In
this case, however, we need (as in Java [21]) an intermediate “syn-
chronizes with” order <sw to complete the explanation. Specifi-
cally, for transactions T1 and T2, we say T1 <sw T2 if T1 <t T2
and there is a forward data dependence from T1 to T2. Then <hb

is the transitive closure of <sw and program order.
Note that the code in Listing 7 will behave the same under

SLA and ALA semantics, even if the compiler hoists the read of
p above line 2 in T2. (Standard sequential optimizations will not
hoist the read of x, since dereferencing p will not be known to be
safe.) Note also that Menon et al. define SLA, ALA, etc. in terms
of equivalence to locks. We believe the ordering-based definitions
here to be equivalent to theirs.

Summary An STM system is said to be publication (privatiza-
tion) safe with respect to a given memory model if it adheres to
that model even in the presence of publication (privatization). Pri-
vatization safety tends to be a challenge for STM under any mem-
ory model. An implementation that supports privatization must en-
sure that a thread does not access a datum privately until previously
committed transactions have finished writing it, and (in the absence
of sandboxing) until any still active but doomed transactions have
finished reading it.

Publication safety is a challenge for STM under a mem-
ory model that requires well-defined behavior for programs with
source-level data races, or that allows the compiler to apply com-
mon sequential optimizations to code within transactions, even
under a memory model in which source-level data races have un-
defined behavior. In the former, Java-like case, the implementation
needs to be SLA publication safe. In the latter, C++-like case, the
implementation needs to be ALA publication safe.

3.2 Existing STM Systems
SLA semantics can be implemented, trivially, with a single

global lock, at the expense of all concurrency. Menon et al. propose
start linearization as a more scalable mechanism to provide the
same semantics. Simply stated, start linearization ensures that suc-
cessful transactions commit and clean up (finalizing any buffered
state) in the order in which they started.

In Listing 8, cleaning up in commit order ensures that post-
privatization reads never see stale values, and post-privatization
writes are never overwritten by stale values. Sandboxing or, alter-
natively, validation on each transactional read can be used to avoid
erroneous behavior in doomed transactions.

In Listing 9, if T2’s transaction begins before T1’s, commit-
ting in start order avoids the dangerous ordering alluded to in Sec-
tion 3.1, by forcing T1 to wait on line 2 until T2 commits. This
prevents the read of published from returning true. Though trans-
actions must complete in the order they start, they achieve scalabil-
ity through pipelined overlap.

ALA semantics are easier than SLA to implement, because
ALA transactions are ordered only by forward dependences. In par-
ticular, a read-only (or empty) transaction cannot publish data in an
ALA system because it cannot be the source of a flow dependence.

An ALA-publication-safe TM system allows the compiler or
(with Java-like conventions) the programmer to create a race for
published data, so long as there is a flow dependence from a trans-
action that follows the write in the publishing thread to a transaction
that performs the read in another thread. In Listing 7, for example,



if T2 reads true on line 2, ALA publication safety requires that
T2’s read of p return the value written by T1 in line 1 (or else that
T2 abort), even if the read of p was hoisted above line 2.

Menon et al. describe a variant of Dice et al.’s TL2 [7] as the
canonical example of an ALA-publication-safe implementation.
Update times associated with ownership records allow a transac-
tional read to detect when the write it is “seeing” may have been
performed after the transaction’s own start time. In this case, the
transaction pessimistically assumes that some previous read re-
turned a now-invalid write, and aborts. As in the SLA implemen-
tation described above, privatization safety is handled by forcing
transactions to clean up in the order they committed.

Interestingly, the extendable timestamps of TinySTM [30] break
ALA publication safety for Java-like languages, or for C++-like
languages in which the compiler can introduce data races. In a race-
free program, extendable timestamps avoid unnecessary aborts by
allowing a transaction that sees a recently-written value to update
its “start” time, verify that no previously read location has been
updated since the old start time, and continue. Unfortunately, in a
program with racy publication, such a transaction may fail to notice
that a previously read location has been updated nontransactionally.

3.3 Ordering Semantics for NOrec
Like TinySTM, NOrec attempts to validate its read set and con-
tinue when it detects a possible conflict. Validations may happen
more often in NOrec, because detection is based on a global se-
quence lock rather than on per-orec timestamps. Crucially, how-
ever, value-based validation means that NOrec is able to detect the
nontransactional writes involved in racy publication.

Consider Listing 7 again, where the read of p in T2 has been
hoisted above the read of published. If T1 starts its transaction after
T2, but commits before T2 reads published, then TL2, TinySTM,
and NOrec will all detect a possible conflict when the read of
published occurs. TL2 will abort and restart T2, ensuring that even
a hoisted read of p will see the value written by T1 at line 1.
TinySTM and NOrec will validate their read sets (which consist
solely of the hoisted p). Since T1’s nontransactional write of p
will not have modified p’s orec, TinySTM will conclude that T2
is consistent, even if its value of p is actually stale. NOrec, on the
other hand, will have logged both the address and the value of p.
It will fail validation if the logged value (NULL) does not match
the current value (written by T1 at line 1). In this way, NOrec
realizes exactly the transactional schedules of TinySTM that are
ALA publication safe.

The base NOrec algorithm is clearly not SLA safe: In Listing 9,
neither transaction writes a shared location, thus neither transaction
ever validates and T2 will not detect possible inconsistent reads
of n and published. T2 is capable of detecting the inconsistency,
however: validation would fail if it occurred. If we force every
transaction to validate at least once after its final read, NOrec
becomes SLA publication safe. Perhaps the simplest strategy would
be to force every transaction to increment the sequence lock, but
this would induce unnecessary serialization and cache contention.
We could instead have every transaction validate at commit time
if it has not done so since its last read, but this requires a local
flag that increases (slightly) the instrumentation overhead on reads.
We have obtained the best performance simply by having every
transaction validate unconditionally (and possibly redundantly) at
commit time.

NOrec is inherently SLA privatization safe due to its single-
writer commit implementation. Both TL2 and TinySTM require an
additional mechanism to be privatization safe. The results reported
in Section 4 use either a table of activity flags, as in Menon et al.’s
canonical ALA system, or the two-counter quiescence mechanism
described in our previous work on ordering-based semantics [33].

4. Performance Results
Our performance goals are twofold: low overhead and reasonable
scalability. We use the RSTM RBTree microbenchmark [31] to
isolate performance in specific circumstances, and the STAMP
benchmark suite [26] for overall performance in larger programs.

All results were collected on a Sun Niagara2, a machine with 8
cores on a single chip, and 8 hardware threads per core, for a total
of 64 concurrent hardware contexts. Cores are relatively simple—
all branches are predicted as not taken,5 and there is no out-of-
order execution. Each core shares an 8KB, 4-way associative L1
data cache among its 8 thread contexts. This structure is optimized
for throughput computing, and accentuates the cost of transactional
instrumentation. Benchmarks were compiled with gcc 4.4.2 using
-O3 settings and built-in thread-local storage.

4.1 Overhead
We measure overhead using single-threaded RBTree executions in
four different configurations: with small (64 node) and large (65K
node) trees, and with read-mostly and balanced workloads (Fig-
ure 1). Small trees result in small transactions, with relatively small
write sets due to rotation. Large trees result in longer transactions
with significantly larger read and write sets. Results for the RBTree
benchmark are the average of five runs, where each run consists
of a single thread executing three million pseudo-random transac-
tions obtained from the same initial seed, thus all tests do the same
amount of useful work.

We compare 7 different STM systems, all of which are dis-
tributed as part of the RSTM package [31]. These are full-fledged
STM implementations that support subsumption nesting as well
as inevitability, both of which introduce branches onto the com-
mon instrumentation path. The systems have been optimized for
the Niagara2 system in two important ways: (1) we have carefully
controlled the inlining of transactional instrumentation to prevent
damaging instruction-cache behavior, and (2) we have structured
the source code in order to minimize the number of costly “taken”
branches on common code paths.

CGL is a coarse-grained locking implementation in which all
transactions acquire and release a single global lock. SGLA is
a good-faith reproduction of the SGLA algorithm presented by
Menon et al. [25], except that instead of relying on sandboxing
to protect against erroneous behavior in doomed transactions, we
poll a global commit counter in the read barrier, and validate when
the counter has changed. ALA, known as “Flow” in the RSTM
suite, is an optimized implementation of TL2 [7] with counter-
based quiescence added for privatization safety. TML, NOrec, and
NOrec SLA are as described in Section 2.2.

Unsafe is a highly scalable orec-based system descended from
TL2, but using TinySTM’s extendable timestamps [30], a hashed
write set, and a “patient” contention management policy that waits
for conflicting transactions that are actively committing. As de-
scribed in our 2009 PPoPP paper, Unsafe scales extremely well,
and is essentially livelock-free [35]. The name we give it here re-
flects the fact that this system is neither publication nor privatiza-
tion safe; we include it as a rough upper bound on potential scala-
bility. In the RSTM suite, Unsafe is known as “Fair”.

We present transaction throughput results in Figure 1. These are
normalized to the results of running the benchmark without transac-
tional instrumentation. Using hardware performance counters, we
also recorded metrics such as instruction and data cache misses at
both the L1 and L2; TLB usage; and overall instruction, atomic-op,

5 The lack of branch prediction results in performance that is highly de-
pendent on code layout. We have done our best to minimize the number of
taken branches in common case scenarios in the code, preferring read-only
transactions where possible.
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Figure 1. Performance results for single-threaded execution, nor-
malized to an uninstrumented baseline. Bars are clustered in three
groups, CGL, NOrec SLA, and SGLA provide SLA semantics,
while TML, NOrec, and ALA provide ALA semantics. Unsafe pro-
vides no privatization safety and is thus in a class of its own.

and taken-branch counts. These numbers were all consistent with
the results presented in Figure 1 (after modifying code layout to
avoid instruction cache misses and taken branches).

The overhead of CGL is one atomic compare-and-swap per
transaction, which can be nontrivial for small transactions, but is
amortized in larger transactions. TML can elide this for read-only
transactions, but requires a volatile load and branch per transac-
tional memory operation—a large cost that cannot be amortized.

NOrec is consistently faster than the canonical ALA implemen-
tation by a small amount. In a single-threaded workload these algo-
rithms have similar behavior. The main extra source of overhead in
ALA is that it loops at commit in order to acquire each of its orecs
with an atomic instruction, leading to extra atomics, larger instruc-
tion counts, and more taken branches than NOrec. This more than
balances the fact that NOrec has slightly larger cache pressure than
ALA, as the tested configurations do not result in substantial data
cache misses. NOrec SLA is faster than the SGLA implementation
by similar amounts, for similar reasons.

Write buffering and logging for validation have clear over-
heads, but these are the price of writer concurrency and privatiza-
tion safety. When combined with lazy conflict detection, they also
eliminate livelock in practice, and dramatically simplify contention
management [35].

4.2 Scalability
We use the same RBTree benchmark as in Section 4.1 to assess
scalability in the same four benchmark configurations, however we
do not test CGL as it does not scale. The OS scheduler is configured
to place threads round-robin on the cores within a chip, so the first
8 threads are on separate cores, the 9th is back on the first core, and
so on. Executing a fixed number of transactions per thread leads
to load imbalance, so we instead run each configuration for five
seconds. All thread counts between 1 and 64 are measured directly.
Figure 2 summarizes these results.

We expected TML to perform well for read-mostly workloads.
We were somewhat surprised to see its resilience in conditions
where there are many writers as well. Even in the 50% writer
case, TML outperforms all alternatives on our microbenchmark
with fewer than 4–8 active threads. Our STAMP tests (Section 4.3)
show this same pattern of behavior.

Of the privatization-safe implementations that admit write-write
and read-write concurrency (and thus have better scalability), the
NOrec options perform the best in most of our tests, even out to

64 threads. Their scalability and throughput, in fact, are better than
Unsafe in 3 of the 4 experiments, even though we selected Unsafe
for its high scalability. This is perhaps not as surprising as it first
appears: Given a set of concurrent active transactions, NOrec and
Unsafe allow the same potential commit orderings, while SGLA
and ALA are more restrictive, for the sake of publication safety.
NOrec has lower fixed and per-location overheads, but Unsafe,
given its lack of privatization safety, allows its writebacks to occur
in parallel, and its completions to occur in any order.

As expected, SGLA scales poorly overall. Its pipeline-style con-
currency is quickly swamped by the probability that most trans-
actions are waiting on transactions with earlier start-linearization
stamps. In addition L1 data cache misses are higher due to its re-
liance on quiescence tables that are always written remotely (see
Figure 3 for details). The behavior of ALA is similarly disap-
pointing. Its pessimistic publication orderings limit its scalability in
read-mostly circumstances, while its privatization safety becomes
a bottleneck when writers are more common.

The NOrec TMs show very little separation in workloads with
many writes. The primary difference between the algorithms is that
NOrec can avoid validation on commit, while NOrec SLA validates
every transaction. In workloads where roughly 50% of the transac-
tions are writers this additional validation costs virtually nothing,
since it is likely that all transactions will validate at least once.
Read-dominated workloads, however, result in noticeable separa-
tion between the algorithms: NOrec may commit many transac-
tions without any validation, while NOrec SLA must validate ev-
ery transaction at least once. In the large-tree, read-mostly case (top
right graph in Figure 3), NOrec SLA suffers approximately 20 extra
cache misses per transaction due to this validation.

NOrec has two main weaknesses. It has a single-writer com-
mit protocol, which clearly limits its scalability in workloads with
many writers. This is a fundamental property of the underlying al-
gorithm, and is independent of system architecture. The Niagara2
clearly demonstrates NOrec’s second weakness: its read set entries
are twice as large as the corresponding orec-based implementa-
tions. Where Unsafe, ALA, and SGLA all store the address of an
orec in their read sets, NOrec and NOrec SLA must store both the
address of the read location and the value that was seen.

During validation, each entry in the read set is brought into the
L1 cache. NOrec will begin to suffer excessive L1 cache evictions
before the orec-based algorithms, which is exactly what we see in
our large trees with frequent writers configuration (Figure 3). RB-
Tree rotations in this configuration read large numbers of locations,
enough to trigger evictions in the small L1 cache shared by threads
on a given core. The fact that each committing transaction triggers
a validation merely serves to exacerbate the situation in this write-
heavy configuration.

In configurations where NOrec does not suffer from this L1 miss
pathology we see the expected L1 data cache behavior. SGLA must
access two quiescence tables that are written by remote threads,
giving it the largest cache-miss profile. Unsafe and ALA use similar
timestamp schemes and thus have similar shapes, but Unsafe’s
extendable timestamps, while making it less pessimistic about ALA
safety, also induce more cache misses per successful transaction.
TML, NOrec, and NOrec SLA have better data locality than their
orec-based cousins, resulting in the lowest overall miss rates. Other
performance counter results show that L1 data cache misses are the
primary cause of lost scalability specific to the Niagara2.

4.3 STAMP
In 5 of the 8 STAMP benchmarks (Figure 4: intruder, ssca2, yada,
labyrinth, kmeans), NOrec and NOrec SLA are either the fastest
or roughly tied for fastest among the various runtimes, across the
full range of thread counts. In genome, only Unsafe outperforms
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Figure 2. Microbenchmark scalability results. The Y axis shows commits per second: higher is better. NOrec SLA and SGLA support SLA
semantics. TML, NOrec ALA, and ALA support ALA semantics. Unsafe provides no publication safety.

them. As in the RBTree experiments, these results demonstrate
remarkable scalability for NOrec, and suggest that its privatization
and publication safety are not a significant obstacle to throughput.

In general, SGLA performs better in STAMP than it does in RB-
Tree. The main exception is intruder, which more closely resembles
the RBTree results. Unsurprisingly, SGLA outperforms the NOrecs
in vacation, whose principal shared data structure is in fact a red-
black tree, presumably due to a relatively high occurrence of large
writer transactions.

Base (ALA) NOrec outperforms NOrec SLA by a significant
amount in intruder, but in most other benchmarks the two are very
nearly tied. NOrec SLA appears to outperform NOrec in bayes, but
this benchmark is nondeterministic, and displays irregular perfor-
mance; it’s hard to draw firm conclusions.

The clear loser here is TML: for workloads with many large,
conflicting transactions, its lack of writer concurrency prevents it
from scaling acceptably.

5. Special Uses
The distinctive properties of NOrec make it appealing for several
special purposes. In this section we describe three such purposes,
which we have begun to explore as part of ongoing work.

5.1 Closed Nesting
Closed nesting, where inner nested transactions can abort and
restart separately from their outer parents, is expected to improve
performance in certain applications [28]. Sadly, TL2, the prior
canonical ALA-publication-safe STM, does not support closed

nesting. Any read that causes an inner transaction to abort, because
the corresponding orec has a recent timestamp, will also necessar-
ily cause outer transactions to abort, since their start times can be
no later than those of their children.

Both the ALA and SLA versions of NOrec appear well suited to
closed nesting. We would expect to introduce a scope data structure
that stores information necessary to detect and handle an inner
nested transaction abort.

NOrec’s append-only read log makes it simple to detect the
proper nesting level at which to abort a transaction. As we enter
each scope we can record the tail pointer of the log. Validation then
scans the log in order. If it finds an invalid read, the record of tail
pointers indicates the nesting level at which to start aborting, and
the point at which to truncate the log.

The write set is more difficult. A nested abort requires that
we restore the set of writes that was active at the start of the
nested transaction. An indexed write set complicates this process,
as we would normally maintain only the unique, latest write to
any location in the set. Closed nesting requires that we maintain
a unique, latest write per nested scope.

There are several ways to implement such an augmented in-
dexed write set. The simplest is to make the write set an append-
only log, much like the read set, with an index for fast lookup of
the most recently written value for an address. A nested abort can
truncate both logs, then re-scan the write log to rebuild the index.

A slight variant of this technique would overwrite the most
recent entry for a given location in the write set, if it is being
written at the same nesting level. This trades potential improved
space overhead when the same location is written multiple times for
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Figure 3. L1 Data cache misses per commit.

an additional branch on each write barrier. We could also maintain
the information needed to undo each write, in order to patch the
index rather than rebuild it, or we could store a forwarding pointer
as part of each log entry. The latter option would allow the write
barrier to lazily detect an individual invalidation and patch itself
piecemeal by finding the corresponding active value. Finally, we
could keep a stack of scope/value pairs at each log location and
scan through the log during abort, popping stacks as necessary. The
choice among these options will depend on further experiments,
and may be workload dependent.

5.2 OS Safety
NOrec is appealing as a kernel-level STM for several reasons,
including low space overhead, a narrow window when locks are
held, and a lack of false conflicts due to orec or Bloom filter
hash collisions. As in most STMs, however, we must deal with
the possibility that a doomed transaction may read a datum that
has been deallocated by a concurrent transaction. In particular,
if the datum’s page is removed from the address space of the
doomed transaction, a segmentation fault may occur. In user code,
this problem can be avoided with nonfaulting loads [7], garbage
collection, a custom signal handler [11], or epoch-based deferred
memory reclamation [12, 16]. In the OS, the latter option is most
common, but typically defers reclamation for extended periods (as
in read-copy-update (RCU) algorithms [24]).

RCU employs extended epochs because there is generally no
precise way to tell when no outstanding references to a location
remain. In TM, it suffices to ensure that every transaction that
was active during T2’s execution has either committed or aborted.
However, within the OS there is no clear bound on the number

of possibly active threads, especially if a hardware interrupt can
trigger a new transaction.

To address the problem, we require a solution to the long-
lived k-renaming problem [27]. One simple heuristic approach is to
maintain a table of integers (1024, say), each initialized to⊥. When
an OS transaction begins, it randomly probes the table until it finds
an entry that equals the initialized value and atomically sets the
value to its cache of the NOrec sequence lock. At commit time, the
transaction resets its entry to ⊥. This table can be used in the exact
same manner as the static tables of Hudson [16] and Fraser [12];
it differs only in that it requires an extra CAS at the beginning of
each transaction to select an epoch slot.

5.3 Hardware Integration
Future multicore processors (e.g., Sun’s Rock [4]) are likely to pro-
vide some form of best-effort hardware transactional memory, in
which overflow of hardware resources causes fall-back to STM.
Interaction with traditional STM implementations is complicated
by the need for the hardware to be aware of and interact with the
STM metadata. In HyTM, for example [6], read and write barriers
are inserted in hardware transactions in order to inspect orecs. This
bloats both the number of instructions executed and the cache and
read set footprint of the hardware transaction, increasing its likeli-
hood of aborting. In addition, the STM uses semivisible readers to
communicate with the HTM, a potential performance bottleneck.
A more recent variant, SkySTM [20], incorporates several perfor-
mance improvements, but still faces the same basic issues.

NOrec has only a single word of shared metadata for an HTM
implementation to contend with—the global sequence lock. We can
leverage this fact to build a hybrid TM system in which hardware
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transactions need not modify or inspect any additional locations as
part of their read barrier. In the following discussion we assume a
simple HTM that buffers writes in a local cache and detects con-
flicts eagerly, at cache-line granularity. We assume that the HTM is
strongly isolated [2]. We also assume that a short transaction that
touches a small constant number of cache lines (two) will not rou-
tinely abort in the absence of true conflicts.

We add a second, shared word of metadata to NOrec to support
hybrid functionality. We call the original NOrec sequence lock the
main lock, and this second word the software lock. We take care
to place them in separate cache lines. As is standard, a software
transaction snapshots the main lock at begin time, and interacts
with it normally until its commit point, validating when it detects
a change. At commit time, the software transaction uses a small
hardware transaction to attempt to increment the main lock to an
odd number, in order to acquire the commit lock. In the same
transaction it writes the new, odd number into the software lock as
well, committing the brief transaction. It proceeds with writeback,
and uses normal writes to release first the software lock and then
the main lock, by incrementing them back to an even number.

Hardware transactions read the software lock at start time, spin-
ning (through explicit software self-abort) if they detect that it is
locked. They then proceed with their transaction as normal, with
no extra instrumentation, up to their commit point. Any commit-
ting software writer will force the hardware transaction to abort by
writing the software lock at commit time. Immediately before com-

mitting, a hardware transaction reads and increments the main lock
by two. This use of an early read of a global location in order to
“subscribe” to software TM events is similar to a technique used
in PhTM [19] to ensure that hardware transactions are aware of the
current system mode.

This algorithm preserves low overhead in the absence of soft-
ware transactions, and correctness otherwise. Without software
transactions, the main source of overhead is that each transaction
must read and increment the same global location. This can lead
to poor cache performance, but is unlikely to cause transactions
to abort, because it is the final thing that a transaction does be-
fore committing. We conjecture that the window of vulnerability
is small enough to make extra conflict-related aborts unlikely. In
contrast to other systems, NOrec does not pollute the cache with
orecs, and requires no extra instrumentation on reads or writes.
An active software transaction sees a hardware transaction as an
instantaneous commit, triggering a validation but not necessarily
an abort. In effect, a software transaction cannot tell the difference
between a hardware transaction and another software transaction.
Acquiring the software lock at commit time ensures that hardware
transactions will not commit during a software writeback, enabling
them to serialize. The resulting behavior is that short hardware
transactions can execute and commit concurrently with a longer-
running software transaction. If starvation becomes an issue, the
software transaction can decide to acquire the software lock early,
ensuring that it will commit.



6. Conclusion
Our performance results show NOrec and NOrec SLA to have un-
usually low overhead and high scalability—providing performance
on an 8-core, 64-thread machine that is often better, and in gen-
eral comparable to, that of systems with weaker ordering seman-
tics. The simplicity of these systems also seems to result in high
stability, with fewer performance anomalies than existing state-of-
the-art runtimes. For legacy and near-future multicore machines,
NOrec may well be the system of choice. It also has high appeal as
the fall-back STM for hybrid TM systems.

At low thread counts, no system we know of beats the perfor-
mance of TML. NOrec contains the machinery to operate in TML
mode—in fact, our current implementation reverts to TML mode
for inevitable (irrevocable) transactions. In addition to the special
uses discussed in Section 5, we expect to explore dynamic adapta-
tion between NOrec and TML.
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